Virtual Neurons

3D-reconstructions of neurons

Manos Papadakis University of Houston

Collaborators

I. Kakadiaris, D. Labate

Neuroscience/data acquisition collaborators: P. Saggau (BCM) and F. Laenza (UTMB)

D. Jimenez, P. Hernadez-Herrera and A. Santamaria-Pang

Morphological reconstruction of neurons: significance

- To understand the I/O relationship of individual central neurons
 - Combining detailed structural and functional information

Image Analysis Goal:

- Extract the geometric properties of dendritic arbors
- Reconstruct a computer-generated 3D-image of the arbor.

Raw Data

Reconstruction

Do the last task when a neuron is activated and responds.

This will help add a layer of a true activation/response model.

Characteristics of the dendritic structure

- Global features (e.g., branch size, shape, and tapering; branch bifurcations; overall geometry, distribution of the shape of spines)
- Local features (e.g., the dendritic spines)

Challenges (1)

- Uneven distribution of the fluorescent dye.
- Depth-dependent intensity changes and scattering

x –y maximum intensity projection

y –z maximum intensity projection

Challenges (2)

- Irregular shape of the dendrites
- Adjoining structures: spines
- Many features of interest are at the resolution limit of light microscopy

Challenges (3)

- Low signal to noise ratio: thermal noise, photon shot noise
- Different noise model (Poisson) from CT or MRI (Gaussian)

ORION 1 Morphological Reconstruction Pipeline

Dendrite Detection: Shape Features

- Filter the 3D-image I with Gaussian kernels G_{σ} for different σ .
- Extract the Hessian of $I^* G_{\sigma}(\mathbf{x})$
- Find the eigenvalues of I* G_σ (x).
- These are the shape features.
- Classification of voxels according to the learned features.

Dendrite Detection: Learning from Examples

Dendrite Detection: Comparisons

Results (2)

Medium

Poor

Results (3)

Orion 1 Reconstruction for Diadem Data Set 1

Volume 1: CF1

Volume 2: CF2

Orion 1 Reconstruction for Diadem Data Set 5

Volume 1: OP1

Volume 3: OP3

Orion 1 Reconstruction for Diadem Data Set 2

Raw data

Prediction

Synthetic data volumes

- Synthetic data volumes can be used for benchmarking imaging algorithms in neuroscience.
- These algorithms aim to extract the geometric characteristics of a neuron from the input 3D-image.
- Benchmarking of their performance must be done under ideal conditions where the ground truth is precisely known.
- Neurons can be modeled as tubular structures.

Simple tube model:

$$T_{a} f(x) = f(x-a), \quad x \in \mathbb{R}^{3}.$$

$$T_{a} ke \qquad t(x_{1}, x_{2}, x_{3}) = Ae^{-\frac{x_{1}^{2}}{2\sigma_{1}^{2}}} e^{-\frac{x_{2}^{2} + x_{3}^{2}}{2\sigma_{2}^{2}}}$$

$$A \text{ simple tube is} \qquad T_{a} \mathbb{R} + \sigma_{1}, \sigma_{2}$$

$$A \text{ neuron can be modeled (approximately) as}$$

$$\sum_{i=1}^{2} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} \in I_{\alpha}$$

$$\int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} \in I_{\alpha}$$

$$f(x_{1}) = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} \in I_{\alpha}$$

$$\int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} \in I_{\alpha}$$

$$\int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} \in I_{\alpha}$$

$$\int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \mathbb{R} = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \sum_{\alpha \in J} \mathbb{R} = \int_{i=1}^{1} \sum_{\sigma_{i} \in S_{i}} \sum_{\alpha \in J} \sum_{$$

Analog to digital in multidimensions
f band-limited and in
$$L^{2}(\mathbb{R}^{d})$$
, $f \in \mathbb{P}W_{\Omega}$, $\Sigma \subseteq \mathbb{R}^{d}$
Suppose \mathcal{M} is a grup of orthogonal transforms'
acting on \mathbb{R}^{d} , e.g. rotations, shearing operators
 $P(\mathcal{M}) f(x) = f(\mathcal{M}x)$, $\mathcal{M} \in \mathcal{M}$ $(P(\mathcal{M}) f)^{\Lambda}(\overline{s}) = \hat{f}(\mathcal{M}\overline{s})$
Take $\Omega \subseteq \mathbb{T}^{d}$ $(d=2)$ $\Omega \in [-\frac{1}{2}, \frac{1}{2}]^{d}$
 $\mathcal{P}W_{\Omega}$ remains invariant
wher the action of $P(\mathcal{M})$
if $\mathcal{M}(\Sigma) \subseteq \Omega$ for all
 $\mathcal{M}_{\varepsilon}\mathcal{M}$
Joint with D. Jimenez
and
D. Labate

For
$$M = SO(d)$$
 S2 must be radial. Then,
the sampling rate of f does not change.
Theorem (Romero, Tam, flexander, Baid, P) If V is invariant
under shifts, $Tn(V) \in V$, $Tnf(x) = f(x-n)$ and
 $P(R)(V) \in V$ for all rotations R, then $V = PW_{2}$
 Ω is radial.
Take radial.
Take radial.
 $f = \sum_{n} < f$, $Tn \neq > Tn \varphi$ $\hat{\varphi} = \chi_{52}$
 $\{T_n \varphi : n\}$ is a Parseval frame of PW_{2} .
 φ has bad decay. — Oaxps!!

So
$$f = \sum_{n \in \mathbb{Z}} \leq f \operatorname{Tn} \phi_a > \operatorname{Tn} \phi_s$$

In a practical application we restrict $n \in \Lambda$ finite
Subset of \mathbb{Z}^d . Typically $\Lambda = [-N_1, N_1] \times [-N_2, N_2]$
(linear approximation) or the best approximation with
 $N = (2N_1+1) \times (2N_2+1)$ terms. Also of interest is
 $\|f - f_{\Lambda}\|_{\infty}$ or in a Sobolev norm
Where $f_{\Lambda} = \sum_{n \in \Lambda} < f_{1} \operatorname{Tn} \phi_{a} > \operatorname{Tn} \phi_{s}$ Le-convergence
 $\|f - f_{\Lambda}\|_{\infty} \leq K \sum_{\substack{n \notin \Lambda}} |\langle f_{1}, \operatorname{Tn} \phi_{n} > |$
not depending in f
Given a group or othogonal transformations. M what is
 $e(M) = \|p(M) f_{-} (p(M) f_{\Lambda})\|_{\infty}$.

$$e(M) = || p(M) f - (P(M) f)_{A} ||_{A} \text{ suitable norm}$$
Take $[M_{i}]$ converging to M . Assume M be a compact
group. Then $|| p(M) f - p(M) f ||_{P} \rightarrow 0$
with respect to all L^{e} norms.
 $(p(M_{L}) f)_{A} = \sum_{n \in A} < p(M_{L}) f, T_{n} \varphi_{a} > T_{n} \varphi_{s}$
finite
So $|| (p(M_{L}) f)_{A} - (p(M) f)_{A} ||_{P} \rightarrow 0$
So $|| e(M_{L}) - e(M) ||_{P} \rightarrow 0$, Thus $M_{I} \rightarrow e(M)$ is continues
on M so it is bounded.
However, the upper bound is important if H is small or
if e remains Constant.

•Is it true that if Φ_{α} is radial then a greedy algorithm selection of Λ for f is not influenced by the rotations of f?

• What happens with other orthogonal transform groups and other norms, e.g. Sobolev norms?

Changing resolution/superesolution

Changing resolution in images or creating crisp images from a series of low-resolution images is significant in forensic science and biometrics.

Artifacts/errors must not depend on the orientation of singularities.

Isotropic Re-sampling

We wish to take a super-resolution or a sub-resolution using the IMRA framework.

- This is meant to preserve information in an isotropic fashion, i.e., without directional bias.
- Preliminary results show promise for optimal performance, particularly for super-resolution, using an IMRA setting.

400 x 400

800 x 800

Isotropic Down-sampling

 Down-sampling in an IMRA framework for 15 degree rotation of a line e.g.,

Isotropic Down-sampling

 Down-sampling in an IMRA framework for 45 degree rotation of a line e.g.,

Isotropic Up-sampling

 Up-sampling in an IMRA framework for 15 degree rotation of a line e.g.,

Isotropic Up-sampling

• Up-sampling in an IMRA framework for 45 degree rotation of a line e.g.,

Cylinder along the x-axis for sanity check

Second downsampling

Third downsampling

- Cross section 30°
- Cross section 45°

• Cross section 30°

• Cross section 45°

• Cross section 90°

• Cross section 90°

• Slices at 30 °, 45 °, and 90 °

Thank you for attending

I thank the organizers for this wonderful meeting.

Thank the weather for the NFFFT 2011