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Morphological reconstruction of 
i ifineurons: significance

• To understand the I/O relationship of individual central p
neurons 
– Combining detailed structural and functional information

Signal In Signal Out

Structure and Function
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Image Analysis Goal:Image Analysis Goal:
• Extract the geometric properties of dendritic arborsg p p
• Reconstruct a computer-generated 3D-image of the arbor.

Do the last task when a neuron is 
activated and responds.

This will help add a layer of a trueThis will help add a layer of a true 
activation/response model.

4Raw Data Reconstruction



Characteristics of the dendritic structure

– Global features (e.g., branch size, shape, and tapering; branch 
bifurcations; overall geometry, distribution of the shape of ; g y, p
spines)

– Local features (e.g., the dendritic spines)
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Challenges (1)Challenges (1)
• Uneven distribution of the fluorescent dye.  

D th d d t i t it h d tt i

30 m

• Depth-dependent intensity changes and scattering

5 m

10 m

i i t it j ti
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x –y maximum intensity projection y –z maximum intensity projection



Challenges (2)Challenges (2)
• Irregular shape of the dendrites g p

• Adjoining structures: spines

• Many features of interest are at the resolution limit of 
light microscopy

2 m

Tubular-like

2 2 m2 m
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Challenges (3)Challenges (3)
• Low signal to noise ratio: thermal noise, photon shot g , p

noise

• Different noise model (Poisson) from CT or MRI• Different noise model (Poisson) from CT or MRI 
(Gaussian)
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ORION 1 Morphological Reconstruction 
Pi liPipeline

Input: Raw data Step 3 Dendrite DetectionStep 2. DenoisingStep 1. Deconvolution Step 3. Dendrite Detection
Shape learning and 

shape prediction
3D Frame-Based 

Denoising

p g

Experimental PSF

Step eco o ut o

Shape ModelShape Model

Multiple image 
stacks registration

Step 4. Registration

Medial axis and 

Step 5. Morphological
Reconstruction

Step 6.  Statistical
analysis

Output: Simulation of 
Computational Model

stacks registrationradius estimation
Hoc file generation
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Dendrite Detection: Shape 
Features

• Filter the 3D-image I with 
Gaussian kernels Gσ for different σ
σ. 

• Extract the Hessian of I* Gσ (x)
Find the eigenvalues of I* G• Find the eigenvalues of I* Gσ
(x). 

These are the shape features.5 m These are the shape features.
• Classification of voxels according 

to the learned features.
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Dendrite Detection: Learning 
from Examples

Shape p
Learning

Model to Learn Data to predict

Prediction
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Dendrite Detection: 
Comparisons

Original Data Orion 1Original Data Orion 1
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Frangi Sato



Results (2)Results (2)

Medium

Poor
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Results (3)Results (3)
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O i 1 R t ti f Di d D t S t 1Orion 1 Reconstruction for Diadem Data Set 1

Volume 1: CF1 Volume 2: CF2



Orion 1 Reconstruction for Diadem Data Set 5Orion 1 Reconstruction for Diadem Data Set 5

Volume 1: OP1 Volume 3: OP3



Orion 1 Reconstruction for Diadem Data Set 2Orion 1 Reconstruction for Diadem Data Set 2

Raw data PredictionRaw data Prediction



Synthetic data volumes
• Synthetic data volumes can be used for benchmarking 

imaging  algorithms in neuroscience.  
• These algorithms aim to extract the geometric 

characteristics of  a neuron from the input 3D-image. 
• Benchmarking of their performance must be done under• Benchmarking of  their performance must be done under 

ideal conditions where the ground truth is precisely 
known.

• Neurons can be modeled as tubular structures. 











oror







•Is it true that if Φα is radial then a greedy algorithm selection of Λ for f is not 
influenced by the rotations of f ?
• What happens with other orthogonal transform groups and other norms, 

S b l ?e.g. Sobolev norms?



Changing 
resolution/superesolutionresolution/superesolution

Changing resolution in images or creating crisp images 
from a series of low-resolution images is significant infrom a series of low resolution images is significant in 
forensic science and biometrics.  
Artifacts/errors must not depend on the orientation of 
singularitiessingularities.







Isotropic Re-sampling
We wish to take a super-resolution or a sub-resolution using 

the IMRA framework. 
Thi i t t i f ti i i t i– This is meant to preserve information in an isotropic 
fashion, i.e., without directional bias.

– Preliminary results show promise for optimalPreliminary results show promise for optimal 
performance, particularly for super-resolution, using an 
IMRA setting.

800 x 800

400 x 400



Isotropic Down-samplingIsotropic Down sampling

• Down-sampling in an IMRA framework forDown sampling in an IMRA framework for 
15 degree rotation of a line e.g.,



Isotropic Down-samplingIsotropic Down sampling

• Down-sampling in an IMRA framework forDown sampling in an IMRA framework for 
45 degree rotation of a line e.g.,



Isotropic Up-samplingIsotropic Up sampling

• Up-sampling in an IMRA framework for 15Up sampling in an IMRA framework for 15 
degree rotation of a line e.g.,



Isotropic Up-samplingIsotropic Up sampling

• Up-sampling in an IMRA framework for 45Up sampling in an IMRA framework for 45 
degree rotation of a line e.g.,



Examples of synthetic dendrites
Cylinder along the x-axis for sanity check

Second downsampling Third downsamplingSecond downsampling Third downsampling



Examples of synthetic dendrites
• Cross section 30⁰ • Cross section 45⁰ • Cross section 90⁰

• Cross section 30⁰ • Cross section 45⁰ • Cross section 90⁰



Examples of synthetic dendrites

• Slices at 30 ⁰, 45 ⁰, and 90 ⁰



Examples of synthetic dendrites



Thank you for attending

I thank the organizers for this 
wonderful meeting. 

Thank the weather for the 
NFFFT  2011NFFFT  2011


