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Background

Joint work with Fedor Nazarov and Igor Verbitsky
(preprint)

Start with general functional analysis theorem:

Given an integral operator T on a σ-finite measure space
(Ω, ω) with kernel K :

Tf (x) =

∫
Ω

K (x , y)f (y) dω(y)

We assume throughout that K ≥ 0 is symmetric
(K (x , y) = K (y , x)) and measurable. If
‖T‖L2(ω)→L2(ω) < 1, consider the Neumann series

(I − T )−1 =
∞∑
j=0

T j .
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Question

Let Kj be the kernel of T j : K1 = K and

Kj(x , y) =

∫
Ω

Kj−1(x , z)K (z , y) dω(z).

We are interested in estimates of the kernel
∑∞

j=1 Kj of∑∞
j=1 T

j .

Here’s an example of a question we would like to answer:

When is
∞∑
j=1

Kj(x , y) ≤ CK (x , y)?
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Simple Result

Trivial theorem: Suppose there exists ε with 0 < ε < 1
such that K2 ≤ εK1. Then

∞∑
j=1

Kj(x , y) ≤ 1

1− ε
K (x , y).

Proof: K3(x , y) =

∫
K2(x , z)K (z , y) dω(z)

≤ ε

∫
K (x , z)K (z , y) dω(z) = εK2(x , y) ≤ ε2K (x , y)

Similarly K4 ≤ ε3K , etc., so

∞∑
j=1

Kj ≤ (1 + ε + ε2 + . . . )K .
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Quasi-metric kernels

Under what conditions can we get a sharp result?

Definition: For K : Ω× Ω→ (0,∞], we say K is a
quasi-metric kernel if d = 1/K satisfies the quasi-metric
inequality

d(x , y) ≤ κ(d(x , z) + d(z , y))

for some κ, called the quasi-metric constant.

Our main result will imply, for example: If K is a
quasi-metric kernel and ‖T‖ = ‖T‖L2(ω)→L2(ω) < 1, then∑

j=1

Kj(x , y) ≤ CK (x , y)

if and only if

there exists C1 > 0 such that K2 ≤ C1K .
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Main Result

Theorem: Let K be a quasi-metric kernel on Ω.

A.) (Lower bound) There exists c = c(κ) such that

∞∑
j=1

Kj(x , y) ≥ K (x , y)ec K2(x ,y)/K(x ,y).

B.) (Upper bound) Suppose also that ‖T‖ < 1. Then
there exists C = C (κ, ‖T‖) > 0 such that

∞∑
j=1

Kj(x , y) ≤ K (x , y)eC K2(x ,y)/K(x ,y).

Remark: Hence
∑∞

j=1 Kj ≤ C1K ⇐⇒ K2 ≤ C2K .

Remark: If ‖T‖ > 1, then
∑∞

j=1 Kj(x , y) = +∞ a.e.
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About the Proof

The proofs are by direct estimation. The proof of the
lower bound is not so difficult, and

c =
1

12κ2
.

The proof of the upper bound is quite involved, as
reflected in our value for C :

C =
3 · 211κ6(6 + log2 κ)2Γ(6 + log2 κ)

(1− ‖T‖)6+log2 κ
.
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Modifiable Kernels

The theorem admits a simple, but useful extension.

We say a kernel K is quasi-metrically modifiable if there
exists m : Ω→ (0,∞) such that

H(x , y) =
K (x , y)

m(x)m(y)

is a quasi-metric kernel.

Then the same theorem holds for K . Apply previous
theorem with kernel H and measure dν = m2dω. Note
that the operator Sf (x) =

∫
H(x , y)f (y) dν(y) satisfies

‖S‖L2(ν)→L2(ν) = ‖T‖L2(ω)→L2(ω).
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So
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j=1

Hj(x , y) ≈ H(x , y)eCH2(x ,y)/H(x ,y)

implies
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Kj(x , y)

m(x)m(y)
≈ K (x , y)

m(x)m(y)
eCK2(x ,y)/K(x ,y).
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Background of Problem

Kalton and Verbitsky (TAMS, 1999) studied the existence
of solutions u ≥ 0 to

−4u − qus = ϕ,

for q ≥ 0, ϕ ≥ 0, s > 1.

Their methods fail for s = 1, the linear case.

We considered −4u − qu = ϕ, with q ≥ 0.

Eventually we generalized to (−4)α/2u − qu = ϕ, with
0 < α ≤ 2 (α 6= 2 in dimension 2), where (−4)α/2 is
defined probabilistically on a domain.
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Green’s functions
Let G (x , y) = G (α)(x , y) be the Green’s kernel for
(−4)α/2 on a domain Ω ⊆ Rn, let G denote the Green’s
operator.

For example, on Rn,G (x , y) = cn|x − y |α−n, the kernel of
the Riesz potential Iα.

For a potential q ≥ 0 on Ω, let dω(x) = q(x)dx .

Let Gj be the j th iterate of G defined with respect to ω:
G1 = G and

Gj(x , y) =

∫
Ω

Gj−1(x , z)G (z , y) dω(z).

Let G(x , y) =
∞∑
j=1

Gj(x , y).
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Schrödinger equations
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Green’s Function Estimates for Schrödinger

operators

Hence we call G(x , y) =
∑∞

j=1 Gj(x , y) the Green’s
function for the fractional Schrödinger operator
(−4)α/2 − q.

Theorem: Let Ω = Rn, or any bounded domain satisfying
the boundary Harnack principle (e.g., any bounded
Lipschitz domain).

A.) (Lower bound) Then there exists c = c(Ω, α) > 0
such that

G(x , y) ≥ G (x , y)ecG2(x ,y)/G(x ,y).
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Upper bound

B. (Upper bound) Let dω(y) = q(y) dy , and

Tu(x) =

∫
Ω
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If ‖T‖L2(ω)→L2(Ω) < 1, then there exists
C = C (Ω, α, ‖T‖) such that

G(x , y) ≤ G (x , y)eCG2(x ,y)/G(x ,y).
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About the proof

If Ω = Rn, then G (x , y) = cn|x − y |α−n is a quasi-metric
kernal, and the result follows directly from the main
theorem above.

For a bounded domain, G may not be a quasi-metric
kernel.

However, for a smooth enough domain, estimates for G
are known: let δ(x) = dist(x , ∂Ω). Then

G (x , y) ≈ δ(x)δ(y)

|x − y |n−2 (|x − y |+ δ(x) + δ(y))2

Then it is not difficult to see that G (x , y)/(δ(x)δ(y)) is a
quasi-metric kernel.
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About the proof, cont’d

More generally, it is known (Hansen) that for bounded
domains satisfying the boundary Harnack principle,
G (x , y)/(m(x)m(y)) is a quasi-metric kernel for

m(x) = min(1,G (x , x0)),

for x0 ∈ Ω fixed.

Hence the results follow from the remarks earlier about
modifiable kernels.
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Conditional Gauge
For α = 2, there is a probabilistic formula

(1) G(x , y)/G (x , y) = Ex ,ye
∫ ζ

0 q(Xt) dt ,

where Xt is the Brownian path, with properly rescaled
time, starting at x , Ex ,y is the conditional expectation
conditioned on the event that Xt hits y before exiting Ω,
and ζ is the time when Xt first hits y .

Hence our results give upper and lower bounds for the

conditional gauge Ex ,ye
∫ ζ

0 q(Xt) dt .

For 0 < α < 2, similar estimates hold for the conditional
gauge for α-stable processes.

Using (1) and Jensen’s inequality, the lower bound

G(x , y) ≥ G (x , y)ecG2(x ,y)/G(x ,y)

with sharp constant (c = 1?) follows.
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Conditional Gauge

Our upper bound

G(x , y) ≤ G (x , y)eCG2(x ,y)/G(x ,y)

seems to be new, even in the Schrödinger case α = 2.

Question: Is there a probabilistic proof of the upper
bound? With a sharper constant?
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Applications

Consider the following 3 problems on a smooth bounded
domain Ω ⊆ Rn:

(∗)
{
−4u0 − qu0 = 1 on Ω,

u0 = 0 on ∂Ω

(∗∗)
{
−4u1 − qu1 = 0 on Ω,

u1 = 1 on ∂Ω

Remark: u1 is called the Feynman-Kac gauge.

(∗ ∗ ∗)
{
−4v − |∇v |2 = q on Ω,

v = 0 on ∂Ω

Remark: this is an equation of Ricatti type
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Application: solvability of (**) and (***)

Let P be the Poisson kernel for a bounded C 2 domain Ω.
Define the balyage operator P∗ by

P∗f (z) =

∫
Ω

P(x , z)f (x) dx ,

for z ∈ ∂Ω.

Theorem: Suppose ‖T‖ < 1. Then there exists C > 0
such that if ∫

∂Ω

eCP
∗(δq) dσ <∞,

where δ(x) = dist(x , ∂Ω), then (∗∗) and (∗ ∗ ∗) have
solutions.
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Application: solvability of (**) and (***) (cont’d)

For a given C > 0,∫
∂Ω

eCP
∗(δq) dσ <∞

holds if

‖P∗(δq)‖BMO(∂Ω) < ε, for ε small enough, which in turn
holds if

‖δq‖C < ε1, for ε1 small enough, where ‖δq‖C denotes
the Carleson norm of the measure δ(x)q(x) dx .
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Brief outline of proof

Have formal solutions u0, u1, need to show they are finite
a.e.

Theorem about quasi-metric kernels implies:

c1δe
c(Tδ)/δ ≤ u0 ≤ C1δe

C(Tδ)/δ.

This in turn implies∫
∂Ω

eCP
∗(δq)(z) dσ(z) ≥ c |∂Ω|+ c

∫
Ω

u0(y) dω(y).

Hence under assumption of theorem, get u0 ∈ L1(dω),
which implies u1 ∈ L1(dx), so u1 solves (∗∗). Then
v = log u satsifies (∗ ∗ ∗).
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Remark

Problems (∗) and (∗∗) have formal solutions. Recall that

u(x) =

∫
Ω

∞∑
j=1

Gj(x , y)f (y) dy

formally satisfies (−4− q)u = f on Ω, u = 0 on ∂Ω.

Taking f = 1, the formal solution of (∗) is

u0(x) =

∫
Ω

∞∑
j=1

Gj(x , y) dy .
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Remark, cont’d
We claim that the formal solution of (∗∗) is

u1(x) = 1 +

∫
Ω

∞∑
j=1

Gj(x , y) dω(y)

Proof: Note that u1 = 1 on ∂Ω since Gj(x , y) = 0 for all
x ∈ ∂Ω, for all j . Next, (−4− q)1 = −q, and

w(x) =

∫
Ω

∞∑
j=1

Gj(x , y) dω(y) =

∫
Ω

∞∑
j=1

Gj(x , y)q(y) dy

solves (−4− q)w = q on Ω,

so (−4− q)u1 = (−4− q)(1 + w) = −q + q = 0 in Ω.

So the only question is whether the formal solutions are
finite a.e.
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Sketch of proof
First, (∗∗) is related to (∗ ∗ ∗) as follows: if u1 > 0
satisfies (∗∗), then v = log u satisfies (∗ ∗ ∗), and if v
satisfies (∗ ∗ ∗) then u1 = ev satisfies (∗∗).

Second, (∗) is related to (∗∗) as follows:∫
Ω

u1 dx =

∫
Ω

(
1 +

∫
Ω

∞∑
j=1

Gj(x , y) dω(y)

)
dx

= |Ω|+
∫

Ω

∫
Ω

∞∑
j=1

Gj(x , y)(x , y) dx dω(y)

= |Ω|+
∫

Ω

u0(y) dω(y).

We will look for a condition that gives u0 ∈ L1(dω).
Then u1 ∈ L1(dx), hence u1 <∞ a.e., so (∗∗) and
(∗ ∗ ∗) are solvable.
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Application: estimate of u0

Theorem: Let δ(x) = dist(x , ∂Ω). Then

c1δe
c(Tδ)/δ ≤ u0 ≤ C1δe

C(Tδ)/δ.

Proof sketch (≤): Need well-known fact: G1 ≈ δ. So

u0(x) =
∞∑
j=0

T jG1(x)

≤ C1

∞∑
j=0

T jδ(x).

Enough to show:
u0

δ
≤ C1

∞∑
j=0

T jδ

δ
≤ C1e

CTδ/δ.
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Application: estimate of u0 (cont’d)

So we want to show that

∞∑
j=0

T jδ

δ
≤ eCTδ/δ.

Reduce to the quasi-metric case: Replace G with the
quasi-metric kernel K (x , y) = G (x , y)/(δ(x)δ(y)),
replace dω(x) with dν(x) = δ2(x) dω(x), call
corresponding operator T̃ . Estimate becomes:

∞∑
j=0

T̃ j1 ≤ eCT̃1.
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Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)
Imagine that we can add a point z to Ω such that
d(y , z) = 1/K (y , z) = 1 for all y ∈ Ω, with ν({z}) = 0.
Then

T̃ j1(x) =

∫
Ω

Kj(x , y) dω(y)

=

∫
Ω

Kj(x , y)K (y , z) dω(y) = Kj+1(x , z).

Hence
∞∑
j=0

T̃ j1(x) =
∞∑
j=0

Kj+1(x , z) =
∞∑
j=1

Kj(x , z)

≤ K (x , z)eCK2(x ,z)/K(x ,z) = eCT̃1(x).

Works similarly if Ω is bounded and
d(y , z) = D >> diam(Ω). So restrict to bounded subset,
get estimates independent of diam(Ω), take limit.



Application: estimate of u0 (cont’d)

Claim: there exists c ,C > 0 such that∫
∂Ω

eCP
∗(δq)(z) dσ(z) ≥ c |∂Ω|+ c

∫
Ω

u0(y) dω(y).

Then the theorem follows: if the left side is finite, then
u0 ∈ L1(dω), as needed.

Proof of claim: for z ∈ ∂Ω, let {xj}∞j=1 be a sequence in
Ω converging normally to z . Then

P∗(δq)(z) =

∫
Ω

P(z , y)δ(y) dω(y)

= lim
j

∫
Ω

G (xj , y)

δ(xj)
δ(y) dω(y) = lim

j

T δ(xj)

δ(xj)
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Upper bound

B. (Upper bound) If there exists β ∈ (0, 1) such that

(2)

∫
Ω

u2q dx ≤ β

∫
Ω

|(−4)α/4u|2 dx ,

then there exists C = C (Ω, α, β) such that

G(x , y) ≤ G (x , y)eCG2(x ,y)/G(x ,y).

Remark: Inequality (2) implies ‖T‖ < 1: Equivalently:∫
Ω

|G (α/2)f |2 dω ≤ β

∫
Ω

|f |2 dx ,

or ‖G (α/2)‖L2(Ω,dx)→L2(Ω,dω) ≤
√
β, and

T = G (α/2)(G (α/2))∗.
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Example

If Ω = Rn and q(x) = A/|x |α with

0 < A < 22αΓ((n + α)/4))

Γ((n − α)/4))
, then

c1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})c2(A)

|x − y |n−α
≤ G(x , y)

and

G(x , y) ≤ C1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})C2(A)

|x − y |n−α
.

Remark: There is a sharp result due to Maz’ya, Grigorian,

and others with c2 = C2 = n−2
2
−
√

(n−2)2

4
− A.



Example

If Ω = Rn and q(x) = A/|x |α with

0 < A < 22αΓ((n + α)/4))

Γ((n − α)/4))
, then

c1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})c2(A)

|x − y |n−α
≤ G(x , y)

and

G(x , y) ≤ C1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})C2(A)

|x − y |n−α
.

Remark: There is a sharp result due to Maz’ya, Grigorian,

and others with c2 = C2 = n−2
2
−
√

(n−2)2

4
− A.



Example

If Ω = Rn and q(x) = A/|x |α with

0 < A < 22αΓ((n + α)/4))

Γ((n − α)/4))
, then

c1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})c2(A)

|x − y |n−α
≤ G(x , y)

and

G(x , y) ≤ C1(A)

(
max

{
|x |
|y | ,

|y |
|x |

})C2(A)

|x − y |n−α
.

Remark: There is a sharp result due to Maz’ya, Grigorian,

and others with c2 = C2 = n−2
2
−
√

(n−2)2

4
− A.


