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F. & M. Riesz Theorem
Every non-zero analytic measure ν on T is mutually absolutely
continuous with respect to Lebesgue measure λ.

Corollary (Szegö’s Theorem)
Let σ be a Borel probability measure on T that annihilates some
set of positive Lebesgue measure. Then the powers zn, n ∈ N,
span L2(σ).
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Proof of the F. & M. Riesz Theorem

Let µ := |ν| and f the Radon-Nikodym derivative dν
dµ . That is,

dν = fdµ and |f | = 1 µ− a.e.

Then the analyticity hypothesis on ν can be written∫
T
znf (z)dµ(z) = 0 ∀n ∈ N. (1)

Let 〈, 〉 and ‖ · ‖ denote inner product and norm in L2(µ) and U
the unitary operator of multiplication by z . By “span” will be
meant “closed linear span in L2(µ).”
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According to (1) the constant function 1 is orthogonal to every
Unf (n ∈ N), so the set

M := (closed) span {Unf : n ∈ N} in L2(µ) (2)

is a proper subspace of L2(µ), evidently U-invariant. In fact,

UM  M. (3)
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Now the linear span of {zn : n ∈ Z} is dense in C (T) (why?),
hence also in L2(µ). So, given g ∈ L2(µ), since |f | = 1 µ-a.e.
f̄ g ∈ L2(µ) and accordingly some Pn in this linear span satisfy
‖Pn − f̄ g‖ → 0. That is, ‖Pnf − g‖ → 0, showing that

span {znf : n ∈ Z} = L2(µ). (4)
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If we suppose, contrary to (3), that UM = M, then

U∗M = U∗UM = M,

so M contains, along with z f ,

(U∗)mz f = (z̄)mz f = z−m+1f ∀m ∈ N,

and consequently
znf ∈ M ∀n ∈ Z,

which with (4) contradicts the proper inclusion M  L2(µ). This
contradiction confirms (3).

6 / 19



Form the orthocomplement

M � UM 6= {0}

and note that the closed subspaces Un(M � UM) are orthogonal,
which is pretty clear when they are written as

UnM � Un+1M.

As a special case

{Unh}n∈Z is an orthonormal sequence in L2(µ) (5)

for every unit vector h ∈ M � UM.
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Note that⋂
k≥0

UkM is orthogonal to Un(M � UM) ∀n ∈ Z.

For if m1 ∈ M � UM and m0 lies in this intersection, then
m0 = U |n|+1m2 for some m2 ∈ M, and so

〈m0,U
nm1〉 = 〈U |n|+1m2,U

nm1〉 = 〈U |n|−n+1m2,m1〉 = 0,

since U |n|−n+1m2 ∈ UM. The same argument shows that⋂
k≥0

UkM is orthogonal to Un1 ∀n ∈ Z. (6)
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The Wold decomposition says that M is the orthogonal sum

M =
⋂
k≥0

UkM ⊕
⊕
n≥0

Un(M � UM). (7)

Again, this is pretty transparent when the right side is written out
as⋂

k≥0
UkM ⊕ (M � UM)⊕ (UM � U2M)⊕ (U2M � U3M)⊕ · · ·

As previously noted, vectors Un1 = zn (n ∈ Z) span a dense
subspace of L2(µ). From (6), then ∩k≥0UkM must be {0} and (7)
reads

M =
⊕
n≥0

Un(M � UM). (8)
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Next we aim to show the non-zero space

M � UM is 1-dimensional. (9)

If not, ∃ orthogonal unit vectors g , h ∈ M � UM. By familiar
maneuvers,

Umh ⊥ Ukg ∀m, k ∈ N0,

so
0 = 〈Umh,Ukg〉 = 〈Um−kh, g〉 ∀m, k ∈ N0,

whence

0 = 〈Unh, g〉 =

∫
T
znhḡ dµ ∀n ∈ Z.

Again, due to denseness of the powers zn, this entails hḡ = 0
µ-a.e. That is,

|h||g | = 0 µ-a.e. (10)
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As noted in (5)∫
T
zn|h|2 dµ(z) = 〈Unh, h〉 =

{
1 if n = 0
0 if n ∈ Z \ {0},

that is, the measure |h|2dµ has exactly the same Fourier
coefficients as λ, so

|h|2dµ = dλ.

And the same is true for g . Thus,

|h|2dµ = dλ = |g |2dµ, (11)

whence, by (10),

|h|3dµ = |h||g |2dµ = 0,

contrary to ‖h‖2 =
∫
|h|2dµ = 1. Thus g = 0, and (9) is

confirmed.
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That is, for any h ∈ M � UM of norm 1

M � UM = Ch,

so (8) says
span {Unh : n ∈ N0} = M.

In particular, since Uf = z f ∈ M, we see that z f lies in the span
of znh. It follows that

span {znf : n ∈ Z} ⊂ span {znh : n ∈ Z}.

Combined with (4) this says
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span {znf : n ∈ Z} = span {znh : n ∈ Z} = L2(µ). (12)

A little thought shows the equality of these two spans entails

f dµ� h dµ� f dµ,

and thanks to (11)
dλ� |h| dµ� dλ.

Thus fdµ = dν is mutually absolutely continuous with respect to
dλ.
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Proof of Szegö

Denote by M the (closed) span in L2(σ) of the zn, n ∈ N, and
assume M 6= L2(σ). There is then a non-zero function g ∈ L2(σ)
orthogonal to M:

0 = 〈zn, g〉L2(σ) =

∫
T
znḡ dσ ∀n ∈ N.

This says that ḡdσ is a (non-zero) analytic measure. Hence
dλ� ḡdσ. So for every Borel B,

σ(B) = 0⇒
∫
B
ḡ dσ = 0⇒ λ(B) = 0.

Contrary to the hypothesis on σ, which has σ annihilating a B
with λ(B) > 0.
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Holland [1974]
σ is a Borel probability measure on T which is singular with
respect to λ.

F (z) :=

∫
T

u + z

u − z
dσ(u),

a holomorphic self-map of D.

Ak := kth Taylor coefficient of
F (z)− 1

F (z) + 1
.

Then
∞∑
k=1

|Ak |2 = 1 (i)

and the polynomials Pn(z) :=
n∑

k=1

Akz
k , n ∈ N, satisfy

∫
T
|1− Pn|2 dσ = 1−

n∑
k=1

|Ak |2 ∀n ∈ N. (ii)
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(i) and (ii) show (very constructively!) that

1 ∈ span {zn : n ∈ N}, i .e.,

span {zn : n ∈ N0} = span {zn : n ∈ N}.

By induction it follows

span {zn : n ∈ Z} = span {zn : n ∈ N}, i .e.,

L2(σ) = span {zn : n ∈ N}

(Note the stronger hypothesis than in Szegö.)
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Øksendal [1971]

A C-valued Borel measure ν on T satisfying (A) is given and what
has to be shown is that ν(K ) = 0 for every λ-null Borel K .
Because Borel measures are inner regular, it suffices to consider
only compact K .
Clearly it further suffices to do this for the modified measure

ν0 := ν − ν(T)λ.
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The measure ν0 is also analytic but in addition annihilates 1. That
is,

ν̂0(−n) =

∫
T
zn dν0(z) = 0 ∀n ∈ N0. (A*)

For each n ∈ N, an N ∈ N, zj ∈ K and ρj > 0 are chosen
appropriately and the rational functions

gn(z) := 1−
N∏
j=1

z − zj
z − (1 + ρj)zj

are introduced.
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They are bounded by 2 on T and converge there to the indicator
function of K . Since gn is holomorphic in a neighborhood of D,
the partial sums of its Taylor series at 0 approximate it uniformly
on T, and each sum has ν0-integral 0, thanks to (A*).
Consequently, ∫

T
gn dν0 = 0 ∀n ∈ N.

It follows from the Lebesgue Dominated Convergence Theorem
that

ν0(K ) = lim
n→∞

∫
T
gn dν0 = 0,

as wanted.

19 / 19


