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MR Imaging Process

An acquired MR signal can be written as (2D slice)

S(kx, ky) =

Z Z
ρ(x, y) e−i(kx x+ky y) dx dy

ρ(x, y) is a measure of the concentration of MR relevant nuclei (spins) and

kx =
γ

2π

Z t

0

Gx(τ)dτ, ky =
γ

2π

Z t

0

Gy(τ)dτ

Gx and Gy are the applied gradient fields
We denote the signal acquisition space k = (kx, ky) as “k-space”
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(b) k-space sampling trajectory
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Sampling Patterns
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(c) Cartesian Sampling
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(d) Non-Cartesian Sampling – Spiral Imaging

Figure: MR Imaging Sampling Patterns1

1Spiral sampling pattern courtesy Dr. Jim Pipe, Barrow Neurological Institute, Phoenix,
Arizona
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Advantages and Disadvantages of each Pattern

Cartesian Imaging

Advantages

Well understood and often used in
equipment

Simple reconstruction procedure

Computationally efficient through use
of the standard FFT

Disadvantages

Susceptible to undersampling – causes
aliased images

Gradient field waveforms can mean sharp
transitions in collection

Non-Cartesian Imaging

Advantages

Less susceptible to aliasing artifacts –
aliased images are of “diagnostic
quality”

Easier to generate gradient field
waveforms

Disadvantages

Complex reconstruction procedure (if
possible!)

Computationally demanding – FFT
algorithm no longer applies
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Challenges in Cartesian Reconstruction

The Gibbs Phenomenon

affects the reconstruction of piecewise-smooth functions.

occurs when data is sampled uniformly or non-uniformly.

Two important consequences:
Gibbs ringing artifact – presence of non-physical oscillations in the vicinity
of discontinuities.
Reduced rate of convergence to first order even in smooth regions of the
reconstruction.

Why is this important?
Oscillations cause post-processing problems in tasks like segmentation, edge
detection etc. Filtering oscillations may cause loss of important information.
The reduced order of convergence means more Fourier coefficients are
needed to obtain a good reconstruction.
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The Gibbs Phenomenon – An Example

SNf(x) =
NX

k=−N

f̂(k)eikx, f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx
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(b) Reconstruction error

Figure: Gibbs Phenomenon, N = 32
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(b) Error does not go away by increasing N

Figure: Gibbs Phenomenon
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Shepp Logan MRI
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Reconstruction from Fourier Data by Spectral Reprojection (Gottlieb, Shu
et. al.)

Assume that Fourier coefficients {f̂k}Nk=−N are given for a piecewise
analytic function f(x) in [−1, 1]

Use edge detection to determine sub-intervals of smoothness [a, b]

Compute the Fourier partial sum in [a, b]: SNf(x) =
PN
k=−N f̂ke

ikπx

Reproject SNf(x) onto a new basis for x ∈ [a, b]:

PM
`
SNf(x)

´
→ f(x)

Many other algorithms available (Banerjee & Geer, Driscoll & Fornberg,
Eckhoff, Jung & Shizgal, Solomonoff, Tadmor & Tanner, more ...)
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Spectral Reprojection (Gottlieb & Shu)

Goal: approximate a function that is smooth but not periodic for
ξ ∈ [−1, 1] (after linear transformation from x ∈ [a, b])

We could use an orthogonal polynomial expansion,

PMf(x(ξ)) =

MX
l=0

alψl(ξ), al =
1

γl
< f, ψl >ω

but we have the Fourier expansion

SNf(x(ξ)) =

NX
k=−N

f̂ke
ikπx(ξ)

Can we use SNf to approximate al? What should PM look like?
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Spectral Reprojection (Gottlieb & Shu)

Determine appropriate orthogonal polynomial basis {ψl(ξ)}Ml=0 on [−1, 1]

Build Fourier approximation inside smooth region [a, b]:

SNf(x(ξ)) =

NX
k=−N

f̂ke
ikπx(ξ), x(ξ) = εξ + δ

Expansion coefficients for ψl(ξ) are approximated by
bl = 1

γl
< Snf, ψl >ω≈ al

Reprojection in smooth region [a, b]:

Pm(SNf(x(ξ))) =

mX
l=0

blψl(ξ)
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Spectral Reprojection (Gottlieb & Shu)

Definition: A Gibbs Complementary Reprojection Basis, {ψl}Nl=0, has the
properties:

1 For an analytic function on [−1, 1], the function’s expansion in the
orthogonal reprojection basis is exponentially convergent, Pmf(x)→ f(x)
exponentially for smooth f(x).

2 The projection of the high modes in the original basis on the low modes in
the new basis is exponentially small.

If these conditions are met, then

Pm(SNf(x(ξ)))→ f(x) exponentially for x ∈ [a, b]

Anne Gelb Fourier Reconstruction from Non-Uniform Spectral Data
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Error Analysis For Spectral Reprojection

Err(m,N, f, ω) := ||f − Pm(SNf)|| ≤ ||f − Pmf ||+ ||Pm(f − SNf)||
= Trunc(m, f, ω) + Proj(m,N, f, ω)

Trunc(m, f, ω) measures the convergence properties of the reprojection
basis for m expansion coefficients (reflects first Gibbs complementary basis
property)

Converges exponentially for ω(x) ≥ 0
m = βN expansion terms, 0 < β < 1, resolves the function

Proj(m,N, f, ω) measures the near orthogonality of the reprojection space
Pm and the space containing the information about the function that is
not known, I − SN (reflects second Gibbs complementary basis property)

Anne Gelb Fourier Reconstruction from Non-Uniform Spectral Data



Introduction Non-Uniform Data Current Methods Alternate Approaches Magnetic Resonance Imaging Sampling Patterns Challenges in Cartesian Reconstruction

Look at Projection Error

The projection error corresponds to the decay rate of the coefficients bl:

Proj(m,N, f, ω) = Pm(f − SNf)

=

mX
l=0

ψl(ξ)
1

γl
〈f − SNf, ψl〉ω

=
mX
l=0

ψl(ξ)
1

γl

Z 1

−1

ω(y)ψl(y)(f(x(y))− SNf(x(y)))dy

=

mX
l=0

1

γl

X
|k|>N

f̂kψl(ξ)

Z 1

−1

eiπkx(y)ω(y)ψl(y)dy

• Error will be small if the weight function ω is chosen so that the
corresponding integral is very small.
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Reprojection using the Gegenbauer polynomial basis (Gottlieb, Shu, et. al)

Define the weight function ω as: ωλ(ξ) = (1− ξ2)λ−
1
2 . Large λ ensures

that
R 1

−1
eiπkx(y)ω(y)ψl(y)dy is small. Subsequently, the errors from the

boundaries do not enter the approximation

Corresponding reprojection basis, ψl(ξ) for ωλ(ξ), are the Gegenbauer
polynomials, Cλl (ξ) with < Cλl , C

λ
m >ωλ= 1

γl
δlm

Note that Chebyshev (λ = 0) and Legendre (λ = 1
2

) do not make good
reprojection bases.
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Gegenbauer Reconstruction

If λ = λ(N) then the reprojection coefficients

bl :=
1

γl

Z 1

−1

SNf(x(ξ))Cλl (ξ)(1− ξ2)λ(N)− 1
2 dξ,

decay exponentially.

Can rewrite implementation to avoid quadrature (use FFT)

For many imaging applications, small m and λ work well

Robust with respect to noise in imaging data (Archibald & Gelb)
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Shepp Logan Phantom (Archibald & Gelb)
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Improvement of image quality for segmentation (Archibald, Chen, Gelb &
Renaut)

Gray matter segmented prob-
ability maps

256× 256 randomly
generated MNI digital
brain

9% noise level

non-uniform tissue
intensity
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Problem Formulation
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Given these coefficients, can we/how do we reconstruct the function?

What accuracy can we achieve given a finite (usually small) number of
coefficients?

Computational issue – no FFT available
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(d) Fourier Coefficients, N = 32

Given these coefficients, can we/how do we reconstruct the function?

What accuracy can we achieve given a finite (usually small) number of
coefficients?

Computational issue – no FFT available
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(f) Fourier Coefficients, N = 32

Given these coefficients, can we/how do we reconstruct the function?

What accuracy can we achieve given a finite (usually small) number of
coefficients?

Computational issue – no FFT available
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Problem Formulation

Let f be defined on R and supported in (−π, π) with Fourier transform

f̂(ω) =
1

2π

Z π

−π
f(x)e−iωxdx, ω ∈ R

Objective

Recover f given a finite number of its non-harmonic Fourier coefficients,

f̂(ωk), k = −N, ..., N ωk not necessarily ∈ Z

We are particularly interested in
sampling patterns with variable
sampling density

The underlying function f is
piecewise-smooth
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Sampling Patterns

Jittered Sampling: ωk = k ± τk, τk ∼ U [0, θ], k = −N,−(N − 1), ..., N

Log Sampling: |ωk| is logarithmically distributed between 10−v and N ,
with v > 0 and 2N + 1 being the total number of samples.

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ω

(k) Jittered Sampling

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ω

(l) Log Sampling

Figure: Non-uniform Sampling Schemes (right half plane), N = 16
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The Non-harmonic Reconstruction Kernel

Standard (harmonic) Fourier reconstruction:

SNf(x) =
X
|k|≤N

f̂(k)eikx = (f ∗DN )(x) where

DN (x) =
X
|k|≤N

eikx is the Dirichlet kernel.

The non-harmonic Fourier reconstruction:
SN f̃(x) =

X
|k|≤N

f̂(ωk)eiωkx = (f ∗AN )(x) where

AN (x) =
X
|k|≤N

eiωkx is the non-harmonic kernel.

The non-harmonic kernels do not constitute an
orthogonal basis for span {eikx, |k| ≤ N}
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Non-harmonic Kernels
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(h) Jittered, N = 256
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Figure: Kernel Comparison
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Reconstruction Examples
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Figure: Non-harmonic Fourier sum Reconstruction,N = 128
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Conventional Reconstruction Methods

Several approaches available to perform reconstruction

Convolutional Gridding – most popular

Uniform Resampling

Iterative Methods

– “Fix” the quadrature rule while evaluating
the non-harmonic sum

SN f̃(x) =

NX
k=−N

αkf̂(ωk)eiωkx

– αk are density compensation factors
e.g., αk = ωk+1 − ωk

– Evaluated using a “non-uniform” FFT
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Figure: Evaluating the non-uniform
Fourier sum

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding and uniform resampling to obtain an intuitive
understanding of the problems in reconstruction.
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Figure: Uniform Resampling

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding and uniform resampling to obtain an intuitive
understanding of the problems in reconstruction.
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Figure: Iterative Reconstruction

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding and uniform resampling to obtain an intuitive
understanding of the problems in reconstruction.
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Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding and uniform resampling to obtain an intuitive
understanding of the problems in reconstruction.
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Convolutional Gridding

Instead of approximating f by
NX

k=−N

αkf̂(ωk)eiωkx, we compute

SN g̃(x) =
NX

k=−N

ˆ̃g(k)eikx

1 Map the non-uniform modes to a uniform grid via convolution. The new
coefficients on the uniform grid are therefore given by

ˆ̃g(k) = f̂ ∗ φ̂
˛̨̨
ω=k
≈

X
m st. |k−ωm|≤q

αmf̂(ωm)φ̂(k − ωm)

2 Compute a (filtered) Fourier partial sum.

3 “Compensate” for the mapping operation (divide by φ(x)).

4 Choose the interpolating function φ to be essentially bandlimited, i.e.,

φ̂(ω) ≈ 0 |ω| > q, q ∈ R, small
φ(x) ≈ 0 |x| > π
φ(x) 6= 0 x ∈ [−π, π]
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Convolutional Gridding
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Figure: Gridding: ˆ̃g = f̂ ∗ φ̂
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Convolutional Gridding
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Figure: Fourier Reconstruction of g(x) = f(x)φ(x)
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Convolutional Gridding
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Figure: Compensation f(x) = g(x)/φ(x)
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Reconstruction Examples – Convolutional Gridding
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(b) Cross-section of a brain scan

Figure: Gridding reconstruction, N = 128 (processed by a fourth order exponential
filter)
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Uniform Resampling

Reconstruction is accomplished in two steps:

1 recover equispaced coefficients f̂(k)

2 partial Fourier reconstruction using the FFT algorithm

Since f is compactly supported, we use the sampling theorem to relate f̂(ωk)
and f̂(k).

f̂(ω) =
∞X

p=−∞

f̂(p) sinc(ω − p), ω ∈ R, p ∈ N

To recover f̂(k), we have to invert the above system, i.e., solve

Ax = b, Aij = sinc(ωi − j), b =
n
f̂(ωk)

oN
k=−N

, x =
n
f̂(p)

oM
p=−M

Any number of methods to do so - iterative methods, pseudoinverse-based
methods with regularization ...

The condition number of the sinc matrix depends on the sampling
pattern’s deviation from equispaced nodes.
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Representative Results – Uniform Resampling
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(a) Recovered Fourier coefficients
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(b) Filtered reconstruction

Figure: URS solution, N = 128

Solved a square 128× 128 system

Inverted the system by computing the pseudoinverse

Pseudoinverse was computed using TSVD, with a SVD threshold of 10−5
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Convolutional Gridding Error

Theorem (Convolutional Gridding Error (Viswanathan, 2009))

Let ĝ = f̂ ∗ φ̂ denote the true gridding coefficients and ˆ̃g denote the
approximate gridding coefficients. Let ∆k be the maximum distance between
sampling points and dk := 1

∆k
be the minimum sample density in the q-vicinity

of k. Then, the gridding error at mode k is bounded by
e(k) ≤ C · 1

d2
k
, k = −N, ..., N for some positive constant C.
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Convolutional Gridding Error

Physical space reconstruction error

e(x) ≈ g(x)− SN g̃(x) = g(x)− SNg(x) + SNg(x)− SN g̃(x)

=
X
|k|>N

ĝ(k)eikx

| {z }
standard Fourier truncation

+
X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

| {z }
gridding

SNg suffers from Gibbs; the maximum error occurs in the vicinity of a
jump (≈ 1.09 of the jump value). There is also a reduced rate of
convergence with ‖g − SNg‖ = O (N).

Gridding (sampling) error

|SNg(x)− SN g̃(x)| =

˛̨̨̨
˛̨ X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

˛̨̨̨
˛̨

≤
X
|k|≤N

˛̨̨
ĝ(k)− ˆ̃g(k)

˛̨̨
≤ C

X
|k|≤N

1

d2
k
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Error Plots
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Figure: Error Plots
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Error Plots
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(a) Fourier coefficients – High modes
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Error vs Sampling Density

The reconstruction error is

e(x) ≈
X
|k|>N

ĝ(k)eikx +
X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

1st term decreases as N increases

2nd term increases as N increases
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Figure: Error in gridding coefficients

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Error vs Sampling Density
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Error in Recovered Coefficients – Uniform Resampling
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(a) Recovered Fourier coefficients
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Figure: URS solution, N = 128

The condition number of the resampling matrix is directly related to the
error in the coefficients. .
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Gibbs Phenomenon, non-uniform case

We still have the “Gibbs phenomenon” – non-physical oscillations at
discontinuities, and a reduced rate of convergence (first order). Hence, we
require a large number of coefficients to get acceptable reconstructions.

However, by formulation of the sampling scheme and recovery procedure,
the coefficients recovered at large ω are inaccurate.

=⇒ we need more coefficients, but the coefficients we get are inaccurate!

Spectral Reprojection – High frequency modes of f in the original basis have
exponentially small contributions on the low modes in the new basis
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Reducing the Impact of the High Mode Coefficients using Spectral
Reprojection (Viswanathan, Cochran, Gelb, & Renaut, 2010)

Spectral reprojection expansion coefficients:

1

γλl
< SN g̃, C

λ
l >ω(λ)=

1

γλl

Z 1

−1

(1− η2)λ−1/2Cλl (η)
X
|k|≤N

ˆ̃g(k)eiπkηdη
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Figure: Decay of Gegenbauer coefficients
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Spectral Reprojection Error of Gridded Coefficients

Err(m,N, g, ω) := ||g − Pm(SN g̃)|| ≤
||g − Pmg||+ ||Pm(g − SNg)||+ ||PmSNg − PmSN g̃||
||PmSNg − PmSN g̃||∞ ≤
Const

Pm
l=0

P
|k|≤N

1
d2
k

˛̨̨
Cλl (1)

γλ
l

R 1

−1
(1− η2)λ−1/2Cλl (η)eiπkηdη

˛̨̨
˛̨̨̨
Cλl (1)

γλl

Z 1

−1

(1− η2)λ−1/2Cλl (η)eiπkηdη

˛̨̨̨
≤ Γ(λ)(l + λ)Γ(l + 2λ)

l!Γ(2λ)

„
2

π|k|

«λ
The corresponding gridding error does not increase rapidly with N
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Spectral Reprojection – Contribution from Gridding Error
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Figure: Contribution from Gridding Error in Spectral Reprojection
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Gegenbauer Reconstruction - Results
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(a) Reconstruction
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Filtered Fourier, 256 coeffs.
Gegenbauer, 121 coeffs.

(b) Reconstruction error

Figure: Gegenbauer reconstruction from log spectral samples
Filtered Fourier (second-order exponential) reconstruction uses 256
coefficients
Gegenbauer reconstruction uses 2N + 1 = 121 coefficients
Edges detected using the concentration method (Gelb & Tadmor) with
thresholding and non-linear post-processing.
Parameters (m,λ) chosen proportional to size of reconstruction interval.
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Error Plots
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(b) Maximum-norm error

Figure: Error Plots – Filtered and Gegenbauer Reconstruction
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Incorporating Edge Information into Reconstruction (Viswanathan, 2010)

Obtain edge information by

Using the concentration method on the
recovered coefficients

SσN [f̃ ](x) = i

NX
k=−N

ˆ̃
f(k) sgn(k)σ

„
|k|
N

«
eikx

Solving for the jump function directly
from the non-harmonic Fourier data
Let f̆(ωk) = i sgn(ωk)f̂(ωk)

min
p

‖ F{Wp}|ωk−f̆(ωk) ‖22+λ‖ p ‖1
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Figure: Edge Detection using the iterative
formulation
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Methods Incorporating Edge Information

Compute the high frequency modes using the relation Compare

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik
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(b) The high modes - Using edge infor-
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Figure: Reconstruction of a test function using edge information
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Spectral reprojection for Fourier Frames (Gelb & Hines, 2010)

Finite frame approximation: Assume {eiωnx}n∈Z is a frame for L2(I).

Given frame coefficients {f̂(ωn)}Nn=−N = {< f(x), eiωnx >}Nn=−N

Compute TNf =
PN
n=−N f̂(ωn)S−1eiωnx

Filtering does not improve convergence:
TσNf =

PN
n=−N σ(ωn)f̂(ωn)S−1eiωnx 9 f

Spectral reprojection yields exponential convergence.

Theorem (Gelb and Hines (2010)): Let {eiωnx}n∈Z be a frame generated by a
balanced sampling sequence. Suppose we are given the first 2N + 1 frame
coefficients of f ∈ L2[−1, 1]. If λ = αN and M = βN for 0 < α < 1 and
0 < β < 1, then there exists a constant 0 < q < 1 such that

||PλM (f − TNf)||∞ ≤ cN2qN
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Spectral reprojection for Fourier Frames (Gelb & Hines, 2010)
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Spectral reprojection for Fourier Frames (Gelb & Hines, 2010)
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Figure: Gegenbauer frame reconstruction
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Spectral reprojection for Fourier Frames (Gelb & Hines, 2010)
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Summary

Problem: Fourier reconstruction of piecewise smooth functions from
non-uniform coefficients – MRI, SAR

Conventional reconstruction methods from MRI community (density
compensation, uniform resampling, iterative methods)

Error analysis and characteristics related to sampling density

Spectral reprojection mitigates the impact of the error from the high
frequency coefficients

Fourier based edge information can help to obtain better approximation to
high frequency coefficients

Fourier frames may provide a better alternative in reconstruction since no
interpolation is needed

Special thanks to Adityavikram Viswanathan, ASU EE PhD 2010,
currently a postdoctoral fellow at ACM. California Institute of Technology.
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Special thanks

Special thanks to the organizers and to my sons (for letting me come)

Figure: Sam and Josh Bagatell
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