
UNCLASSIFIED

Nasser M. NasrabadiJoint Sparsity for Target Detection

Nasser M. Nasrabadi

UNCLASSIFIED

U.S. Army Research Laboratory



Introduction 

• Objective: Segmentation of HSI into multiple 
classes (target and background) or classifyclasses (target and background) or classify 
individual objects (military targets) from multiple 
views of the same physical target.

• Assumptions
– Training data: known spectral characteristics (or 

images) of different classesimages) of different classes
– Test data: a sparse linear combination of all 

training data
– In HSI Neighboring pixels: similar materials
– Mutiple views of targets are similar

• Results compared to classical SVM classifiers



Hyperspectral Imagery



Pixel-wise Sparsity Model

• Background pixels approximately lie in a low-
di i l bdimensional subspace
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• Target pixels also lie in a low-dimensional 
subspace

t t t t t tt tA
• A test sample can be sparsely represented 
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Ilustration: Pixel-Wise 
Sparse Model
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Sparse Recovery

• Sparse coefficient is recovered by

ˆ arg min subject to A x  

• For empirical data
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• NP-hard problem
Greedy algorithms: MP OMP SP C S MP LARS

02 0
arg min subject toi i i i K A x  

– Greedy algorithms: MP, OMP, SP, CoSaMP, LARS

– Convex relaxation: Iterative Thresholding, Primal-Dual Interior-Point, 
Gradient Projection, Proximal Gradient, Augmented Lagrange Multiplier 

1
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Classification Based on 
Residuals

• Recover sparse coefficient
ˆ
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Recover sparse coefficient

• Compute the residuals (approximation errors
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Compute the residuals (approximation errors 
w.r.t. the two sub-dictionaries)
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• Class of test pixel      is made by comparing the 
residuals
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Example: Reconstruction
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Joint Sparsity Model
(Joint Structural Sparsity Prior)

• Use of contextual information
– Neighboring pixels: similar spectral characteristicsg g p p
– Approximated by the same few training samples, weighed 

differently
• Consider T pixels in a small neighborhood• Consider T pixels in a small neighborhood
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– ’s: sparse vectors with same support, different magnitude
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i p pp , g
– : sparse matrix with only a few nonzero rows
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Illustration: T=3x3 
Neighborhood
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Joint Sparse Recovery

• is recovered byS

• Solved by greedy algorithms: Simultaneous OMP
row, 0

ˆ arg min subject to S S AS X

• Solved by greedy algorithms: Simultaneous OMP 
(SOMP) , Simultaneous SP (SSP) or Convex 
optimization to find the same active set 

1,2
ˆ arg min subject to S S AS X

• Decision obtained by comparing total residuals



Comparison of single pixel sparsity 
model VS Joint Sparsity Recovery 

Model (k=5 atoms active)
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Results on HYDICE FR-I

Original image (averaged Proposed detector outputg g ( g
over 150 bands)

p p



Results on FR-I: ROC Curves



Extension to Multiple Classes

• AVIRIS HSI data set with 16 classes, 
220 bands, 20 meters pixel resolution220 bands, 20 meters pixel resolution



Extension to Multiple Classes



Multi-View Target Classification

• In ATR applications we can have multiple 
observations of the same physical target from p y g
different platforms or from the same platform 
at different viewing angles (aspects).g g ( p )
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(Single-Measurement)

row, 0
ˆ arg min subject to S S AS Y (Multi-Measurements)



Experimental Results on Multi-
View Target Classification 

• MSTAR SAR data-base 
consists of 10 militaryconsists of 10 military 
targets at roughly 1-3 
interval azimuth angles (0-
360 ) t t diff t



360 ) at two different 
depression angles 15 and 
17 . Data from 17 is used for 



 

training (dictionary design) 
15 is used for testing 





Experimental Results on Multi-
View Target Classification 

• Three class (BMP2, BTR70, T72) target 
classification C=3 with multiple views M=3 . 
Features are incoherent random projections 
dimension range from d=128 to1024.
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Experimental Results on Number 
of Views and Angle Size

• Effect of different number of views M

• Effect of the angle size between the views



Experimental Results on Multi-
View Target Classification 

• 10 class classification 
results using M=3 views 
with dictionary of size y
N=2747 tested on 15 
degree depression g p



Multi-Pose Face Recognition

• Scenarios where we have multiple poses of the same face as input to the 
classifier.

• UMIST database consists of 564 images of 20 individuals with a range of 
poses.

• Randomly select 10 poses for each individual to construct the dictionary.   



Conclusions

• Formulated target and object recognition as joint 
sparsity underdetermined regression problem.

• Investigated the effect single vs multiple measurements 
• Included the idea of joint structured sparsity prior into 

th l i ti t f th ti i tithe regularization part of the optimization
• Investigated performance of multiple measurements on 

classification performance on several data bases.   p
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