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Introduction

This talk is about zeros of a certain family of “symmetric” polynomials which
arise naturally in several areas of mathematics -

coding theory,

algebraic curves over finite fields,

knot theory,

cryptography (pseudo-random number generators),

to name a few.
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Introduction

Let p be a polynomial

p(z) = a0 + a1z + · · ·+ anz
n ai ∈ C,

and let p∗ denote the reciprocal polynomial or reverse polynomial

p∗(z) = an + an−1z + · · ·+ a0z
n = znp(1/z).

We say p is self-reciprocal if p = p∗, i.e., if its coefficients are “symmetric.”
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Alexander polynomial of a knot

A knot is an embedding of S1 into R3. If K is a knot then the Alexander
polynomial is a polynomial ∆K (t) ∈ Z[t, t−1] which is a toplological invariant
of the knot. One of the key properties is the the fact that

∆K (t−1) = ∆K (t).

If

∆K (t) =
dX
−d

ai t
i ,

then the polynomial p(t) = td∆K (t) is a self-reciprocal polynomial in Z[t].
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Algebraic curves over a finite field

Let X be a smooth projective curve of genus g over a finite field GF (q).

The (Artin-Weil) zeta function of X is a rational function of the form

ζ(z) = ζX (z) =
P(z)

(1− z)(1− qz)
,

where P = PX is a polynomial (sometimes called the zeta polynomial) of
degree 2g .

The Riemann hypothesis (RH) for curves over finite fields states that the roots
of P have absolute value 1/

√
q.

It is well-known that the RH holds for ζX .
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Artin-Weil zeta polynomial

Example

The smooth projective curve X defined by

y 2 = x5 − x ,

over GF (31) is a curve of genus 2. The zeta polynomial

PX (z) = 961z4 + 62z2 + 1

associated to X satisfies the RH. The polynomial p(z) = PX (z/
√

31) is
self-reciprocal, having all its zeros on S1.
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Artin-Weil zeta polynomial

The “functional equation” is

P(z) = qgz2gP(
1

qz
).

“Normalize” this polynomial by replacing z by z/
√

q.

By the RH, we see that curves over finite fields give rise to a large class of
self-reciprocal polynomials having roots on the unit circle.
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Error-correcting codes

Let F = GF (q) denote a finite field, for some prime power q. Fix once and for
all a basis for the vector space V = Fn.

If F = GF (2) then C is called a binary code.

The elements of C are called the codewords.

Define the dual code C⊥ by

C⊥ = {v ∈ V | v · c = 0, ∀c ∈ C}.

We say C is self-dual if C = C⊥.
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Error-correcting codes

For each vector v ∈ V , let

Supp(v) = {i | vi 6= 0}

denote the support of the vector.

The weight of the vector v is wt(v) = |Supp(v)|.

The weight distribution vector or spectrum of a code C ⊂ Fn is the vector

A(C) = spec(C) = [A0, A1, ..., An]

where Ai = Ai (C) denote the number of codewords in C of weight i , for
0 ≤ i ≤ n.
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Error-correcting codes

The weight enumerator polynomial AC is defined by

AC (x , y) =
nX

i=0

Aix
n−iy i = xn + Adx

n−dyd + · · ·+ Any
n.

Denote the smallest non-zero weight of any codeword in C by

d = dC

(this is the minimum distance of C) and the smallest non-zero weight of any
codeword in C⊥ by

d⊥ = dC⊥ .

The number n is called the length of C .
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Duursma zeta polynomial

A polynomial P = PC for which

(xT + (1− T )y)n

(1− T )(1− qT )
P(T ) = · · ·+ AC (x , y)− xn

q − 1
T n−d + . . . .

is called a Duursma zeta polynomial of C .

The Duursma zeta function is defined in terms of the zeta polynomial by

ζC (T ) =
P(T )

(1− T )(1− qT )
,
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Duursma zeta polynomial

Proposition

The Duursma zeta polynomial P = PC exists and is unique, provided
d⊥ ≥ 2, of degree n + 2− d − d⊥.

If C is self-dual (i.e., C = C⊥), the Duursma zeta polynomial satisfies a
functional equation of the form

P(T ) = qgT 2gP(
1

qT
),

where g = n + 1− k − d .

Therefore, after making a suitable change-of-variable (namely, replacing T by
T/

√
q), these polynomials are self-reciprocal.
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Duursma zeta polynomial

In general, the analog of the Riemann hypothesis for curves does not hold for
the Duursma zeta polynomials of self-dual codes.

Example

The Duursma zeta polynomial

PC (T ) = (2T 2 + 2T + 1)/5

associated to “the” binary self-dual code C of length 8 satisfies the analog of
the RH. (Therefore, the “normalized” polynomial p(z) = P(z/

√
2) is

self-reciprocal, with all roots on S1.)

The zeta polynomial associated to C 3 does not have all its roots on S1.
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Duursma zeta polynomial

There is an infinite family of Duursma zeta functions for which Duursma has
conjecture that the analog of the Riemann hypothesis always holds. The linear
codes used to construct these zeta functions are so-called “extremal self-dual
codes.”

If F (x , y) = xn +
Pn

i=d Aix
n−iy i ∈ Z[x , y ] is a homogeneous polynomial with

Ad 6= 0 then we call

n the length of F and

d the minimum distance of F .

We say F is virtually self-dual weight enumerator (over GF (q)) if and only if F
satisfies the invariance condition

F (x , y) = F (
x + (q − 1)y

√
q

,
x − y
√

q
).
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Duursma zeta polynomial

Assume F is a virtually self-dual weight enumerator.

We say F is extremal, Type I if q = 2, n is even, and d = 2[n/8] + 2.

We say F is extremal, Type II if q = 2, 8|n, and d = 4[n/24] + 8.

We say F is extremal, Type III if q = 3, 4|n, and d = 3[n/12] + 3.

We say F is extremal, Type IV if q = 4, n is even, and d = 2[n/6] + 2.
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Duursma zeta polynomial

Let P be a Duursma zeta polynomial as above, and let

p(z) = a0 + a1z + · · ·+ aNzN

denote the normalized Duursma zeta polynomial, p(z) = P(z/
√

q).

Examples

Some examples of the lists of coefficients a0, a1, . . . , computed using Sage, are
given below.

We have scaled the coefficients so that they sum to 10 and represented the
rational coefficients as decimal approximations to give a feeling for their “slow
growth.”
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Duursma zeta polynomial

Case Type I:
m = 2: [1.1309, 2.3990, 2.9403, 2.3990, 1.1309]
m = 3: [0.45194, 1.2783, 2.0714, 2.3968, 2.0714, 1.2783, 0.45194]
m = 4: [0.18262, 0.64565, 1.2866, 1.8489, 2.0724, 1.8489, 1.2866,
0.64565, 0.18262]

Case Type II:
m = 2: [0.43425, 0.92119, 1.3028, 1.5353, 1.6129, 1.5353, 1.3028,
0.92119, 0.43425]
m = 3: [0.12659, 0.35805, 0.63295, 0.89512, 1.1052, 1.2394, 1.2854,
1.2394, 1.1052, 0.89512, 0.63295, 0.35805, 0.12659]
m = 4: [0.037621, 0.13301, 0.28216, 0.46554, 0.65783, 0.83451, 0.97533,
1.0656, 1.0967, 1.0656, 0.97533, 0.83451, 0.65783, 0.46554, 0.28216,
0.13301, 0.037621]
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Duursma zeta polynomial

Case Type III:
m = 2: [1.3397, 2.3205, 2.6795, 2.3205, 1.3397]
m = 3: [0.58834, 1.3587, 1.9611, 2.1836, 1.9611, 1.3587, 0.58834]
m = 4: [0.26170, 0.75545, 1.3085, 1.7307, 1.8874, 1.7307, 1.3085,
0.75545, 0.26170]

Case Type IV:
m = 2: [2.8571, 4.2857, 2.8571]
m = 3: [1.6667, 3.3333, 3.3333, 1.6667]
m = 4: [0.97902, 2.4476, 3.1469, 2.4476, 0.97902]

Hopefully it is clear that, at least in these examples, these “normalized,
extremal” Duursma zeta functions have “slowly growing” coefficients which
have “increasing symmetric form.”
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Characterizing self-reciprocal polynomials

Let

R[z]m = {p ∈ R[z] | deg(p) ≤ m}

denote the real vector space of polynomials of degree m or less.

Let

Rm = {p ∈ R[z]m | p = p∗}

denote the subspace of self-reciprocal ones.
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Characterizing self-reciprocal polynomials

Here is a typical lemma characterizing even degree self-reciprocal polynomials.
Let

p(z) = a0 + a1z + · · ·+ a2nz
2n, ai ∈ R.

Lemma

(various authors) The polynomial p ∈ R[z]2n is self-reciprocal if and only if
it can be written

p(z) = zn · (an + an+1 · (z + z−1) + · · ·+ a2n · (zn + z−n)),

if and only if it can be written

p(z) = a2n ·
nY

k=1

(1− αkz + z2),

for some real αk ∈ R.
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Characterizing self-reciprocal polynomials

Example

Note

1 + z + z2 + z3 + z4 = (1 + φ · z + z2)(1 + φ · z + z2),

where φ = 1+
√

5
2

= 1.618 . . . is the “golden ratio,” and φ = 1−
√

5
2

= −0.618...
is its “conjugate.”

D. Joyner, USNA — Zeros of some self-reciprocal polynomials 26/42



Introduction Where these self-reciprocal polynomials occur Characterizing self-reciprocal polynomials Those with all roots in S1 Smoothness of roots A conjecture

Those with all roots in S1

There are several results concerning the set of self-reciprocal polynomials all of
whose roots lie in S1.

If p ∈ Rm then f (z) = z−m/2p(z) is invariant under z 7→ 1/z , so f (e iθ) is
real-valued. Therefore, f (e iθ) is a cosine transform of its coefficients.

Example

One of the simplest examples of a polynomial in Rm with all it zeros in S1 is

cm(z) = 1 + z + · · ·+ zm.

If m is even then cm does not have ±1 as zeros.
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Those with all roots in S1

Many results in the theory fall into the following category.

Meta-theorem: If p ∈ Rm is “close” to cm then p has all its roots in the unit
circle S1.

For example, here is one:

Theorem

(Lakatos) Take the notation as in Lemma 3. The polynomial p ∈ R2n has all
its roots in S1 if and only if −2 ≤ αk ≤ 2 for all k.
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Those with all roots in S1

Here’s another one:

Theorem

(Lakatos) The polynomial p ∈ Rm given by

p(z) =
mX

j=0

ajz
j

has all its roots on S1, provided the coefficients satisfy the following
condition

|am| ≥
mX

j=0

|aj − am|.
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Schur-Cohn theorem

There are several other characterizations of self-reciprocal polynomials all of
whose roots lie in S1.

Theorem

(Schur-Cohn) Let p = a0 + a1z + · · ·+ anz
n ∈ C[z]n. Cohn showed that p

has all its zeros on S1 if and only if

(a) there is a µ ∈ S1 such that, for all k with 0 ≤ k ≤ n, we have
an−k = µ · ak , and

(b) all the zeros of p′ lie inside or on S1.

This result of Cohn, published in 1922, is closely related to a result of Schur,
published in 1918.
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Schur-Cohn theorem

The following result is an immediate corollary of this theorem.

Corollary

p ∈ Rm has all its zeros on S1 if and only if all the zeros of p′ lie inside or on
S1.
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Chen-Chinen theorem

The result below provides a very large class of self-reciprocal polynomials
having roots on the unit circle.

Theorem

(Chen-Chinen) If p ∈ Rm has “decreasing symmetric form”

p(z) = a0 + a1z + · · ·+ akz
k + akz

m−k + ak−1z
m−k+1 + · · ·+ a0z

m,

with a0 > a1 > · · · > ak > 0 then all roots of p(z) lie on S1, provided m ≥ k.

It was proven by Chen and (in a slightly different form) later independently by
Chinen.
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Chen-Chinen theorem

We can prove the following more general version of this.

Theorem

If g(z) = a0 + a1z + · · ·+ akz
k and 0 < a0 < · · · < ak−1 < ak then, for each

r ≥ 0, the roots of z rg(z) + g∗(z) all lie on the unit circle.

Figure: Pattern of coefficients of a polynomial of “decreasing symmetric form”.
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Eneström-Kakeya theorem

The easy proof uses the following well-known theorem, discovered
independently by Eneström (in the late 1800’s) and Kakeya (in the early
1900’s).

Let

f (z) = a0 + a1z + · · ·+ akz
k .

Theorem

If a0 > a1 > · · · > ak > 0 then f (z) has no roots in |z | ≤ 1.

If 0 < a0 < a1 < · · · < ak then f (z) has no roots in |z | ≥ 1.

D. Joyner, USNA — Zeros of some self-reciprocal polynomials 34/42



Introduction Where these self-reciprocal polynomials occur Characterizing self-reciprocal polynomials Those with all roots in S1 Smoothness of roots A conjecture

Fell’s theorem

If P0(z) and P1(z) are polynomials, let

Pa(z) = (1− a)P0(z) + aP1(z),

for 0 ≤ a ≤ 1.

Theorem

(Fell) Let P0(z) and P1(z) be real monic polynomials of degree n having
zeros in S1 − {1,−1}. Denote the zeros of P0(z) by w1, w2, . . . , wn and of
P1(z) by z1, z2, . . . , zn. Assume wi 6= zj , for 1 ≤ i , j ≤ n. Assume also that

0 < arg(wi ) ≤ arg(wj) < 2π,

0 < arg(zi ) ≤ arg(zj) < 2π,

for 1 ≤ i , j ≤ n. Let Ai be the smaller open arc of S1 bounded by wi and zi ,
for 1 ≤ i ≤ n. Then the locus of Pa(z), 0 ≤ a ≤ 1, is contained in S1 if and
only if the arcs Ai are all disjoint.
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Smoothness of roots

How “smoothly” do they vary as a function of the coefficients of the
polynomial?

Suppose that the coefficients ai of the polynomial p are functions of a real
parameter t.

Identify p(z) = p(t, z) with a function of two variables (t ∈ R, z ∈ C).

Let r = r(t) denote a root of this polynomial, regarded as a function of t:

p(t, r(t)) = 0.

Lemma

r = r(t) is smooth (i.e., continuously differentiable) as a function of t,
provided t is restricted to an interval on which p(t, z) has no double roots.
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Smoothness of roots

Let p(z) = p(t, z) and r = r(t) be as before. Consider the distance function

d(t) = |r(t)|

of the root r .

How smooth is the distance function of a root as a function of the coefficients
of the polynomial p?

Lemma

d(t) = |r(t)| is smooth (i.e., continuously differentiable) as a function of t,
provided t is restricted to an interval one which p(t, z) has no double roots
and r(t) 6= 0.
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Smoothness of roots

Example

Let

p(z) = 1 + (1 + t) · z + z2,

so we may take

r(t) =
−1− t +

p
(1 + t)2 − 4

2
.

Note that r(t) is smooth provided t lies in an interval which does not
contain 1 or −3. We can directly verify the lemma holds in this case.
Observe (for later) that if −3 < t < 1 then |r(t)| = 1.
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Smoothness of roots

Example

This is a continuation of the previous Example. The Figure is a plot of d(t)
in the range −5 < t < 3.

Figure: Size of largest root of the polynomial 1 + (1 + t)z + z2, −5 < t < 3.
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A conjecture

We know that self-reciprocal polynomial with “decreasing symmetric form”
have all their roots on S1.

Under what conditions is the analogous statement true for functions with
“increasing symmetric form?”

Are there conditions under which self-reciprocal polynomials with in “increasing
symmetric form” have all their zeros on S1?

Figure: Pattern of coefficients of a polynomial of “increasing symmetric form”.
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A conjecture

Conjecture

Let s : Z>0 → R>0 be a “slowly increasing” function.

Odd degree case. If g(z) = a0 + a1z + · · ·+ akz
k , where ai = s(i), then

the roots of
p(z) = g(z) + zk+1g∗(z)

all lie on the unit circle.

Even degree case. The roots of

p(z) = a0 + a1z + · · ·+ ak−1z
k−1 + akz

k + ak−1z
k+1 + · · ·+ a1z

2k−1 + a0z
2k

all lie on the unit circle.

This is supported by some experimental data.
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If p(z) is as above and d denotes the degree then f (z) = z−d/2p(z) is a
real-valued function on S1.

The above conjecture can be reformulated as a statement about zeros of cosine
transforms.

I don’t know what “slowly increasing” means but it should allow for the
inclusion of the Duursma polynomials!

The End
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