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B kg o nd & Moti tion Background & Motivation 

General Idea: Ergodicity Defect (ED)General Idea: Ergodicity Defect (ED)
With Jones, Redd, Mezić & Kuznetsov

ED & other metrics & some results
With Rypina  Pratt & BrownWith Rypina, Pratt & Brown

ED & Other fluid flow aspectsED & Other fluid flow aspects
Future & preliminary work



L i D t i th OLagrangian Data in the Ocean

Float/drifter trajectory data

ALACE float 
http://www.seabird.com/products/sp
ec_sheets/41data.htm



Analyze Key Structures - Lagrangian
Coherent Structures (LCS) 

LCS:
“Organized patterns of 
Trajectories”Trajectories

( NOAA website)



Wh LCS?Why  LCS?

fUnderstand transport of 
materials/flow properties

transport barriers?
where/how transport happens?



M ti ti S h tti l tMotivation - Spaghetti plot

Complex fluid flowComplex fluid flow
& wide range of
trajectory behavior

www.oceancurrents.rsmas.miami.edu/.../analysis
/Analysis.htm



Background:
Th IdThe Idea

f fUnderstand flows/systems in terms of 
how trajectories sample/cover the 
spacespace

Ergodicity?god c ty



Background:
D fi iti f E di itDefinition of Ergodicity

Given a measure ( µ ) preserving flow T 
T is ergodic if the only T‐invariant sets A 
are trivial, ‐ i.e. are such that

or

A is T invariant if
0)( A 1)( A

A is T‐ invariant if 

ATA 1



Theory:
Boltzmann  & The Ergodic Hypothesis
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Time avg = space avg? (~1860s)



Theory:
ED & Characterization of Ergodicity& C a ac e a o o god c y

(George Birkhoff (1931))

T is ergodic if 
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i.e, ergodic if for all integrable functions, 

“time-average = space-average”



Ergodicity Defect (General Idea)

Thi k f di it i  t  f Think of ergodicity in terms of 
“time average of observables = space 

average of observables” average of observables  

Ergodicity defect evaluates difference Ergodicity defect evaluates difference 
between time average and space 
average for a collection of 
b bl  ( l i  f ti )observables (analyzing functions)



Characterization of Ergodicity
(due to George Birkhoff (1931))
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Ergodicity Defect (ED) on unit squareErgodicity Defect (ED) on unit square

Analyzing functions are 2 dimensional HaarAnalyzing functions are 2 dimensional Haar
father wavelets
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Deviation from Ergodicity
with respect to Haar scaling functions 

Haar ergodicity defect

The ergodicity defect of T with respect to the Haar g y p
partition  at scale s is given by
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d(s,T) measures the degree of ergodicity
- if T is ergodic, d=0
- the normalization factor  is chosen such that 

d(s,Id) = 1d(s,Id)  1

We call this d(s,T) the Haar ergodicity defect



ED in 2 dimensions for a trajectory–

T k d t j t i it• Take mapped trajectory  in unit square 
• Partition the unit square into squares of length      and

l 2

s

equal area
• Space average =         

2s
2s

• Use number of  trajectory 
points inside jth squarejN

to estimate the average time 
spent  in each square 
(time average)



ED in 2 dimensions  – Numerical Algorithm

F   j  i h i i i l di i  


For a trajectory with initial conditions 
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ED in 3 dimensions  – Numerical Algorithm

• T k t j t d i t it b• Take trajectory  mapped into unit cube

• Partition the unit cube into smaller cubes of 
length     and equal volume      s 3s

• Space average =         

• Use number of trajectory points )(sN

3s

• Use number of  trajectory points      
inside jth cube to estimate the average time 
spent in each cube (time average)

Partition of cube for s=1/2
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ED & LCSs:
C t l ill t tiConceptual illustration

Move into differentMove into different
regions

Stable manifold given by black curve

Complexities for trajectories along stable manifold are similar to 
each other (all similar to hyperbolic point) but

DIFFERENT FROM

Complexities of trajectories on opposite sides of stable manifold p j pp
which also often differ in complexity

Manifolds correspond to level sets of ED values



ED & Lagrangian Coherent Structures (LCSs)

Compute the ergodicity defect of dCompute the ergodicity defect of 
individual fluid particle trajectories 

Take the mean over scales of interest  -

meand

Distinguish each trajectory by the 
 i  hi h i  l  h  manner in which it samples the 

space (i.e., by its complexity)



ED & LCSs:
D ffi O ill t E lDuffing Oscillator Example

Blue curve = stable manifold from a direct evolution method
Have minimizing ridges of    (left) maximizing ridges of     (right)c d



ED & LCSs:
T M f C l itTwo Measures of Complexity 

Correlation dimension
measures area occupied by a trajectory
F  F( )  

c
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Ergodicity defect
measures the manner in which the trajectory 
samples the space
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ED & LCSs:
D ffi O ill t E lDuffing Oscillator Example

Blue curve = stable manifold from a direct evolution method
Have minimizing ridges of    (left) maximizing ridges of     (right)c d



ED & LCSs:
Numerically generated flow field from 
Regional Ocean Model System velocities

(on left)                                         (on right)c d



Oth M th dOther Methods:
(1) Finite Time Lyapunov Exponent (FTLE)(1) Finite Time Lyapunov Exponent (FTLE)

- separation rates between trajecs
(George Haller)( g )

(2) Correlation Dimension, c 
- how trajecs fill/cover the space 
( l)(Procaccia et al)

(3) M functions
arclengths of trajecs- arclengths of trajecs

( A. Mancho)
(4) Ergodic quotient (Mezic et al)(4) Ergodic quotient (Mezic et al)



Identifying LCSs:
Add i Ch llAddressing a Challenge

fOften data is not amenable to 
traditional analysis methods such as 
FTLE FTLE 

if drifter trajectories are sparse and if drifter trajectories are sparse and 
non-uniformly spaced then  
individual trajectory methods have j y
an advantage



ED & LCSs:
Advantages with sparse & non-uniform data

2550 drifters

640 drifters

(left) d (middle) FTLE using Lekien and Ross (2010) method
(right) conventional FTL (darkest color =stable manifold)



Ergodicity Defect & Polynyas
( d d )(3D + time dependence )

persistent open water where we would expect to find sea ice

Note: 3D data primarily from floats/drifters/gliders etc
i e from trajectoriesi.e., from trajectories



Polynyas
( )(3D + time )



Not polynya but upwelling flow
( )(3D + time )

• Coastal upwellingCoastal upwelling



ED & an Upwelling flow (Rivas & Samelson) 
( i l )(3D + time example)

Strong Vertical Velocity in Ocean?

Use Ergodicity Defect to 
Identify Vertical LCS?

Does 3D DefectDoes 3D Defect 
(sampling in x,y, & z )
give more/different

info than just 2D?

Color=bathymetry

info than just 2D?

Numerical model off Oregon coast in 2005



ED & an Upwelling flow (Rivas & Samelson) 
( i l )(3D + time example)



3D ED & Upwelling flow at different depths



ED & an Upwelling flow 
f ll d dfull domain, 3D advection

3D defect grayscale 2D defect grayscale=

BUT

x, y & z sampling x,y sampling



Upwelling flow 
ll d ( l h )on smaller domain (closer to shore)

3D advection, 3D defect 2D advection, 2D defect

Still 3D defect grayscale pic similar 2D defect 
Rerunning with better resolution



Oth t f ED di tiOther aspects of ED as a diagnostic

Ergodicity Defect (ED) distinguishes Ergodicity Defect (ED) distinguishes 
optimal trajectories/initial conditions 

for assimilating data ? 

for float/glider deployment for float/glider deployment 
strategy?

ffor estimating properties?



ED & other fluid flow aspects:
Lagrangian Data Assimilation(LDA) 

f fWant: estimate flow field

Have: positions of a drifter

Assimilate drifter positions into model
to estimate velocitieso a o



Ergodicity Defect & LaDA
(Linearized Shallow Water & Particle 
Filter (E. Spiller)) 

Whi h j ? L  d f  b ? Which trajectory? – Lower defect better? 

H  l ?How long?



SSummary

Ergodicity Defect (ED) captures trajectory/flow Ergodicity Defect (ED) captures trajectory/flow 
complexity for identifying Lagrangian Coherent 
Structures

 Understanding barriers to transport
f Understanding/Determining transport of 

material/flow properties by coherent structures

Advantages of ED Advantages of ED 
 Distribution of trajectory can be non-uniform/sparse
 Works in both 2 and 3 dimensions 
 Scaling analysis component/ other wavelet-like funcs



LDA E l LSWLDA Example - LSW

Linearized Shallow Water(LSW) Model
Have a flow field
u(x; y; t) = 2 sin(2∏x) cos(2∏y)uo + cos(2∏y)u1(t)
v(x; y; t) = 2 cos(2∏x) sin(2∏y)uo + cos(2∏y)v1(t)
h(x; y; t) = sin(2∏x) sin(2∏y)uo + sin(2∏y)h1(t)( ; y; ) ( ) ( y) ( y) ( )

Drifter trajectories given by:
= u[x(t); y(t); t]dtxd /= u[x(t); y(t); t]

= v[x(t); y(t); t]
dtxd /
dtdy /



ED & LCSs:
T M f C l it (CM)Two Measures of Complexity (CM)

(1) Correlation dimension
Compute F(s) = 
U  t  ti t  
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trajectories and take the mean over 
scales of interest meand



Background: ED with respect to Haar mother g p
wavelets


 x )1,0[,1

)()(

sss jj 21))1(2()()(

 



else
xx

,0
)[

)()( 1,0

sss
j jjxx 2,...,1)),1(2()()(   Time

averages

Better for scaling analysis



ED 3 dimensions + time – Numerical 
Algorithm

F  diff t fi d i iti l d th ( )  l lFor different fixed initial depth (z)  levels,
 Generate trajectory from (time) snapshots 
 Take mapped trajectory  in unit cube Take mapped trajectory  in unit cube
 Partition the unit cube into smaller cubes 

with sides of length           
Space average          

s
3s Space average =         

 Use number of  trajectory points      
inside each cube to estimate the average 

s
)(sN j

time spent in each cube (time average)
 Combine info from all depth levels



ED & LCSs:
G l S tGeneral Setup

For 2d fluid flows, trajectories satisfy
),(/ txudtxd






Trajectories exhibit a wide range of 
behavior

)(

from stationary densely covering

i.e.,  trajectories have different  
complexitiesp


