High resolution image fusion via fusion frames

Shidong Li

San Francisco State University

jointly with Zhenjie Yao and Weidong Yi Graduate University of the Chinese Academy of Sciences

FFT - University of Maryland

February 17 & 18, 2011

- Motivation of Fusion Frames
- What is Fusion Frame?
- 3 The fusion frame formulation of multi-camera image fusion
- Algorithms
- 5 Numerical examples: simulated and realistic images

Outline

- **Motivation of Fusion Frames**
- **What is Fusion Frame?**
- The fusion frame formulation of multi-camera image fusion
- Algorithms
- 5 Numerical examples: simulated and realistic images

Definition of frames

A sequence $\{x_n\}_{n\in I}$ in \mathcal{H} is a <u>frame</u> for \mathcal{H} , if there exist $0 < A \le B < \infty$ (lower and upper frame bounds) such that

$$|A||f||^2 \le \sum_{n \in I} |\langle f, x_n \rangle|^2 \le B||f||^2$$
 for all $f \in \mathcal{H}$.

Definition of frames

A sequence $\{x_n\}_{n\in I}$ in \mathcal{H} is a <u>frame</u> for \mathcal{H} , if there exist $0 < A < B < \infty$ (*lower* and *upper frame bounds*) such that

$$A||f||^2 \le \sum_{n \in I} |\langle f, x_n \rangle|^2 \le B||f||^2$$
 for all $f \in \mathcal{H}$.

Basic properties of frames

- Frame is a "basis-like" system in \mathcal{H} .
- Frame is typically redundant.
- Frame representation: there are <u>dual frames</u> $\{\tilde{x}_n\} \subseteq \mathcal{H}$ such that

for all
$$f \in \mathcal{H}$$
, $f = \sum_{n} \langle f, \tilde{x}_n \rangle x_n = \sum_{n} \langle f, x_n \rangle \tilde{x}_n$.

 General Problem: perform data fusion from measurements out of a sensor network or distributed systems.

- General Problem: perform data fusion from measurements out of a sensor network or distributed systems.
- Each sensor S_i has its spanning subspace W_i .

- General Problem: perform data fusion from measurements out of a sensor network or distributed systems.
- Each sensor S_i has its spanning subspace W_i .
- Subspaces $\{W_i\}$ can have arbitrary overlap much like overlaps in frames.

- General Problem: perform data fusion from measurements out of a sensor network or distributed systems.
- Each sensor S_i has its spanning subspace W_i.
- Subspaces $\{W_i\}$ can have arbitrary overlap much like overlaps in frames.
- Sensor subspaces are almost never orthogonal much like the non-orthogonality in frames.

- General Problem: perform data fusion from measurements out of a sensor network or distributed systems.
- Each sensor S_i has its spanning subspace W_i.
- Subspaces $\{W_i\}$ can have arbitrary overlap much like overlaps in frames.
- Sensor subspaces are almost never orthogonal much like the non-orthogonality in frames.
- Sensor network is almost always redundant much like the redundancy in frames.

- General Problem: perform data fusion from measurements out of a sensor network or distributed systems.
- Each sensor S_i has its spanning subspace W_i.
- Subspaces $\{W_i\}$ can have arbitrary overlap much like overlaps in frames.
- Sensor subspaces are almost never orthogonal much like the non-orthogonality in frames.
- Sensor network is almost always redundant much like the redundancy in frames.
- Need a technique to perform data fusion among a set of overlapping, non-orthogonal and redundant data measurements, regardless how complicated the sensor subspaces $\{W_i\}$ are related.

Outline

- Motivation of Fusion Frames
- What is Fusion Frame?
- 3 The fusion frame formulation of multi-camera image fusion
- 4 Algorithms
- Numerical examples: simulated and realistic images

Fusion Frames

Let $\{W_i\}_{i\in I}$ be a set of closed subspaces of a Hilbert space \mathcal{H} , and let $\{\pi_{W_i}\}$ be orthogonal projections onto $\{W_i\}$, and let $\{v_i > 0\}$ be weights. $\{\pi_{W_i}, v_i\}$ is a <u>fusion frame</u> for \mathcal{H} , if there exist constants $0 < C < D < \infty$ such that

$$C||f||^2 \le \sum_{i \in I} v_i^2 ||\pi_{W_i}(f)||^2 \le D||f||^2 \quad \text{for all } f \in \mathcal{H}.$$
 (1)

Definition of Fusion Frames

Fusion Frames

Let $\{W_i\}_{i\in I}$ be a set of closed subspaces of a Hilbert space \mathcal{H} , and let $\{\pi_{W_i}\}$ be orthogonal projections onto $\{W_i\}$, and let $\{v_i > 0\}$ be weights. $\{\pi_{W_i}, v_i\}$ is a <u>fusion frame</u> for \mathcal{H} , if there exist constants $0 < C < D < \infty$ such that

$$C||f||^2 \le \sum_{i \in I} v_i^2 ||\pi_{W_i}(f)||^2 \le D||f||^2 \quad \text{for all } f \in \mathcal{H}.$$
 (1)

[CK'04] P. Casazza, G. Kutyniok, Frames of Subspaces, Contemp. Math., Amer. Math. Soc., 345 (87-113), 2004.

[CKL'06] P. Casazza, G. Kutyniok and S. Li, Fusion Frames and Distributed Systems, Appl. Comp. Harmon. Anal., 25 (114) - 132), 2008.

Examples of related work on fusion frames

- [Sun'06] W. Sun, G-frames and g-Riesz bases, J. of Math. Anal. and Appl., 322:1, (437 - 452), 2006.
- [Kaftal, Larson and Zhang, 2009] Operator Valued Frames
- Others...

On related work

 While g-frame or operator-valued frames are indeed more general, there is a reason why projection operators are particularly important in applications.

On related work

- While g-frame or operator-valued frames are indeed more general, there is a reason why projection operators are particularly important in applications.
- Because physical devices are naturally modeled by a frame, and thereby a natural projection operator.

On related work

- While g-frame or operator-valued frames are indeed more general, there is a reason why projection operators are particularly important in applications.
- Because physical devices are naturally modeled by a frame, and thereby a natural projection operator.
- The restriction to projection operators is a stronger constraint. The analysis of projection-based fusion frames becomes different and a bit more involved.

• Analysis operator $T_{\mathcal{W}}: \mathcal{H} \to \left(\{W_i\} \right)_{\ell_0}$

$$T_{\mathcal{W}}(f) = \{v_i \pi_{W_i}(f)\}_{i \in I}.$$

Then the fusion frame operator $S_{\mathcal{W}}$ is defined by

$$S_{\mathcal{W}}(f) = T_{\mathcal{W}}^* T_{\mathcal{W}}(f) = \sum_{i \in I} v_i^2 \pi_{W_i}(f).$$

• Analysis operator $T_{\mathcal{W}}: \mathcal{H} \to \left(\{W_i\} \right)_{\ell_0}$

$$T_{\mathcal{W}}(f) = \{ v_i \pi_{W_i}(f) \}_{i \in I}.$$

Then the fusion frame operator $S_{\mathcal{W}}$ is defined by

$$S_{\mathcal{W}}(f) = T_{\mathcal{W}}^* T_{\mathcal{W}}(f) = \sum_{i \in I} v_i^2 \pi_{W_i}(f).$$

Fusion frame inequality is equivalent to

$$CI_d \leq S_W \leq DI_d$$
.

Theorem: Global processing

Let $\{x_{i,j}\}_{j\in J_i}$ be a frame for W_i . $\{\pi_{W_i}, v_i\}$ is a fusion frame of \mathcal{H} iff $\{v_ix_{i,j}\}_{i,j}$ is a frame of \mathcal{H} (with the frame operator S_F).

$$\forall f \in \mathcal{H}, \quad f = \sum_{i,j} \langle f, v_i x_{i,j} \rangle S_F^{-1} v_i x_{i,j}.$$

A computational difference

Theorem: Global processing

Let $\{x_{i,j}\}_{j\in J_i}$ be a frame for W_i . $\{\pi_{W_i}, v_i\}$ is a fusion frame of \mathcal{H} iff $\{v_i x_{i,i}\}_{i,i}$ is a frame of \mathcal{H} (with the frame operator S_F).

$$\forall f \in \mathcal{H}, \quad f = \sum_{i,j} \langle f, v_i x_{i,j} \rangle S_F^{-1} v_i x_{i,j}.$$

Theorem: Parallel and local processing

Let $\{x_{i,i}\}_{i\in J_i}$ be a frame for W_i with a dual frame $\{\tilde{x}_{i,i}\}_{i\in J_i}$. Then $\forall f \in \mathcal{H}, \quad \pi_{W_i} f = \sum \langle f, x_{i,j} \rangle \tilde{x}_{i,j}.$ Consequently, for all $f \in \mathcal{H}$,

$$f = S_W^{-1} \left(\sum_i v_i^2 \pi_{W_i} f \right) = \sum_i v_i^2 \sum_j \langle f, x_{i,j} \rangle S_W^{-1} \left(\tilde{x}_{i,j} \right).$$
 (2)

Outline

- Motivation of Fusion Frames
- What is Fusion Frame?
- The fusion frame formulation of multi-camera image fusion
- 4 Algorithms
- Numerical examples: simulated and realistic images

Image fusion formulation

 Every observed pixel g(m, n) of a (discrete) image corresponds to a bounded linear functional acting on image f.

- Every observed pixel g(m, n) of a (discrete) image corresponds to a bounded linear functional acting on image f.
- By the Riesz Representation Theorem, there is a function $h_{m,n}$ such that $g(m,n) = \langle f, h_{m,n} \rangle$.

- By the Riesz Representation Theorem, there is a function $h_{m,n}$ such that $g(m,n) = \langle f, h_{m,n} \rangle$.
- We actually know exactly what $\{h_{m,n}\}_{m,n}$ is.

- By the Riesz Representation Theorem, there is a function $h_{m,n}$ such that $g(m,n) = \langle f, h_{m,n} \rangle$.
- We actually know exactly what $\{h_{m,n}\}_{m,n}$ is.
- Let $r_i(x, y)$ ($i \in I$) be the *Impulse Response Function* (IRF) of the i^{th} camera. Let f(x, y) be the image source function.

Image fusion formulation

- Every observed pixel g(m, n) of a (discrete) image corresponds to a bounded linear functional acting on image f.
- By the Riesz Representation Theorem, there is a function $h_{m,n}$ such that $g(m,n) = \langle f, h_{m,n} \rangle$.
- We actually know exactly what $\{h_{m,n}\}_{m,n}$ is.
- Let $r_i(x, y)$ ($i \in I$) be the *Impulse Response Function* (IRF) of the i^{th} camera. Let f(x, y) be the image source function.
- Then the image $g_i(x, y)$ is given by

$$g_i(x,y) = (f * r_i)(x,y) = \langle f, h_i(\cdot - x, \cdot - y) \rangle, \qquad (3)$$

where
$$h_i(x, y) \equiv \overline{r_i(-x, -y)}$$
.

Image fusion formulation (cont'd)

• Suppose observation sample points are $x \equiv \{x_m\}_m$ and $y = \{y_n\}_n$.

- Suppose observation sample points are $x \equiv \{x_m\}_m$ and $y = \{y_n\}_n$.
- Then the observed (discrete) image $\{g_i(x_m, y_n)\}_{m,n}$ is given by

$$g_i(x_m,y_n)=\langle f,h_i(\cdot-x_m,\cdot-y_n)\rangle. \tag{4}$$

Image fusion formulation (cont'd)

- Suppose observation sample points are $x \equiv \{x_m\}_m$ and $V = \{V_n\}_n$.
- Then the observed (discrete) image $\{g_i(x_m, y_n)\}_{m,n}$ is given by

$$g_i(x_m,y_n)=\langle f,h_i(\cdot-x_m,\cdot-y_n)\rangle. \tag{4}$$

• That is, the observed image $\{g_i(x_m, y_n)\}$ is the set of transformation coefficients of the source function f with respect to the **camera frame** $\{h_i(\cdot - x_m, \cdot - y_n)\}_{m,n}$ of the i^{th} camera subspace W_i .

• Consequently, multi-camera image fusion is **extremely naturally** the fusion frame problem on the set of camera subspaces $\{W_i\}$ in $\mathcal{H} \equiv \sum_i W_i$. Namely, to combine $f_i \in W_i$ to obtain a function $f \in \mathcal{H}$.

Camera functions as a projection operator

Let $\{\tilde{h}_{i;m,n}\}_{m,n}$ be a dual frame of $\{h_{i;m,n}\}_{m,n}$ (the frame spanning the (observation) space W_i of the camera). Then the true image observed is an orthogonal projection of the image f onto W_i :

$$\pi_{W_i} f = \sum_{m,n} \langle f, h_{i;m,n} \rangle \tilde{h}_{i;m,n}.$$

 Consequently, multi-camera image fusion is extremely naturally the fusion frame problem on the set of camera subspaces $\{W_i\}$ in $\mathcal{H} \equiv \sum_i W_i$. Namely, to combine $f_i \in W_i$ to obtain a function $f \in \mathcal{H}$.

Camera functions as a projection operator

Let $\{\tilde{h}_{i:m,n}\}_{m,n}$ be a dual frame of $\{h_{i:m,n}\}_{m,n}$ (the frame spanning the (observation) space W_i of the camera). Then the true image observed is an orthogonal projection of the image f onto W_i :

$$\pi_{W_i} f = \sum_{m,n} \langle f, h_{i;m,n} \rangle \tilde{h}_{i;m,n}.$$

 This is why typical sensor measurement functions as a projection operator, which is why projection operators are the subject of study in fusion frame!

Fusion through the fusion frame operator

Recall that the *fusion frame operator* $S_W : \mathcal{H} \to \mathcal{H}$

$$\forall f \in \mathcal{H}, \quad S_W f = \sum_i v_i^2 \pi_{W_i} f.$$

Image fusion formulation (cont'd)

Fusion through the fusion frame operator

Recall that the fusion frame operator $S_W: \mathcal{H} \to \mathcal{H}$

$$\forall f \in \mathcal{H}, \quad S_W f = \sum_i v_i^2 \pi_{W_i} f.$$

How to fuse together multiple observations?

By simply applying S_{W}^{-1} :

$$\forall f \in \mathcal{H}, \quad f = S_W^{-1} \left(\sum_i v_i^2 \pi_{W_i} f \right)$$
$$= \sum_i v_i^2 \sum_{m,n} \langle f, h_{i;m,n} \rangle S_W^{-1} \left(\tilde{h}_{i;m,n} \right). \quad (5)$$

Equivalent formulation: composite camera frame

Recall, $\{\pi_{W_i}, v_i\}$ is a fusion frame of \mathcal{H} iff $\{v_i h_{i;m,n}\}_{i;m,n}$ is a frame of \mathcal{H} . We may term $\{v_i h_{i;m,n}\}_{i;m,n}$ the composite camera frame with the composite frame operator S_F .

An equivalent fusion formulation (cont'd)

Fusion through composite camera frame (cont'd)

Therefore, fused image f may also be given by

$$f = \sum_{i;m,n} \langle f, v_i h_{i;m,n} \rangle S_F^{-1} v_i h_{i;m,n}.$$

or (by the fusion frame approach, for comparison)

$$f = \sum_{i} \sum_{m,n} \langle f, v_i h_{i;m,n} \rangle S_W^{-1} \left(v_i \tilde{h}_{i;m,n} \right)$$

Remark: $S_F^{-1}h_{i;m,n} \neq S_W^{-1}(v_i\tilde{h}_{i;m,n})$, in general!

Outline

- Motivation of Fusion Frames
- What is Fusion Frame?
- The fusion frame formulation of multi-camera image fusion
- Algorithms
- Numerical examples: simulated and realistic images

Dual evaluation: A Dimension Invariance Principle

• Let $\{T_{kc}g^{(j)}\}_{i,k}$ and $\{T_{kc}h^{(j)}\}_{i,k}$ be a pair of dual frame sequences of translates. Define $|\text{Supp}\{g^{(j)}\}|$ the measure of the smallest "interval" containing the support of all the $q^{(j)}$'s.

Theorem [Jointly with J. Cahill]

Let $\mathcal{H} = \mathbb{F}^n$. Suppose $\{T_{kc}g^{(j)}\}$ and $\{T_{kc}h^{(j)}\}$ are a dual pair of frames of translates for $\mathcal{X} = \text{span}\{T_{kc}q^{(j)}\} \subset \mathcal{H}$ which also satisfies

$$2\left|\operatorname{Supp}\{g^{(j)}\}\right| + \left|\operatorname{Supp}\{h^{(j)}\}\right| \le n. \tag{6}$$

Let $\tilde{\mathcal{H}} = \mathbb{F}^{\tilde{n}}$ where c divides $\tilde{n} > n$, then $\{T_{kc}\tilde{g}^{(j)}\}$ and $\{T_{kc}\tilde{h}^{(j)}\}$ remain a dual pair of frames of translates for $\tilde{\mathcal{X}} = \operatorname{span}\{T_{kc}\tilde{g}^{(j)}\} \subset \tilde{\mathcal{H}}$. Here $\tilde{g} \in \mathbb{F}^{\tilde{n}}$ is the natural embedding of $g \in \mathbb{F}^n$.

Calculating dual frames (cont'd)

Remarks:

The *Dimension Invariance Principle* applies to a number of scenarios.

- Non-uniform but proportional translates;
- Uniform and proportional non-uniform multi-Gabor frames;
- Uniform and proportional non-uniform multi-variable frames of translates, etc.

Theorem

Approximate duals through truncation is also stable. Suppose that $\|\tilde{h}^{(j)} - \tilde{h}^{(j)}_{a}\| < \delta$. Then

$$||f - \sum_{i,k} \langle f, T_{kc} \tilde{h}_{a}^{(j)} \rangle T_{kc} \tilde{g}^{(j)}||_1 \leq C_1 \delta ||f||_1$$

and

$$||f - \sum_{i,k} \langle f, T_{kc} \tilde{g}^{(j)} \rangle T_{kc} \tilde{h}_a^{(j)} ||_1 \le C_1 \delta ||f||_1$$

Motivation of Fusion Frames What is Fusion Frame? The fusion frame formulation of multi-camera image fusion Algorithms Num

Iterative Algorithms

Iterative Algorithms

• Ultimately, observation equations are given by Hf = g. Here H is a circulant matrix formed by the translates of the PSF/IRF of the camera/sensor.

• Ultimately, observation equations are given by Hf = g. Here H is a circulant matrix formed by the translates of the PSF/IRF of the camera/sensor.

Algorithm 1

Let \tilde{H} be a low-pass operator satisfying

$$\tilde{H}H + R = I, \tag{7}$$

Assume that \tilde{H} is such that $0 \leq \tilde{H}H \leq I$. Let $f_0 = \mathbf{0}$. Define

$$f_{n+1} = \tilde{H}Hf + Rf_n = \tilde{H}g + Rf_n.$$

Then the sequence of images $\{f_n\} \to f$ in the Euclidean norm.

Iterative Algorithms

• Ultimately, observation equations are given by Hf = g. Here H is a circulant matrix formed by the translates of the PSF/IRF of the camera/sensor.

Algorithm 1

Let \tilde{H} be a low-pass operator satisfying

$$\tilde{H}H + R = I, \tag{7}$$

Assume that \tilde{H} is such that $0 \leq \tilde{H}H \leq I$. Let $f_0 = \mathbf{0}$. Define

$$f_{n+1} = \tilde{H}Hf + Rf_n = \tilde{H}g + Rf_n.$$

Then the sequence of images $\{f_n\} \to f$ in the Euclidean norm.

Remark: The choice of \hat{H} can be rather flexible. We tried $\tilde{H} = (H')^m$, and observed that higher m is good for low SNR.

Algorithm 2

A direct generalization to *Algorithm 1* would be to introduce a multiplicative factor $(1 - \beta)$ (with a small $0 < \beta << 1$) in front of Rf_n components so as to suppress high-frequency noises in the iteration:

$$f_{n+1} = \tilde{H}g + (1-\beta)Rf_n. \tag{8}$$

Iteration Algorithm 3

Algorithm 3

Another generalization to *Algorithm 1* would be to apply a soft thresholding to the term Rf_n in Algorithm 1, and results in thresholding de-noising effects out of high-frequency components.

$$f_{n+1} = \tilde{H}g + \mathcal{T}(Rf_n), \qquad (9)$$

where \mathcal{T} is some (soft) thresholding operator.

Fusion system calibration and alignment

Three basic steps

O Dynamic programming for imaging intensity calibration.

Three basic steps

- Dynamic programming for imaging intensity calibration.
- Affine transoformation for calibrations of image scale, rotation and translation variations.

Three basic steps

- Opposite the programming for imaging intensity calibration.
- Affine transoformation for calibrations of image scale, rotation and translation variations.
- (Sub-pixel) alignments.

- Motivation of Fusion Frames
- What is Fusion Frame?
- 3 The fusion frame formulation of multi-camera image fusion
- Algorithms
- 5 Numerical examples: simulated and realistic images

Motivation of Fusion Frames What is Fusion Frame? The fusion frame formulation of multi-camera image fusion Algorithms Num

Simulating 4 pictures by one camera

(c) One observed LR im- (d) $\sigma = \sigma_e = [0.7, 0.7, 0.7, 0.7],$ interleaved coarse image age, $\sigma = 0.7$

(e) Original image

(f) $\sigma = \sigma_e$, dimension invariance

Figure: $\sigma_e = [0.7, 0.7, 0.7, 0.7]$

Simulating 4 pictures by one camera (cont'd)

(a) $\sigma = \sigma_s$, dimension invariance (b) $\sigma = \sigma_b$, dimension invariance

Figure: $\sigma_s = [0.6, 1, 1.2, 0.8], \sigma_b = [0.7, 2, 0.9, 1.5]$

(a) $\sigma = \sigma_e$, Dimension Invariance (b) $\sigma = \sigma_b$, Dimension Invariance

Figure: Fusion results comparison between correct PSF estimation, and incorrect PSF estimation

Simulating 4 images by 4 different cameras

(e) LR image 1, (f) LR image 2, $\sigma(1) = 0.7$ $\sigma(2) = 2$

(g) LR image 3, (h) LR image 4, $\sigma(3) = 0.9$ $\sigma(4) = 1.5$

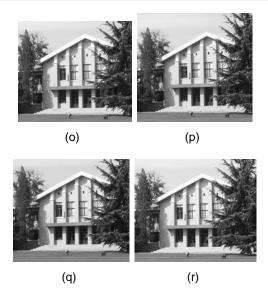
(i) Fused image, inaccurate PSF (j) Fused image, accurate PSF estimation

estimation

Motivation of Fusion Frames What is Fusion Frame? The fusion frame formulation of multi-camera image fusion Algorithms Num

HR image fusion: 4 actual images by 1 camera at diff times

HR image fusion: 4 actual images by 1 camera at diff times

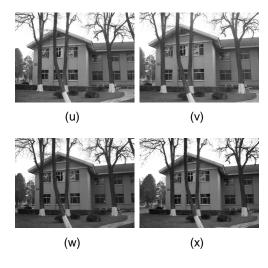


HR image fusion: 4 actual images by 1 camera at diff times (cont'd)

(s) After alignment

(t) Fused image

HR image fusion: 4 actual images taken by 4 different cameras



HR image fusion: 4 actual images taken by 4 different cameras (cont'd)

(y) After alignment

(z) Fused image

Thank You!