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Here's an example of a question we would like to answer:

When is

[e.9]

Y Ki(x,y) < CK(x,y)?
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Theorem: Let K be a quasi-metric kernel on €.

A.) (Lower bound) There exists ¢ = c(x) such that

S Ki(x,y) > K(x,y)es Kaben) /),
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B.) (Upper bound) Suppose also that || T|| < 1. Then
there exists C = C(k, || T||) > 0 such that

D Ki(x.y) < K(x,y)eC et/

j=1

Remark: Hence Zj’il K < GK <= K, < GK.

Remark: If | T|| > 1, then > %, Kj(x,y) = 400 a.e.
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“T 12

The proof of the upper bound is quite involved, as
reflected in our value for C:

c— 3-211k5(6 + log, k)T (6 + log, k)
(1= [[T][)o+oears
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We say a kernel K is quasi-metrically modifiable if there
exists m: Q — (0, 00) such that

K(x,
Hix.y) = —oed)
m(x)m(y)
is a quasi-metric kernel.

Then the same theorem holds for K. Apply previous
theorem with kernel H and measure dv = m?dw. Note
that the operator Sf(x) = [ H(x,y)f(y) dv(y) satisfies

151 2wy 2wy = I Tll2)-12):
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:/ K(sz) K(Z7y) m2(z)dw(z)

m(x)m(z) m(z)m(y)
. K(X7Z) K(Z7y) w(z) = K2(X7y)
=] 5 wor O aamy
Similarly, get H;(x,y) = Ki(x,y)/(m(x)m(y)) for all j.

So Y Hi(x,y) & H(x, y)e o/
j=1

i Ki(x,y) - K(x,y) eCKa(x.y)/K(xy)
m

implies 7 (x)m(y) ~ m(x)m(y)
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Background of Problem

Kalton and Verbitsky (TAMS, 1999) studied the existence
of solutions u > 0 to

—Au—qu =,
forq>0,0>0,5> 1
Their methods fail for s = 1, the linear case.
We considered —Au — qu = ¢, with g > 0.

Eventually we generalized to (—A)*2u — qu = ¢, with
0 < a <2 (a# 2 in dimension 2), where (—A)*/2 is
defined probabilistically on a domain.
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Schrodinger equations
(%) 1 (=2)*2u — qu = ¢ on Q,

u =0 on 09.
Apply G: G(—A)“/2 G(qU) G(p).
Let Tu(x) = = Jo G( y) dw(y).

Then we have u— Tu = G(p), 0 (l — T)u = G(p).

Hence  u(x)= (I — T)'G(p)(x)

_ /Zq (x. ) (y) dy — / G(x.y)ply) dy

So G is the kernel of the solution operator for (*).



Green's Function Estimates for Schrodinger
operators

Hence we call G(x,y) = >, Gj(x, y) the Green's
function for the fractional Schrodinger operator
(—L)2 —q.



Green's Function Estimates for Schrodinger
operators

Hence we call G(x,y) = >, Gj(x, y) the Green's
function for the fractional Schrodinger operator
(—L)2 —q.

Theorem: Let Q = R”, or any bounded domain satisfying
the boundary Harnack principle (e.g., any bounded
Lipschitz domain).



Green's Function Estimates for Schrodinger
operators

Hence we call G(x,y) = >, Gj(x, y) the Green's
function for the fractional Schrodinger operator
(—L)2 —q.

Theorem: Let Q = R”, or any bounded domain satisfying
the boundary Harnack principle (e.g., any bounded
Lipschitz domain).

A.) (Lower bound) Then there exists ¢ = ¢(2, ) > 0
such that

G(x,y) > G(x,y)ecCtx/6ty),
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B. (Upper bound) Let dw(y) = q(y) dy, and

Tu(x) = / Glxy)uly) deo(y).

If || 7|l 2(w)—12(2) < 1, then there exists
C=C(Q2,a,||T||) such that

G(x,y) < G(X,y)eCGQ(Xv)’)/G(X,y).
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About the proof

If Q@ =R", then G(x,y) = c,|x — y|* " is a quasi-metric
kernal, and the result follows directly from the main
theorem above.

For a bounded domain, G may not be a quasi-metric
kernel.

However, for a smooth enough domain, estimates for G
are known: let §(x) = dist(x,0%). Then

d(x)o
) = T 2
x =y (Ix =yl +6(x) +(y))
Then it is not difficult to see that G(x, y)/(6(x)d(y)) is a
quasi-metric kernel.
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About the proof, cont'd

More generally, it is known (Hansen) that for bounded
domains satisfying the boundary Harnack principle,
G(x,y)/(m(x)m(y)) is a quasi-metric kernel for

m(x) = min(1, G(x, xo)),
for xg € € fixed.

Hence the results follow from the remarks earlier about
modifiable kernels.
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Conditional Gauge
For o = 2, there is a probabilistic formula
(1) G(x,y)/G(x,y) = Exeld 150
where X; is the Brownian path, with properly rescaled
time, starting at x, E,, is the conditional expectation

conditioned on the event that X; hits y before exiting €2,
and ( is the time when X; first hits y.

Hence our results give upper and lower bounds for the
conditional gauge £, ,elv 9(X)dt,

For 0 < a0 < 2, similar estimates hold for the conditional
gauge for a-stable processes.

Using (1) and Jensen's inequality, the lower bound
G(x,y) > G(X,y)eCG2(va)/G(x7y)

with sharp constant (¢ = 1?7) follows.
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Conditional Gauge

Our upper bound
G(x,y) < G(x, y)eCetx)/clxy)
seems to be new, even in the Schrodinger case a = 2.

Question: Is there a probabilistic proof of the upper
bound? With a sharper constant?
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Applications

Consider the following 3 problems on a smooth bounded
domain Q C R":

—Aug — quy =1 on Q,
() { U = 0 on 0

—/Au; —qu; =0 on €,
(**){ up =1 on 00

Remark: u; is called the Feynman-Kac gauge.

—Av —|Vv[>=gonQ,
(***){ v =0 on 0N

Remark: this is an equation of Ricatti type
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Application: solvability of (**) and (***)

Let P be the Poisson kernel for a bounded C2? domain €.
Define the balyage operator P* by

P*f(Z)Z/QP(XvZ)f(X)dX’

for z € 0NQ2.
Theorem: Suppose || T|| < 1. Then there exists C > 0
such that if
e P09 do < o,
o9

where §(x) = dist(x, 0L2), then (*x) and (x * *) have
solutions.
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Application: solvability of (**) and (***) (cont'd)

For a given C > 0,

/ eP 09 do <« o
o0

holds if

|P*(0q)||mo(an) < €, for € small enough, which in turn
holds if

10g]|c < €1, for €1 small enough, where ||dg||c denotes
the Carleson norm of the measure d(x)q(x) dx.
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Brief outline of proof

Have formal solutions ug, uy, need to show they are finite
a.e.

Theorem about quasi-metric kernels implies:
Cléec(T(S)/S <up < Cl(seC(Té)/E'

This in turn implies

eP 0N do(2) > c|loQ] + ¢ | wo(y) dw(y).
y y
o0 Q

Hence under assumption of theorem, get ug € Ll(dw),
which implies u; € L*(dx), so u; solves (xx). Then
v = log u satsifies (x * ).
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Remark

Problems (x) and () have formal solutions. Recall that

o

o) = [ 32 Glx)fly)dy

formally satisfies (—A — q)u = f on Q, u =0 on 0Q.

Taking f = 1, the formal solution of (x) is

up(x) = /QZ Gi(x,y)dy.
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Remark, cont'd

We claim that the formal solution of (%) is
x)=1+ / Z Gi(x,y) dw(y)
Q<
j=1

Proof: Note that u; = 1 on 0 since Gj(x,y) = 0 for all
x € 09, for all j. Next, (—A —q)1 = —q, and

/Znydw /Zny

solves (—A — q)w = g on Q,
so (A —quu=(-A-q)(1+w)=-g+qg=0in Q.

So the only question is whether the formal solutions are
finite a.e.
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Sketch of proof

First, (xx) is related to (x x *) as follows: if u; >0
satisfies (*x), then v = log u satisfies (* * ), and if v
satisfies (* % *) then u; = e satisfies ().

Second, (%) is related to (xx) as follows:

/Qul dx:/Q <1+/Q§Gj(x,y)dw(y)> dx
=m+£é§&mnwwwwm

ﬂm+wawmn

We will look for a condition that gives ug € L'(dw).
Then u; € LY(dx), hence u; < oo a.e., so (*x) and
(% % %) are solvable.
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Application: estimate of wuy
Theorem: Let 6(x) = dist(x,08). Then

Cl(sec(Té)/(; << C]_(SGC(T(S)/(S.

Proof sketch (<): Need well-known fact: G1 ~¢. So

up(x) =Y T/G1(x)
j=0
<G T(x).
j=0
Enough to show: % < G Z T(S < C e,

Jj=0
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Application: estimate of wuy (cont'd)

So we want to show that

ST _ crs
— 0 T '

Reduce to the quasi-metric case: Replace G with the
quasi-metric kernel K(x,y) = G(x,y)/(6(x)d(y)),
replace dw(x) with dv(x) = §?(x) dw(x), call

corresponding operator T. Estimate becomes:

Z T/1 < eCh.
i=0
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Application: estimate of wuy (cont'd)

Imagine that we can add a point z to €2 such that
d(y,z) =1/K(y,z) =1 for all y € Q, with v({z}) = 0.
Then

le(x):/QKj(X’Y)dw(y)

Kj(Xa)’)K(yaZ) dw(y) = l(jJrl(X’Z)'

—

Hence
oo o0

Z i+1(x, 2) ZKJ-(XZ

j=0 j=1

WK
\JZ
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Imagine that we can add a point z to €2 such that
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Application: estimate of wuy (cont'd)

Imagine that we can add a point z to 2 such that
d(y,z) =1/K(y,z) =1 for all y € Q, with v({z}) = 0.
Then

le(x) = /Q Kj(x,y) dw(y)
= [ KiK. 2) o) = K2,

Z Z i+1(x, 2) ZKJ-(XZ
j=1

< K(x, Z)eCKz(X,z)/K(x,z) _ eC:I'—l(x)‘

Works similarly if € is bounded and
d(y,z) = D >> diam(£2). So restrict to bounded subset,
oet estimates independent of diam(Q). take limit.
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Application: estimate of wuy (cont'd)

Claim: there exists ¢, C > 0 such that

/ eP 0N do(z2) > c|0Q| + ¢ / uo(y) dw(y)-
oQ

Q

Then the theorem follows: if the left side is finite, then
up € L*(dw), as needed.

Proof of claim: for z € 99, let {x;}72; be a sequence in
Q converging normally to z. Then

P*(6q)(2) = / P(z.y)6(y) deo(y)

Q

_im [ €Y) (v — fim 1O04)
*Ij /Q 5(XJ) 5(}/)0’ (Y) Ij 5()(_]) :
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Application: estimate of wuy (cont'd)

Hence
P (Ea)(z) _ pir oCoah
e D) = lime ™ °%)
J

. uo(x)
> C|Ijm 5(XJ)

. 0(x) + Tuo(x;)
> clljr_n 50%)

~ ¢+ clim / ﬁg(%y)um deo(y)

by previous result

since ug — Tug = Gl = ¢




Application: estimate of wuy (cont'd)

Hence Tt
eCP DG — fim ¢ 7
J
> clim o) by previous result
i 0(x)
0(x;) + Tuo(x;
> clim (%) + Tuo) since ug — Tug = Gl = ¢
J 0(x;)
[ G(x,y)
=c+ chm/ — 22 uo(y) dw(y)
i Ja 0(x)

= c+C/QP(y,z)uo(y) dw(y).
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Application: estimate of wuy (cont'd)

Hence/ eCP N3 ¢y (2)
o9

>c [ (14 [ Po2uty) dety)) dota)

= c|0Q| + c/Q /69 P(y,z) do(z)uo(y) dw(y)



Application: estimate of wuy (cont'd)

Hence /m eCP N3 ¢y (2)
>c [ (14 [ Po2uty) dety)) dota)
— loq] + ¢ / / _Ply.2) do(2)un(y) d(y)

— 09 + ¢ / wo(y) dw(y).
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Upper bound

B. (Upper bound) If there exists 5 € (0, 1) such that

2d _Aa/4 2d
) /Quqxéﬁ/QK )/ u? dx,

then there exists C = C(Q, «, 3) such that

G(x,y) < G(x, y)eCet/6toy),

Remark: Inequality (2) implies || T|| < 1: Equivalently:

/|G(O‘/2)f|2dw gﬁ/ |f? dx,
Q Q

or || G| 2(q ux —>L2(de < +/f, and
T = G/2(Gr)yr
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If @ =R" and g(x) = A/|x|* with

2T ((n+0)/4)
A (CEOTO)

N c2(A)
a(A) <m|x{|__Iyl|_'}> =G(xy)

then

and
Xyl

G(A)
G(x,y) < Gi(A) <max{‘yl’ |x|}> .

|X _ y‘nfa




Example
If @ =R" and g(x) = A/|x|* with

[((n+a)/4))
[((n—a)/4))

N c2(A)
a(A) <m|x{|__Iyl|_'}> =G(xy)

0< A< 2% then

and

x| 1y G(A)
G(x,y) < Gi(A) (mex {57, 4}) .

|X _ y‘nfoz
Remark: There is a sharp result due to Maz'ya, Grigorian,

and others with ¢, = G, = "7*2 _ @ _A



