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We consider time-frequency translations on L%(R):
T f(t)=f(t+x),  Myf(t) =" f(t)
We have T M, = eQﬂixyMmi, so the collection of operators
{¢r32mz]\4yT;C TS R}

forms a group, essentially the (real) Heisenberg group. More
precisely, the real Heisenberg group Hg is R? equipped with the
group law

(z,y,2) (@Y 2 ) = (x+2", y+y, 2+ 2 +ay).



Given 7,w > 0, consider the subgroup generated by the T}, and
My, with j, k € Z, namely,

{€2Tri‘rwlewTjT . j, k,l c Z}

There is a large literature on the use of families { My, Tjr¢} as
building blocks to synthesize more general functions.
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Given 7,w > 0, consider the subgroup generated by the T}, and
My, with j, k € Z, namely,

{627ri‘rwlewTjT . j, k,l c Z}

There is a large literature on the use of families { My, Tjr¢} as
building blocks to synthesize more general functions.

By rescaling, we can and shall take 7 = 1. This is a unitary
representation of the discrete Heisenberg group H, whose
underlying set is Z3 and whose group law is

Gk DG E ) = G+ kK LT+ K.
That is, the representation in question is defined by
(G kD f(t) = ™™ M f (4 5) - (f € L*(R)).

How does this representation decompose into irreducible
representations?



Some Background

» A (unitary) representation of a locally compact group G is
a continuous homomorphism p : G — U(H) where H is a
Hilbert space.

> pis irreducible if there are no nontrivial closed subspaces of
JH that are invariant under the operators p(g), g € G.

» p:G—=U(H)and p': G — U(H') are (unitarily)
equivalent if there is a unitary map V : H — H’ such that
Vp(g) = p'(g)V for all g € G.

» The set of equivalence classes of irreducible unitary
representations of G is denoted by G.

If G is compact, every unitary representation of GG is a direct
sum of irreducible representations. The equivalence classes
(elements of CAJ) occurring in it and the multiplicities with which
they occur are uniquely determined.

If G is noncompact, there are “continuous families” of
irreducible representations, and in general one must employ
direct integrals instead.



Direct Integrals

Suppose we have a family {Tra fa € A} of representations of G
parametrized by a measure space (A, i), where 7, acts on H,.
The direct integral of the Hilbert spaces H, is the Hilbert space

S
H :/ Heo dp(a)
— {f t A= JHa s fe) € Ha Vo, /Hf(a)ngfa du() < oo}.
(Some issues of measurability are being swept under the rug,
but note that if the H, are all the same, say H, = K for all «,

then H is just L?(A,X).) The direct integral of the
representations 7, is the representation

D
- / 7o dpi(e) on 3 defined by [(g) f1() = 7a(g)[f(e)]



Example

If G = R, the irreducible representations are all one-dimensional
and are parametrized by £ € R:

e (z) = 2787,
o
The direct integral w = / me d§ acts on L?*(R) by
R
(@) f(&) = T F(E).
Conjugation by the Fourier transform

FF(E) = / ¢~ 2E £(1) dt

turns this into the regular representation of R on L?(R):

Flr@)Fft) = ft+z), ie, Fln(x)F =T,



What Should Happen:

» Gisa geometrically “reasonable” object, equipped with a
natural o-algebra of measurable sets, and we can choose a
representative 7, from each equivalence class a in G in a
“reasonable” way.

» Given a representation p, there is a measure p on G and
disjoint measurable sets E1, Fs, ..., Ex (some of which
may be empty) such that

@ 2 @
P~ / T dp(a) @ 2/ T dpp(a) @ -+ B 0o To dp(c).
Eq E> Eeo

(The coefficients in front of the integrals denote
multiplicities.) p is determined up to equivalence (mutual
absolute continuity), and the F; are determined up to sets
of p-measure zero.
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What Actually Happens:

There is a sharp dichotomy in the class of locally compact
groups:
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>

For “good” (type I) groups, this all works as advertised.
For “bad” groups, it all fails.
» G is horrible.
» Representations can be decomposed into direct integrals of
irreducibles, but usually not with G as the parameter space.
» There is usually no uniqueness in such decompositions!

Some type I groups: Abelian groups; compact groups;
connected Lie groups that are nilpotent, semisimple, or
algebraic; discrete groups with an Abelian normal
subgroup of finite index.

Some non-type I groups: some solvable Lie groups, all
other discrete groups.



Now back to the discrete Heisenberg group H with group law
G EDGED) =G +5 k+E T+ + 5E),
and our representation p,, of H,
po(G kD f(t) = ™™t ) (f € LA(R)).
Note that the center of H (also its commutator subgroup) is
Z ={(0,0,1) : L € Z},
and it acts by scalars:
00 (0,0,1) = 2™,

The representation [ — 27! of Z is called the central
character of p,. Only those irreducible representations having
the same central character will occur in p,,.



Case 1: w is rational, say w = p/q (p,q € Z+, ged(p,q) = 1).
Here the central character is trivial on multiples of (0,0, q), so
pw factors through the group

Hy=ZxZxZ, (Z,=17/qZ),

— same group law, with arithmetic mod ¢ in the last factor.



Case 1: w is rational, say w = p/q (p,q € Z+, ged(p,q) = 1).
Here the central character is trivial on multiples of (0,0, q), so
pw factors through the group

Hy=7Zx7ZxZyq (Zq=17/qZ),
— same group law, with arithmetic mod ¢ in the last factor.

Subcase la: w € Z, i.e., ¢ = 1. Here Hy = Z? with the standard
Abelian group structure. Its irreducible representations are
one-dimensional; they are the characters

Xuw(j, k) = 2miluthkv) u,v € R/Z.

Claim:
(&)

Ifw=peZ, then pwwp/ Xu,o dudv.
(R/Z)?



The intertwining operator that gives this equivalence is the Zak
transform. This is a map from (reasonable) functions on R to
functions on R? defined by
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The intertwining operator that gives this equivalence is the Zak
transform. This is a map from (reasonable) functions on R to
functions on R? defined by

Zf(u,v) = Ze%muf(v +n).

neL

Note that
Zf(u+m,v) =2f(u,v), 2f(u,v +m) = e 2T f (u, v),

so Zf is determined by its values on [0,1) x [0,1). Moreover, by
the Parseval identity,

/Ol/ollzf(“av)’QdUdU:;/ol ]f(v—i—n)\?dv:/R\f(t)]?dt,

so Z is an isometry from L?(R) to L%([0,1)?) which is easily
seen to be surjective, hence unitary.



Moreover, since p,(j, k, 1) f(t) = e2™P*t f(¢ + j), we have
pr(], k? l Z 2minu 27rzpk U+])f(v +] + ’I’L)
_ Z 6271'1 n— ])u627rzpk:vf(,u + n)

e—27riju€27ripl~wZ’Jc(u7 ’U)
= X—u,pv (]7 k)z’f(u7 U)'

Thus Z intertwines p, with

@D
/ X—u,pv dudv ~ p/ Xu,o du dv.
[0,1)2 (R/Z)?



Subcase 1b: ¢ > 1. This is similar but a little more complicated.
H, is the semi-direct product of the Abelian subgroup {(j,0,0)}
with the normal Abelian subgroup {(0, k, 1)} which is “regular”
in a certain sense, so a standard technique (the “Mackey
machine”) produces a complete list of inequivalent irreducible
representations m, g of H, with central character [ e2mi(p/al
parametrized by «, 8 € (R/(1/q)Z). 4, acts on

Ho={f:Z—C: f(m+kq) = eQmakqf(m)} (=)

by
Ta3(d, k, 1) f(m) = 2mle2mk(BTem) ¢ (i 4 ),

A little Fourier analysis plus a rescaling of the Zak transform
shows that

® ®
Pp/q N/ Ta,g dovdf Np/ Ta,8 docdf.
[0,p/q)x[0,1/q) [0,1/¢)?



Case 2: w is irrational.
What are the irreducible representations of H with central
character [ — > in this case? To construct some of them,
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Case 2: w is irrational.
What are the irreducible representations of H with central
character [ — > in this case? To construct some of them,
we need some terminology.
» Define S:R/Z — R/Z by S(t) =1t + w.
» Given a Borel measure y on R/Z, let u;(E) = u(S/(E)).
e is quasi-invariant (under S) if p and p; are equivalent
(mutually absolutely continuous) for all j.

» A Borel measure p is ergodic (under S) if for any
S-invariant set E, either E or its complement has
[-measure zero.

Given a o-finite quasi-invariant ergodic measure p on R/Z,
define a representation ¢, of H on L*(u) by

b, k1) f(t) = ™R [ (dpg /dp) (£) f(t + wg).

Then ¢, is irreducible, and ¢, ~ ¢, if and only if u ~ v.



What are the quasi-invariant, ergodic measures u?
» Counting measure on any orbit of S.
» Lebesgue measure.

> There are many other uncountable families of such u’s, all
mutually singular. It is probably impossible to classify
them all in any concrete way.



What are the quasi-invariant, ergodic measures u?
» Counting measure on any orbit of S.
» Lebesgue measure.

> There are many other uncountable families of such u’s, all
mutually singular. It is probably impossible to classify
them all in any concrete way.

Moreover, for each such u there are many other inequivalent
irreducible representations of H on L?(j) with the same central
character, coming from nontrivial “cocycles.” Again, it seems
hopeless to classify them all.

In short, {[r] € G : 7(0,0,1) = e>™“![} is enormous and cannot
be parametrized in a geometrically nice way.



Let us examine the representations ¢, described above when p
is counting measure on an orbit. Suppose 5 € R/Z. If we
identify the orbit of 8, { + mw : m € Z}, with Z, by

B+ mw — m,
¢, becomes a representation of H on [2 = L*(Z) that we call mg:

75 (j, k, 1) f(m) = 2T @l2mk(BEme) £ 4 ).

D
T = / mgdf
[0,w)

acts on L?([0,w) x Z) by
(5 b, D) f(B,m) = 2T ETHET £(3,m + ).
Define a unitary map V : L?(R) — L?([0,w) x Z) by

VI(B.m) = (f +m> .

Then a simple calculation shows that V intertwines « with p,,.

The direct integral
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But:
» Up to equivalence, g depends only on the S-orbit of £.
» There is no measurable cross-section for the S-orbits!

Thus we cannot separate out the equivalence classes in a
measurable way and turn this into an integral over (a subset of)
H with multiplicities.



In short, we have a direct integral decomposition of our p,:

D
pr/[ ngﬂ.

0,w)

But:
» Up to equivalence, g depends only on the S-orbit of £.
» There is no measurable cross-section for the S-orbits!

Thus we cannot separate out the equivalence classes in a
measurable way and turn this into an integral over (a subset of)
H with multiplicities.

And finally,

» This irreducible decomposition of p,, is far from unique.



Nonuniqueness

Every A = <CCL 2

automorphism of the real Heisenberg group Hpg:

€ SL(2,R) = Sp(1,R) acts as an

P a(2,y,2) = (ax + by, cx + dy, z + 3(acz® + 2bcxy + bdy?)).

If Ae SL(2,7Z), the restriction of ®4 to the discrete group H is
an automorphism of H if ac and bd are even, and an
isomorphism from H to a slightly different discrete subgroup
otherwise. Our irreducible representations

75 (j, k. 1) f (m) = 2T 2THET) f(m )

of H define irreducible representations of these modified groups
too, so mg o @4 is an irreducible representation of H for any
Ae SL(2,Z).



Our representation p,, is the restriction to H of an irreducible
representation of Hp,

pula,y,2) f(t) = T2 XT f(t + ),

and p, o ® 4 is another such representation with the same
central character. By the Stone-von Neumann theorem,
Pw ~ pw 0 P 4. (The intertwining operator comes from the
metaplectic representation of Sp(1,R). )

Hence, for any A € SL(2,7Z),

5

b~ puo®an [ mowads
[0.w)



d/
If (a/,b") # £(a,b), then mg o ® 4 is not equivalent to mz o 4/
for any 3,3’

!/ /
But now let A = (a b) and A’ = (a, b )
c d c



!/ /
But now let A = <Z Z) and A’ = <z, Z,)
If (a/,b") # £(a,b), then mg o ® 4 is not equivalent to mz o 4/
for any 3,3’
Proof: mg o ®4 acts on 2 = L*(Z) by

T30 (I)A(jv ka l)f(m)
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» If aj + bk =0, mg 0 P4(j, k, 1) has discrete spectrum: the
canonical basis for [? is an eigenbasis.
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But nowletA-(c d> andA—<c, d’)'

If (a/,b") # £(a,b), then g o ® 4 is not equivalent to 7z o 4/
for any 3,3’
Proof: mg o ®4 acts on 2 = L*(Z) by

T3 © (pA(jv ka l)f(m)
_ e27riwl67ri(acj2+2bcjk+bdk2)e27rik(,8+wm)f(m +aj + bk‘)

» If aj + bk =0, mg 0 P4(j, k, 1) has discrete spectrum: the
canonical basis for [2 is an eigenbasis.

» If aj + bk # 0, mg o P4(j, k,1) is a weighted shift operator
with weights of modulus 1, so it has no discrete spectrum.

» Since A, A" € SL(2,Z), we have ged(a,b) = ged(a’, V') = 1.
Hence, if (a’,V') # £(a,b), the equations aj + bk = 0 and
a'j + bk = 0 define different sets of (j,k)’s.



On the other hand, if (a/,b") = £(a, b), then

a v 1 0\ /a b . .
<c’ d’) ==+ (7’ 1> (c d) for some r € Z, in which case the
unitary map on [

f(m) — ewiwm2ei27riﬁrmf(im)

intertwines mg o @', and 7150 ®4.



On the other hand, if (a/,b") = £(a, b), then

a v 1 0\ /a b . .
(c’ d’) ==+ <r 1) (c d) for some r € Z, in which case the

unitary map on [
f(m) s eﬁiwm2€i27riﬁrmf(im)
intertwines mg o @', and 7150 ®4.

Finally, given any integers a, b with ged(a,b) = 1, there exist

integers ¢, d such that CCL Z € SL(2,7Z).

Hence we have an infinite family of completely inequivalent
irreducible decompositions of p,,, parametrized by (a,b) € Z>.
This includes families described by Kawakami (1982).



