UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Nasser M. Nasrabadi

U.S. Army Research Laboratory

UNCLASSIFIED

- Objective: Segmentation of HSI into multiple classes (target and background) or classify individual objects (military targets) from multiple views of the same physical target.
- Assumptions
 - Training data: known spectral characteristics (or images) of different classes
 - Test data: a sparse linear combination of all training data
 - In HSI Neighboring pixels: similar materials
 - Mutiple views of targets are similar
- Results compared to classical SVM classifiers

Hyperspectral Imagery

RDECOR

Pixel-wise Sparsity Model

RDECOM

 Background pixels approximately lie in a lowdimensional subspace

$$\boldsymbol{x}_{i} = \boldsymbol{\alpha}_{i,1}^{b} \boldsymbol{a}_{1}^{b} + \boldsymbol{\alpha}_{i,2}^{b} \boldsymbol{a}_{2}^{b} + \dots + \boldsymbol{\alpha}_{i,N_{b}}^{b} \boldsymbol{a}_{N_{b}}^{b} = \boldsymbol{A}^{b} \boldsymbol{\alpha}_{i}^{b}$$

 Target pixels also lie in a low-dimensional subspace

$$\boldsymbol{x}_{i} = \boldsymbol{\alpha}_{i,1}^{t} \boldsymbol{a}_{1}^{t} + \boldsymbol{\alpha}_{i,2}^{t} \boldsymbol{a}_{2}^{t} + \dots + \boldsymbol{\alpha}_{i,N_{t}}^{t} \boldsymbol{a}_{N_{t}}^{t} = \boldsymbol{A}^{t} \boldsymbol{\alpha}_{i}^{t}$$

 A test sample x_i can be sparsely represented by

$$\boldsymbol{x}_{i} = \boldsymbol{A}^{b} \boldsymbol{\alpha}_{i}^{b} + \boldsymbol{A}^{t} \boldsymbol{\alpha}_{i}^{t} = \begin{bmatrix} \boldsymbol{A}^{b} & \boldsymbol{A}^{t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{i}^{b} \\ \boldsymbol{\alpha}_{i}^{t} \end{bmatrix} = \boldsymbol{A} \boldsymbol{\alpha}_{i}$$

Ilustration: Pixel-Wise Sparse Model

RDEHD

• Sparse coefficient is recovered by

$$\hat{\boldsymbol{\alpha}}_i = \arg\min \|\boldsymbol{\alpha}_i\|_0$$
 subject to $A\boldsymbol{\alpha}_i = \boldsymbol{x}_i$

• For empirical data

BHEHI

- $\hat{\boldsymbol{\alpha}}_{i} = \arg\min \|\boldsymbol{\alpha}_{i}\|_{0} \quad \text{subject to} \quad \|\boldsymbol{A}\boldsymbol{\alpha}_{i} \boldsymbol{x}_{i}\|_{2} \leq \sigma$ $\hat{\boldsymbol{\alpha}}_{i} = \arg\min \|\boldsymbol{A}\boldsymbol{\alpha}_{i} \boldsymbol{x}_{i}\|_{2} \quad \text{subject to} \quad \|\boldsymbol{\alpha}_{i}\|_{0} \leq K_{0}$
- NP-hard problem
 - Greedy algorithms: MP, OMP, SP, CoSaMP, LARS
 - Convex relaxation: Iterative Thresholding, Primal-Dual Interior-Point, Gradient Projection, Proximal Gradient, Augmented Lagrange Multiplier

$$\hat{\boldsymbol{\alpha}}_i = \arg\min \|\boldsymbol{\alpha}_i\|_1$$
 subject to $A\boldsymbol{\alpha}_i = \boldsymbol{x}_i$

Classification Based on Residuals

• Recover sparse coefficient $\hat{\boldsymbol{\alpha}}_{i} = \begin{vmatrix} \hat{\boldsymbol{\alpha}}_{i}^{b} \\ \hat{\boldsymbol{\alpha}}_{i}^{t} \end{vmatrix}$

HIJEHI

• Compute the residuals (approximation errors w.r.t. the two sub-dictionaries)

$$r_b(\mathbf{x}_i) = \|\mathbf{x}_i - \mathbf{A}^b \hat{\mathbf{\alpha}}_i^b\|_2$$
 and $r_t(\mathbf{x}_i) = \|\mathbf{x}_i - \mathbf{A}^t \hat{\mathbf{\alpha}}_i^t\|_2$

• Class of test pixel x_i is made by comparing the residuals target

$$r_b(\mathbf{x}_i) - r_t(\mathbf{x}_i) \geq \delta$$

background TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Joint Sparsity Model (Joint Structural Sparsity Prior)

- Use of contextual information
 - Neighboring pixels: similar spectral characteristics
 - Approximated by the same few training samples, weighed differently
- Consider *T* pixels in a small neighborhood

$$\boldsymbol{x}_1 = \boldsymbol{A}\boldsymbol{\alpha}_1$$

$$\begin{array}{c} \mathbf{x}_{2} = A\boldsymbol{\alpha}_{2} \\ \vdots \\ \vdots \\ \end{array} \Rightarrow X = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{T} \end{bmatrix} = A \begin{bmatrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{T} \end{bmatrix} = AS$$

 $\boldsymbol{x}_T = A\boldsymbol{\alpha}_T$

BUEHL

– α_i 's: sparse vectors with same support, different magnitude – S: sparse matrix with only a few nonzero rows

Data matrix X

Spectral dictionary A

Row-sparse matrix *S*

Joint Sparse Recovery

• *S* is recovered by

RDEED

$$\hat{S} = \arg \min \|S\|_{\operatorname{row}, 0}$$
 subject to $AS = X$

 Solved by greedy algorithms: Simultaneous OMP (SOMP), Simultaneous SP (SSP) or Convex optimization to find the same active set

$$\hat{S} = \arg \min \|S\|_{1,2}$$
 subject to $AS = X$

• Decision obtained by comparing total residuals

$$\left\| X - A^b \hat{S}^b \right\|_F - \left\| X - A^t \hat{S}^t \right\|_F \overset{\text{target}}{\geq} \delta_{\text{background}} \delta_{\text{background}} \delta_{\text{transformed}} \right\|_F$$

Results on HYDICE FR-I

Original image (averaged over 150 bands)

Proposed detector output

RDECON Extension to Multiple Classes

• AVIRIS HSI data set with 16 classes, 220 bands, 20 meters pixel resolution

Fig. 2. For the Indian Pines image: (a) training set and (b) test set. Classification maps obtained by (c) SVM, (d) SVM-CK, (e) SP, (f) SP-S, (g) SSP, (h) OMP, (i) OMP-S, and (j) SOMP.

RDECOM

Classification accuracy (%) for the Indian Pines image on the test set.

Class	SVM	SVM-CK	SP	SP-S	SSP	OMP	OMP-S	SOMP	ℓ_1
1	81.25	95.83	68.75	87.50	89.58	68.75	70.83	85.42	39.58
2	86.28	96.67	74.65	91.94	95.04	65.97	79.22	94.88	78.53
3	72.80	90.93	63.20	82.53	92.93	60.67	76.67	94.93	51.87
4	58.10	85.71	40.00	70.95	85.24	38.57	55.24	91.43	28.57
5	92.39	93.74	89.04	94.41	92.17	89.49	95.30	89.49	80.76
6	96.88	97.32	95.98	99.26	98.81	95.24	98.96	98.51	99.4 0
7	43.48	69.57	21.74	47.83	73.91	21.74	52.17	91.30	17.39
8	98.86	98.41	99.09	99.77	99.55	97.05	99.77	99.55	99.32
9	50.00	55.56	61.11	94.44	0	33.33	72.22	0	16.67
10	71.53	93.80	70.72	86.80	88.98	68.20	82.32	89.44	63.95
11	84.38	94.37	77.94	93.38	97.34	75.96	88.79	97.34	86.04
12	85.51	93.66	61.23	84.24	86.59	54.53	73.73	88.22	57.79
13	100	99.47	100	100	99.47	100	98.95	100	100
14	93.30	99.14	95.62	98.28	98.88	92.87	97.25	99.14	97.94
15	64.91	87.43	48.25	69.30	97.37	41.23	49.71	99.12	35.96
16	88.24	100	92.94	95.29	85.88	94.12	100	96.47	90.59
Overall	84.52	94.86	78.10	91.16	94.79	74.78	85.52	95.28	77.99
Average	79.24	90.73	72.52	87.25	86.36	68.61	80.70	88.45	65.27
к	0.823	0.941	0.749	0.899	0.940	0.712	0.834	0.946	0.746

Multi-View Target Classification

RDEEL

 In ATR applications we can have multiple observations of the same physical target from different platforms or from the same platform at different viewing angles (aspects).

$$\hat{\boldsymbol{\alpha}}_{i} = \arg \min \|\boldsymbol{\alpha}_{i}\|_{0}$$
 subject to $A\boldsymbol{\alpha}_{i} = \boldsymbol{y}_{i}$ (Single-Measurement)
 $\hat{\boldsymbol{S}} = \arg \min \|\boldsymbol{S}\|_{\operatorname{row, 0}}$ subject to $A\boldsymbol{S} = \boldsymbol{Y}$ (Multi-Measurements)

Experimental Results on Multi-View Target Classification

 MSTAR SAR data-base consists of 10 military targets at roughly 1-3° interval azimuth angles (0-360°) at two different depression angles 15° and 17°. Data from 17° is used for training (dictionary design) 15° is used for testing

HIJEHI

(d)

SUMMARY OF THE MSATR DATABASE.

No.		1		2		3		4	5	6	7	8	9	10	
Tune		BMP2		סדים זע		T72		DTD60	201	DDDM2	D7	т62	7Π 121	781122/4	SIIM
Туре	sn-c9563	sn-c9566	sn-c21	DIK/U	sn-132	sn-812	sn-S7	DIKOU	201	DKDW12	וע	102	ZIL151	20025/4	SOM
Train (17° dep) ¹	233	[232]	[233]	233	232	[231]	[228]	256	299	298	299	299	299	299	2747
Test (15° dep)	195	196	196	196	196	195	191	195	274	274	274	273	274	274	3203

Experimental Results on Multi-View Target Classification

 Three class (BMP2, BTR70, T72) target classification C=3 with multiple views M=3.
Features are incoherent random projections dimension range from d=128 to1024.

Comparison of single-view and multi-view ATR accuracy (%) on the MSTAR database under different

	Feature Dims. (d)	128	256	512	1024	Avg.
	Single-view SVM	63.7	66.8	76.8	81.2	72.1
$\hat{\boldsymbol{\alpha}}_i = \arg\min \ \boldsymbol{\alpha}_i\ _0$ subject to $A\boldsymbol{\alpha}_i = \boldsymbol{x}_i$	Single-view SRC	65.6	78.2	89.5	92.3	81.4
	Single-view KSVM	76.2	81.1	85.4	88.9	82.9
$\hat{\boldsymbol{\beta}} = \arg\min \ \boldsymbol{\beta}\ _0$ subject to $\tilde{\boldsymbol{A}}\boldsymbol{\beta} = \tilde{\boldsymbol{x}}$	SVM	73.2	76.6	81.9	86.9	79.6
$\tilde{A} = \begin{bmatrix} A_1 \\ \vdots \end{bmatrix} \text{ and } \tilde{x} = \begin{bmatrix} x_1 \\ \vdots \end{bmatrix}$	SRC	73.8	86.3	92.9	95.5	87.1
$\begin{bmatrix} A_{_M} \end{bmatrix}$ $\begin{bmatrix} x_{_M} \end{bmatrix}$	KSVM	83.2	87.2	88.6	91.6	87.7
$\hat{\boldsymbol{S}} = \arg\min \ \boldsymbol{S}\ _{\operatorname{row}, 0}$ subject to $\boldsymbol{A}\boldsymbol{S} = \boldsymbol{X}$	JSRC	80.3	89.7	94.2	95. 6	90.0
Note $S = [\alpha_1 \cdots \alpha_M]$						

BHEHI

Feature dimensions (M = 3, C = 3, N = 698)

RDECON Experimental Results on Number of Views and Angle Size

• Effect of different number of views *M*

Multi-view ATR accuracy (%) on the MSTAR database with different number of views (d = 256, C = 3,

N = 698).

Views (M)	2	3	4	5	6	7	8	9	10	11	12	13	Avg.
SVM	71.5	76.6	77.6	80.1	81.3	82.6	82.3	82.9	83.7	84.1	84.5	84.7	81.0
SRC	84.5	86.3	88.8	89.0	89.0	90.3	90.6	91.5	92.1	93.2	93.1	93.9	90.2
KSVM	85.5	87.2	88.3	89.4	90.4	90.9	91.1	92.0	91.8	92.4	92.8	93.1	90.4
JSRC	86.9	89.7	91.0	92.3	93.7	94.4	95.1	94.8	95.8	95.7	95.8	96.0	93.4

• Effect of the angle size between the views

Azimuth persistence results (%) with different view steps (d = 256, M = 3, C = 3, N = 698).

View-step size	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SVM	76.4	77. 1	79.6	78.0	79.3	81.4	79.9	79.7	80.4	81.0	81.1	81.2	80.7	80.5	80.4	80.2	80.7
SRC	86.3	87.5	87.6	87.4	87.9	87.5	88.3	89.3	87.3	88.1	86.5	86.4	87.4	85.6	87.8	85.2	85.6
KSVM	87.0	88.0	89.2	88.7	89.7	89.8	89.8	90.2	90.0	90.9	90.8	91.3	90.6	90.6	90.9	90.8	90.3
JSRC	89.5	89.9	90.0	90.8	90.9	91.4	91.8	92.5	91.6	91.9	91.5	90.9	91.8	90.7	90.8	91.1	90.8

Experimental Results on Multi-View Target Classification

 10 class classification results using M=3 views with dictionary of size N=2747 tested on 15 degree depression

RNEEN

Multi-view ATR accuracy (%) on MSTAR with different feature dimensions (M = 3, C = 10, N = 2747)

Dims. (d)	128	256	512	1024	Avg.
SVM	65.1	70.6	76.9	84.0	74.15
SRC	73.0	84.7	90.1	92.7	85.13
KSVM	82.5	87.8	90.4	93.5	88.55
JSRC	79.7	87.7	92.4	94.7	88.63

Multi-Pose Face Recognition

• Scenarios where we have multiple poses of the same face as input to the classifier.

RDEHD

- UMIST database consists of 564 images of 20 individuals with a range of poses.
- Randomly select 10 poses for each individual to construct the dictionary.

Figure 8. Sample images from UMIST database for a single subject with varying poses.

Algorithm	2 Views	3 Views	4 Views	Avg.
MSM [6]	94	95	96	95.0
GPH [11]	96	97	98	97.0
AFH [4]	94	96	97	95.7
MTJSRC [19]	95	96	98	96.3
JDSRC	96	97	99	97.3

Table 2. Multi-instance face recognition accuracy (%) on UMIST.

EN. WARFIGHTER FOCUSED.

Conclusions

• Formulated target and object recognition as joint sparsity underdetermined regression problem.

RHIEH

- Investigated the effect single vs multiple measurements
- Included the idea of joint structured sparsity prior into the regularization part of the optimization
- Investigated performance of multiple measurements on classification performance on several data bases.

THANK YOU