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Overview

• Hyperspectral Imaging and statement ofHyperspectral Imaging and statement of 
the problem

• The approach developed at the NRL• The approach developed at the NRL
– Initially for use in anomaly detection work

• The complicated coastal ocean
• Retrieval of environmental parameters p

using a large Lookup Table (LUT)



Hyperspectral Imaging for Environmental Characterization

• A hyperspectral imager records the spectrum of the 
reflected light from each pixel in the scene

• The spectral information can be exploited to retrieve• The spectral information can be exploited to retrieve 
detailed information about the scene

• Coastal hyperspectral data products:
– over water

• Bathymetry
• Bottom Type
• Chlorophyll Concentration
• Colored Dissolved Organic Matter (CDOM)
• Total Suspended Sediment (TSS)p ( )
• Total Optical Attenuation Coefficient Ka()
• Optical Absorption Coefficient A()
• Optical Backscatter Coefficient Bb()
• Horizontal Visibility

– over land S t f h i lover land
• Vegetation Type Maps
• Soil Type Maps
• Beach Trafficability …

Spectrum for each pixel

The method of analysis and the imager performance requirements depend on 
the scene and the desired information



What is the Problem
• Hyperspectral imager produce data at fast rates

– Our CASI -1500 is about 30 GB/hrOur CASI 1500 is about 30 GB/hr
– Other systems have rates that are much higher

• There are often times when the data cubes areThere are often times when the data cubes are 
too large for the desired algorithm to process on 
a reasonable time scale

• There are applications that can require the 
searching large spectral libraries for the best g g p
match to a single spectrum



“Prescreener” Algorithm
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• Replace the full hyperspectral image with a representative 
subset
– One possible approach is to find a subset S={s1 s2 s3 }One possible approach is to find a subset, S {s1, s2, s3…}, 

called exemplars such that for all image pixels, Ii, 

   SjIi1cos
for at least one s, where  is an error criterion – typically 1 to 2 

degrees

   SjIicos



Algorithm
• Each exemplar has a  “hypersphere” 

that it represents
• Most image pixels have many

Projection onto arbitrary plane

Most image pixels have many 
exemplars that satisfy the above 
inequality (best match?)

• Often, we will keep track of which 
i i l t h d hi h

Existing
exemplars

image pixels matched which 
exemplars (codebook)

• Here we are explicitly working with 
spectral shape and magnitude p p g
does not come into play

• There is interesting behavior in 
how the exemplars and image 
spectra interact with changingspectra interact with changing 
angleImage pixels in yellow



Building Up Exemplars

• We build the exemplars up one by one from theWe build the exemplars up one by one from the 
spectra in the image
{1, 2, 3, 4, 5, …}{1, 2, 3, 4, 5, …}

• Each image pixel is compared with the current 
exemplar list to determine if it is alreadyexemplar list to determine if it is already 
represented

• When the list is small, an exhaustive check isWhen the list is small, an exhaustive check is 
possible, is there an s such that  
– However, the list is not sufficiently small for very long 




SsIi
SsIi

, y y g



Can We Limit the Possible Matches?

• An exhaustive search is not practical
• We can limit what needs to be checked by using• We can limit what needs to be checked by using 

the concept of a reference vector, R1.  

• An image spectra, I1, 
can only be within of 
S ifS1 if 

* 111111   RSRIRSR1

))cos(1(2  

S1

I1



Algorithm
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Fine Tuning

• Can use more than one reference 
vector
– The method is a trade off between 

dot products and logical decisions
– Or physically the more that isOr physically, the more that is  

known about the spectra the better
• Have found that if reference 

vectors are the mean centered 
PCA directions the method can be



R1

I1PCA directions the method can be 
very fast
– Physically, one can consider this a 

method to only compare similar 
t t t ’t

S1

I1

spectra – a water spectrum won’t 
be compared to a vegetation 
spectrum

R2



Extend to multiple dimensions



Other aspects
• There is a big difference between doing this is radiance space or 

doing in digital numbers, or counts
I t DN h i ht dl f l th– In counts, DN have same weight regardless of wavelength

• For some applications, it is important to keep track of with which 
exemplar the image spectra matched – something we called the 

d b kcodebook
• There is interesting behavior in the results as the error angle is 

varied
– As the error angle gets smaller, the number of different exemplars that 

can represent an image spectrum gets larger  
– The number of exemplars needed to describe a fixed number of image 

spectra increases strongly as error angle decreases
• One good aspect of this is that we can add spectra to the library and 

maintain efficiency without changing reference vectors.
– Can support calculate as you go



Applications
• Initially this was used to limit spectra 

needed in calculations required toneeded in calculations required to 
determine endmembers
H th li ti• However, there are many applications
– Speed up physical modeling approaches

• Process only a limited set of spectra that were 
chosen in a representative manner

S hi l lib i– Searching large libraries



Exemplars to Speed Up Processing
• In this scene only water spectra were considered
• Yellow dots indicate the location of exemplars in the 

image 
• Process exemplars only and then fill in results
• Could you get sufficiently accurate results processingCould you get sufficiently accurate results processing 

only the yellow dots (3%) in the picture below?



Bio-optical Coastal Oceanography

• Monitoring the coastal ocean areas 
of the world is needed for many 
applications

• It is often desired to determineIt is often desired to determine 
bathymetry, bottom type information 
and water constituents

• Water constituents include 
phytoplankton Colored Dissolvedphytoplankton, Colored Dissolved 
Organic Matter (CDOM) and 
suspended solids

• The coastal ocean is a very 
complicated placecomplicated place

• However, forward radiative transfer 
modeling of the propagation light 
through the water column works 
wellwell



NRL Tafkaa Atmospheric Removal Algorithm
• Atmosphere and water surface reflection algorithm designed for maritime useAtmosphere and water surface reflection algorithm designed for maritime use

– Uses atmospheric information in the hyperspectral data itself
• Pixel-by-pixel -- does not assume horizontal homogeneity

– Uses look-up table approach to find atmospheric parameters used to 
calculate correction.   
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Ecolight Radiative Transfer Model
• Ecolight is part of a code developed by 

Curt Mobley of Sequoia ScientificCurt Mobley of Sequoia Scientific
– Give the code all needed parameters and it 

will provide Remote Sensing Reflectancep g
• To create large library use that code to 

calculate RRS for millions or combinationscalculate RRS for millions or combinations 
of parameters
– Depth, bottom reflectance, phytoplankton,Depth, bottom reflectance, phytoplankton, 

CDOM, suspended sediments, and other 
details 



HICO Instrument
• HICO was built at the NRL using commercial off the shelf (COTS) 

parts
It i VNIR (350 1050 d) t t ith 90• It is a VNIR (350-1050 nm measured) spectrometer with ~90 m 
GSD, and very good SNR in the blue

Brandywine Optics Model 3035 
spectrometer (two shown)

QImaging Rolera-MGi camera in hermetic 
enclosure (NRL TacSat heritage)

Newport Research model RV120PEV6 
rotation stage to point line of sight



Launch To The ISS
Launched from Tanegashima Space Center,

Japan, September 10, 2009, on Japanese HTV
HREP on Japanese

Remote Manipulator arm

HREP docked to JapaneseHTV payload module carrying HREP HREP docked to Japanese 
Exposed Facility September 24

HTV payload module carrying HREP
docked to Space Station September 17

HICO viewing slot

Photographs courtesy NASA



LUT Parameters
Parameter Values Units

Water Depth 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5,6,7,8,
9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 meter

Chlorophyll A 0 to 1 by 0.05; 1 to 20 by 1 mg/l

CDOM E ti ti 0 t 1 b 0 1 1 4 1 8 1/ tCDOM Extinction 0 to 1 by 0.1; 1.4, 1.8 1/meter

CleanSeagrass (EL), RedAlgae (EL), GreenAlgae (EL), CoralSand 
(EL), BrownAlgae (EL), 18%Gray, Cladophora (FL), Dictyota (FL), 

DisturbedSand (FL) FilmySand (FL) GreenAlgae (FL)

Bottom Type

DisturbedSand (FL), FilmySand (FL), GreenAlgae (FL), 
ImpactedTurf (FL), RedAlgae (FL), Sand (FL), TurfAlgae (FL), 
Gray18% (50)_RedAlgae (50), Gray18%(50)_TurfAlgae(50), 
Thalassia, BrownMud (MB), Cymodocea (MB), Ovalis (MB), 
Spinulosa (MB), Ulva (MB), WhiteSand (MB), Zostera (MB), Spectra

TurfAlgae (LSI), CoralMontastria (LSI), CoralDichocoenia (LSI), 
BiosandandGrass (LSI), OoidSand (LSI), DarkSediment (LSI), 
Macrophyte (LSI), Seagrass (LSI), DarkSediment_SeaGrass 

Mixtures, DarkSediment_TurfAlgae Mixtures, OoidSand_SeaGrass 
Mixtures OoidSand TurfAlgae Mixtures Sand (WA) Cobble (WA)Mixtures, OoidSand_TurfAlgae Mixtures, Sand (WA), Cobble (WA), 

Ulva (WA)



Mechanics of LUT Search

Chl1, CDOM1, BT1, Depth1…  Spectrum
Chl2, CDOM1, BT1, Depth1…  Spectrum
Chl3 CDOM1 BT1 Depth1 Spectrum Determine BestChl3, CDOM1, BT1, Depth1…  Spectrum
Chl4, CDOM1, BT1, Depth1…  Spectrum
Chl5, CDOM1, BT1, Depth1…  Spectrum
Chl1, CDOM2, BT1, Depth1…  Spectrum

Matched Spectra
Build up map of
parameters

Chl2, CDOM2, BT1, Depth1…  Spectrum
Chl3, CDOM2, BT1, Depth1…  Spectrum
Chl4, CDOM2, BT1, Depth1…  Spectrum
Chl5 CDOM2 BT1 Depth1 SpectrumChl5, CDOM2, BT1, Depth1…  Spectrum
Chl1, CDOM3, BT1, Depth1…  Spectrum
Chl2, CDOM3, BT1, Depth1…  Spectrum

.

.

.



HICO Key Largo, FL

NN



Key Largo, FL Rrs Comparison

In addition to shape (represent by angle) we optimize Euclidean distance



Key Largo, FL

CWST Bottom Type Class Map 
retrieved using the following flat file 
parameters:

No. of Spectra = 1,924,146
Depth = 0-30m + Optically Deep
TSS = 0
CDOM = 0-1 m-1
Pigment = ChlA 0-5 mg/m^3
Bottom Types = Coral Sand, Clean Seagrass, 
Brown Algae, Green Algae, Red Algae, and 
18% Gray, Macrophyte, Coral Dichocoenia, 
Dark Sediment Turf Algae Ooid SandDark Sediment, Turf Algae, Ooid Sand, 
Biosand & Grass, Seagrass, Coral Montastria

NN



Key Largo, FL

CWST Depth Map retrieved using the 
following flat file parameters:

No. of Spectra = 1,924,146
Depth = 0-30m + Optically Deep
TSS = 0
CDOM = 0-1 m-1
Pi t ChlA 0 5 / ^3Pigment = ChlA 0-5 mg/m^3
Bottom Types = Coral Sand, Clean Seagrass, 
Brown Algae, Green Algae, Red Algae, and 
18% Gray, Macrophyte, Coral Dichocoenia, 
Dark Sediment, Turf Algae, Ooid Sand, 

N

g
Biosand & Grass, Seagrass, Coral Montastria

Note: White is no match
N



Summary
• Finding the nearest neighbor in spectral space 

has a number of important applicationsp pp
– Many physical model based algorithms can be much 

faster if exemplars can be substituted for image 
spectraspectra

– Library searching such as shown here
• We believe that there are a number ofWe believe that there are a number of 

approaches related to ours that can speed up 
the process significantly

• Using this search method to search large 
libraries for environmental work is manageable



Quick Math Question
• I don’t know if this is already understood

Th h b d d h ki• The approach above depends on checking 
ranges 
– To see if I*R is within the necessary range to 

match with an exemplar
– That comparison is time consuming
– By “packing” the answers into a long integer 

the ranges can be check all at once



Packing for Faster Range Checking
• This search approach can benefit from fast range checking/ordering 

of exemplars
• The range is S1Ri +/- sqrt(2*(1-cos())) – want to know if an 

exemplar is in this range for each reference vector
• Take the four values and multiply by 2^7

0 _ _ _ _ _ _ _  0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _  High _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 _ _ _ _ _ _ _  0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _

0 0 0 0

Ej*R

Low

Th if (((Hi h I ) (I L )) & M k) i t f

0 _ _ _ _ _ _ _  0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ 0 _ _ _ _ _ _ _ _

1 _ _ _ _ _ _ _  1 _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _Mask

• Then if (((High – Image) or (Image-Low)) & Mask) is not zero one of 
the range tests failed
– This is faster that doing 8 compares

• Some DSP have special single clock commands that facilitate thisSome DSP have special single clock commands that facilitate this 
type of calculation


