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Hundred years ago ...

In 1912, Max von Laue
discovered the
diffraction of X-rays by
crystals

In 1913, W.H. Bragg and his son
W.L. Bragg realized one could
determine crystal structure from
X-ray diffraction patterns



Phase Retrieval Problem

Signal of interest: x(t1, t2)
Fourier transform

x̂(ω1, ω2) =

∫
x(t1, t2)e−2πi(t1ω1+t2ω2) dt1dt2

We measure the intensities of the Fraunhofer diffraction
pattern, i.e., the squared modulus of the Fourier transform
of the object. The phase information of the Fourier
transform is lost.
Goal: Recover phase of x̂(ω1, ω2), or equivalently,

recover x(t1, t2), from |x̂(ω1, ω2)|2.



Norbert Wiener and Phase Retrieval (1)

Spectral factorization
Wiener-Khintchine Theorem
(Wiener 1930, Khintchine 1934)
Wiener-Hopf factorization (1931)

Autocorrelation of a function:∫
x(t − s)x(t)dt ⇐⇒ |x̂(ω)|2

(x̂ denotes the Fourier transform of f )



Norbert Wiener and Phase Retrieval (2)

One particular manifestation:
If x is causal (i.e., x(t) = 0, if t < 0), and satisfies some
regularity conditions, then we can recover x from |x̂(ω)|2.

Another manifestation:
A singly-infinite positive-definite Toeplitz matrix T has a
Cholesky factorization

T = C∗C,

where C and C−1 are upper-triangular matrices.



Patterson function - The workhorse in Phase Retrieval

Patterson: “What do you know about a function,
when you know only the amplitudes
of its Fourier coefficients?”

Wiener: “You know the Faltung [convolution]”.
Wiener: “The route you are looking for is a corollary

of the Wiener-Khintchine Theorem”

The Patterson function
is the convolution of
the Electron density
function with itself



Uncovering the double helix structure of the DNA with
X-ray crystallography in 1951.

Nobel Prize for Watson, Crick, and Wilkins in 1962 based on
work by Rosalind Franklin



Difficult inverse problem:
Determine DNA structure based on diffraction image

Problem would be easy if we could somehow recover the phase
information (“phase retrieval”), because then we could just do
an inverse Fourier transform to get DNA structure.



“Shake-and-Bake”

In 1953, Hauptman and Karle developed the Direct method for
phase retrieval, based on probabilistic methods and structure
invariants and other constraints, expressed as inequalities.

Nobel Prize in 1985.
Method works well for small and sometimes for medium-size
molecules (less than a few hundred atoms)



Is phase information really important?
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Phase retrieval – why do we care today?

Enormous research activity in recent years due to new imaging
capabilities driven by numerous applications.



X-ray crystallography

Method for determining atomic structure within a crystal
Knowledge of phase crucial to build electron density map
Initial success of phase retrieval for certain cases by using
a combination of mathematics, very specific prior
knowledge, and ad hoc “bake-and-shake”-algorithm
(1985-Nobel Prize for Hauptman and Karle).
Very important e.g. in macromolecular crystallography for
drug design.



Diffraction microscopy

X-ray crystallography has been extended to allow imaging
of non-crystalline objects by measuring X-ray diffraction
patterns followed by phase retrieval.
Localization of defects and strain field inside nanocrystals
Quantitative 3D imaging of disordered materials such as
nanoparticles and biomaterials
Potential for imaging single large protein complexes using
extremely intense and ultrashort X-ray pulses



Astronomy

Hubble Space Telescope
Wavefront sensing to design
and install corrective optics

(implemented in 1993);
to monitor telescope shrinkage

James Webb Space Telescope
Uses deployable segmented

optics. Launch in 2018?
Phase retrieval used to align

segments of the mirror



An opportunity for mathematics

We spend millions of dollars (and with good reason) on building
highly sophisticated instruments and machines that can carry
out extremely accurate diffraction experiments

Yet, we are still stuck with 40-year old fairly simple
mathematical algorithms (such as alternating projections by
Saxton-Gerchberg) with all their limitations and pitfalls, when
attempting to reconstruct images from these high-precision
measurements.
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Status Quo

Drawbacks of existing phase retrieval methods:

ad hoc, without any guarantees of recovery of true signal
need a lot of additional constraints
unstable in presence of noise
require user interaction
do not scale



At the core of phase retrieval lies the problem:

We want to recover a function x(t) from intensity
measurements of its Fourier transform, |x̂(ω)|2.

Without further information about x , the phase retrieval
problem is ill-posed. We can either impose additional
properties of x or take more measurements (or both)

We want an efficient phase retrieval algorithm based on a
rigorous mathematical framework, for which:

(i) we can guarantee exact recovery,
(ii) which is stable in the presence of noise.

Want flexible framework that does not require any prior
information about the function (signal, image,...), yet can
incorporate additional information if available.
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General phase retrieval problem

Suppose we have x0 ∈ Cn or Cn1×n2 about which we have
quadratic measurements of the form

A(x0) = {|〈ak ,x0〉|2 : k = 1,2, . . . ,m}.

Phase retrieval:

find x
obeying A(x) = A(x0) := b.

Goals:
Find measurement vectors {ak}k∈I such that x0 is
uniquely determined by {|〈ak ,x0〉|}k∈I .
Find an algorithm that reconstructs x0 from {|〈ak ,x0〉|}k∈I .
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When does phase retrieval have a unique solution?

We can only determine x from its intensity measurements
{|〈ak ,x〉|2} up to a global phase factor:
If x(t) satisfies A(x) = b, then so does x(t)e2πiϕt for any ϕ ∈ R.
Thus uniqueness means uniqueness up to global phase.

Conditions for uniqueness for a general signal x ∈ Cn:
4n − 2 generic measurement vectors are sufficient for
uniqueness [Balan-Casazza-Edidin 2007]
As of Feb. 22, 2013: Bodman gives explicit construction
showing 4n − 4 measurements are sufficient
About 4n measurements are also necessary

Uniqueness does not say anything about existence of feasible
algorithm or stability in presence of noise.
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Lifting

Following [Balan, Bodman, Casazza, Edidin, 2007], we will
interpret quadratic measurements of x as linear measurements
of the rank-one matrix X := xx∗:

|〈ak ,x〉|2 = Tr(x∗aka∗kx) = Tr(AkX )

where Ak is the rank-one matrix aka∗k . Define linear operator A:
X → {Tr(AkX )}mk=1.

Now, the phase retrieval problem is equivalent to

find X
subject to A(X ) = b

X � 0
rank(X ) = 1

(RANKMIN)

Having found X , we factorize X as xx∗ to obtain the phase
retrieval solution (up to global phase factor).
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Phase retrieval as convex problem?

We need to solve:

minimize rank(X )
subject to A(X ) = b

X � 0.
(RANKMIN)

Note that A(X ) = b is highly underdetermined, thus cannot just
invert A to get X .
Rank minimization problems are typically NP-hard.

Use trace norm as convex surrogate for the rank functional
[Beck ’98, Mesbahi ’97], giving the semidefinite program:

minimize trace(X )
subject to A(X ) = b

X � 0.
(TRACEMIN)
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A new methodology for phase retrieval

Lift up the problem of recovering a vector from quadratic
constraints into that of recovering a rank-one matrix from affine
constraints, and relax the combinatorial problem into a
convenient convex program.

PhaseLift

But when (if ever) is the trace minimization problem
equivalent to the rank minimization problem?
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When is phase retrieval a convex problem?

Theorem: [Candès-Strohmer-Voroninski ’11]
Let x0 in Rn or Cn and suppose we choose the measurement
vectors {ak}mk=1 independently and uniformly at random on the
unit sphere of Cn or Rn. If m ≥ c n log n, where c is a constant,
then PhaseLift recovers x0 exactly from {〈ak ,x0〉|2}mk=1 with
probability at least 1− 3e−γ

m
n , where γ is an absolute constant.

Note that the “oversampling factor” log n is rather minimal!

First result of its kind: phase retrieval can provably be
accomplished via convex optimization with small amount of
“oversampling”

Recent update: [Candes- Li ’12]
Condition m ≥ cn log n can be replaced by m ≥ c0n.
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Geometric interpretation

Assume for simplicity that the trace of the solution were known
(easy to do in practice), say Tr(X ) = 1. In this case our problem
reduces to solving the feasibility problem

find X
such that A(X ) = b, X � 0

(knowledge of A determines Tr(X ))
This is a problem in algebraic geometry since we are trying to
find a solution to a set of polynomial equations.

Our main theorem states that xx∗ is the unique feasible point.
I.e, there is no other positive semidefinite matrix X in the affine
space A(X ) = b.



Geometric interpretation

The slice of the (red) positive semidefinite cone
{X : X � 0} ∩ {trace(X ) = 1} is quite “pointy” at xx∗. Therefore
it is possible for the (gray) affine space {A(X ) = b} to be
tangent even though it is of dimension about n2 − n.



Sketch of proof

Def: Let T = T (x) be the set of hermitian matrices of the form

T = {X = x0y∗ + yx∗0 : y ∈ Cn}

and denote by T⊥ its orthogonal complement.
We use X T to denote projection of X onto T .
Can further assume that x = e1, since measurement matrix is
rotationally invariant.

Standard duality theory: A sufficient condition for xx∗ to be the
unique solution to (TRACEMIN) is:

1 the restriction of A to T is injective:
X ∈ T and A(X ) = 0⇒ X = 0.

2 and there exists a dual certificate Y in the range of A∗
obeying Y T = xx∗ and Y⊥T ≺ I⊥T .

Showing the existence of such dual certificates is very hard.
Instead we will strengthen the injectivity property, which allows
us to relax the conditions on the dual certificate
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Key Lemma

Key Lemma: Suppose that the mapping A obeys the following
two properties: for all positive semidefinite matrices X ,

m−1‖A(X )‖1 < (1 + 1/9)‖X‖1; (1)

and for all matrices X ∈ T

m−1‖A(X )‖1 > 0.94(1− 1/9)‖X‖. (2)

Suppose further that there exists Y in the range of A∗ obeying

‖Y T − xx∗‖2 ≤ 1/3 and ‖Y⊥T ‖ ≤ 1/2. (3)

Then xx∗ is the unique minimizer to (TRACEMIN).



Further comments about proof

Smart choice of approximate dual certificate essential:

Y :=
1
m
A∗AS−1(xx∗),

where S := E[aka∗k ⊗ aka∗k ].
Note that Y → xx∗ as m→∞.
Tools to prove conditions rely heavily on non-asymptotic
random matrix theory: Concentration of measure for
random matrix acting on matrix space, operator-Bernstein
inequality, various rather technical moment estimates, ...



Stability in presence of noise

Assume we observe

bi = |〈x , z i〉|2 + νi ,

where νi is a noise term with ‖ν‖2 ≤ ε.
Consider the solution to

minimize trace(X )
subject to ‖A(X )− b‖2 ≤ ε

X � 0.

Theorem: [Candès-S.-Voroninski ’11]
Under the same assumptions as in the other theorem, the
solution to the noisy, the solution x̂ computed via PhaseLift
obeys

‖x̂ − x0‖2 ≤ C0 min (‖x0‖2, ε/‖x0‖2)



Current limitations of our theory

Theorems are not yet completely practical, since most phase
retrieval problems involve diffraction, i.e., Fourier transforms,
and not unstructured random measurements.



Multiple structured illuminations

Using different masks (or gratings) generates different
illuminations.



Multiple illuminations using oblique illuminations



Multiple structured illuminations

In all these cases the waveform ak can be written as

ak (t) ∝ w(t)ej2π 〈ωk ,t〉

Say, we use 3 masks, M1,M2,M3, then we measure
|F (diag(M1)x0)|2, |F (diag(M2)x0)|2, |F (diag(M3)x0)|2,
where F is the Fourier transform.

That means we take 3 times as many measurements as with a
single diffraction pattern (a single Fourier transform)



Numerical simulations: 1-dim. noisy data



(a) Original image (b) 3 Gaussian masks

(c) 8 binary masks (d) Error btw. (a) and (c)

Thanks to Stefano Marchesini from Berkeley Livermore Labs for data.



TeraHertz Imaging

Potential Applications:
Chemical mapping of explosives
Detection of illicit drugs
Package inspection
Medical diagnostics

Difficulty: Existing Terahertz imaging systems are too slow for
real-time applications due to pixel-by-pixel raster scans



PhaseLift for TeraHertz Imaging

Solution?
Can take THz measurements in Fourier domain.
But coherent detectors (i.e., those that can measure
phase) are very expensive.
Non-coherent detectors (i.e., those that only measure
intensity) are very cheap.
PhaseLift TeraHertz camera under construction jointly with
Lee Potter (Ohio State).



Conclusion and open problems

PhaseLift: New methodology for phase retrieval

Can use tools from convex programming
Works for any signal in any dimension
Modest amount of “redundant” measurements
Flexible, noise-aware framework
Can easily include additional constraints
Provable results in some regimes
Other researchers (e.g. S. Mallat) have used PhaseLift
successfully, where standard methods failed

Some deep theoretical questions still open
Algorithm still slow for large-scale data


