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Lagrangian Data in the Ocean
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Analyze Key Structures - Lagrangian
Coherent Structures (LCS)

LCS:
“Organized patterns of
Trajectories”

( NOAA website)



Wwhy LCS?

Understand transport of
materials/flow properties

transport barriers?
where/how transport happens?



Motivation - Spaghetti plot

in-situ isobaric floats (700 m)
- L \ L L =

50°N

45°N

40°N

Complex fluid flow
& wide range of
trajectory behavior

35°N

WWW.oceancurrents.rsmas.miami.edu/.../analysis
/Analysis.htm



Background:
The ldea

Understand flows/systems in terms of
how trajectories sample/cover the
space

Ergodicity?



Background:
Definition of Ergodicity

Given a measure ( 1) preserving flow T

T is ergodic if the only T-invariant sets A
are trivial, - i.e. are such that

or

H(A) =0 A =1

A is T- invariant if

A=T A



Theory:
Boltzmann & The Ergodic Hypothesis

L), £ (TX), £ (T2),..., £ (T"X)]

\.

f at first n points of trajectory at x

v. of Vienna, courtesy AIP

=0 n . -r i
Time avg = space avg? (~1860s)



Theory:
ED & Characterization of Ergodicity
(George Birkhoff (1931)) |

T is ergodic if

ell i 1 y r = L a.e X
for all fel gLn;(n)rZ:;if(T (x))j e Qd:

time average, f " (x,T) space average, f

i.e, ergodic if for all integrable functions,

“time-average = space-average”



Ergodicity Defect (General Idea)

Think of ergodicity in terms of

“time average of observables = space
average of observables”

Ergodicity defect evaluates difference
between time average and space
average for a collection of
observables (analyzing functions)



Characterization of Ergodicity
(due to George Birkhoff (1931))

T is ergodic if for all 1< 1m HY (o= [ ru
;Ee avera;e ? (X_T )_J space?@; , f

1 xeA

SO f =area(A
0, else J (A)

f :ZA(X):{

average time spent in A = time average




Ergodicity Defect (ED) on unit square

Analyzing functions are 2 dimensional Haar
father wavelets

8 (X, ¥) =g (088 (y) 1.0, =1,...2°

Corresponds
to

Partition of unit square into 2*° squares each of
area 1
2°° (where s is the spatial scale)




Deviation from Ergodicity
with respect to Haar scaling functions
Haar ergodicity defect

he ergodicity defect of T with respect to the Haar
partition at scale s is given by

d(sT)=; (x,T)—% 2 ix

d(s,T) measures the degree of ergodicity
- if T is ergodic, d=0
- the normalization factor is chosen such that
d(s,Id) =1

We call this d(s,T) the Haar ergodicity defect



« Take mapped trajectory In unit square

« Partition the unit square into squares of length s and
equal area s °

» Space average = s °

« Use number of trajectory

" R
points N, inside jth square \ dN
to estimate the average time ; / \
spent in each square /

(time average) /




ED in 2 dimensions — Numerical Algorithm

For a trajectory with initial conditions %t

Time average

2 MN (S .
d(s;)?o,to): Z j:1( J( )—82)2 for jth square

N
Space average
ost complex) trajectory:
d=0

Stationary (least complex) trajectory:
d=1-s°—>1 as s—0



» Take trajectory mapped into unit cube /-
 Partition the unit cube into smaller cubes of AN
length S and equal volume s’ D
-

 Space average = s’

» Use number of trajectory points N;(s) d
inside jth cube to estimate the average time /
spent in each cube (time average)

Partition of cube for s=1/2

For a trajectory with initial conditions X, 1,

d(s; Xy, t) = Z:(N I"\I(S) _

S3)2




ED & LCSs:
Conceptual illustration

Move into different
regions

Stable manifold given by black curve

Complexities for trajectories along stable manifold are similar to
each other (all similar to hyperbolic point) but

DIFFERENT FROM

Complexities of trajectories on opposite sides of stable manifold
which also often differ in complexity

Manifolds correspond to level sets of ED values



ED & Lagrangian Coherent Structures (LCSSs)

Compute the ergodicity defect of d
individual fluid particle trajectories mean

Take the mean over scales of interest -

v

Distinguish each trajectory by the
manner in which it samples the
space (i.e., by its complexity)



ED & LCSs:
Duffing Oscillator Example

1r

Blue curve = stable manifold from a direct evolution method
Have minimizing ridges of C (left) maximizing ridges of d (right)



ED & LCSs:
Two Measures of Complexity

C Correlation dimension

measures area occupied by a trajectory
For F(s) = — X(N,6)’

Use F(s)o« s® to estimate

d Ergodicity defect

measures the manner in which the trajectory
samples the space

Small d <) Large C



ED & LCSs:
Duffing Oscillator Example

Blue curve = stable manifold from a direct evolution method
Have minimizing ridges of C (left) maximizing ridges of d (right)



ED & LCSs:
Numerically generated flow field from
Regional Ocean Model System velocities

o

100 200 300 100 200 300

x [km] x [km]

C (on left) d (on right)



Other Methods:

(1) Finite Time Lyapunov Exponent (FTLE)
- separation rates between trajecs
(George Haller)
(2) Correlation Dimension, c

- how trajecs fill/cover the space
(Procaccia et al)

(3) M functions
- arclengths of trajecs
( A. Mancho)
(4) Ergodic quotient (Mezic et al)



ldentifying LCSs:
Addressing a Challenge

Often data is not amenable to
traditional analysis methods such as
FTLE

if drifter trajectories are sparse and
non-uniformly spaced then
individual trajectory methods have
an advantage



ED & LCSs:
Advantages with sparse & non-uniform data

0.05 0.1 . . . 0.2 0.4 0.6

2550 drifters
640 drifters

|,

0.5 1 1.5

(left) d (middle) FTLE using Lekien and Ross (2010) method
(right) conventional FTL (darkest color =stable manifold)



Ergodicity Defect & Polynyas
(3D + time dependence )

persistent open water where we would expect to find sea ice

Note: 3D data primarily from floats/drifters/gliders etc
i.e., from trajectories



Polynyas
(3D + time )

‘DPER CCEAN POLYNYH CASTAL POLYNYA
[SENSIBLE-HEAT POLYHNYA] (LATENT-HEAT FOLYTYA)




Not polynya but upwelling flow
(3D + time )

e Coastal upwelling




ED & an Upwelling flow (Rivas & Samelson)
(3D + time example)
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Strong Vertical Velocity in Ocean?

Use Ergodicity Defect to
|dentify Vertical LCS?

Does 3D Defect
(samplinginx,y, & z)
give more/different
info than just 2D?

Color=bathymetry

Numerical model off Oregon coast in 2005



ED & an Upwelling flow (Rivas & Samelson)
(3D + time example)
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3D ED & Upwelling flow at different depths

3D advection, 30 defect (averaged over scales 1-5), 100m initial depth

19 1 30 advection, 30 defect (averaged over scales 1-8), 200m initial depth

48

na
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averaged 3D defect (over scales 1 - 5), depth at 500 meters
0.9

0.6




ED & an Upwelling flow
full domain, 3D advection

3030 awy d, 260 m initial depth

1 3020 avg d, 250m inital depth

3D defect grayscale - 2D defect grayscale
X,y & z sampling X,y sampling



Upwelling flow
on smaller domain (closer to shore)

30 defect 200m backwards integration from day 259

2020 defect 200m initial depth B2 days bwds fram day 269

-126 -1255 -125 -124.5 -124

1
-126

-128.5 -125

3D advection, 3D defect 2D advection, 2D defect

Still 3D defect grayscale pic similar 2D defect
Rerunning with better resolution



Other aspects of ED as a diagnostic

Ergodicity Defect (ED) distinguishes
optimal trajectories/initial conditions

for assimilating data ?

for float/glider deployment
strategy?

for estimating properties?



ED & other fluid flow aspects:
Lagrangian Data Assimilation(LDA)

Want: estimate flow field
Have: positions of a drifter

Assimilate drifter positions into model
to estimate velocities



Ergodicity Defect & LaDA
(Linearized Shallow Water & Particle
Filter (E. Spiller))

Which trajectory? - Lower defect better?

a
10

How long?

)
T

— High Ergodic Defect

det(=%)/det(z )

—h
© 1
=
T

/

Mid and Low Ergodic Defect

10 1 1 1
0 2 4 6 8
time



Summary

Ergodicity Defect (ED) captures trajectory/flow
complexity for identifying Lagrangian Coherent
Structures

Understanding barriers to transport

Understanding/Determining transport of
material/flow properties by coherent structures

Advantages of ED
Distribution of trajectory can be non-uniform/sparse
Works in both 2 and 3 dimensions
Scaling analysis component/ other wavelet-like funcs



LDA Example - LSW

Linearized Shallow Water(LSW) Model

Have a flow field

u(x; y; t) = 2 sin(21Tx) cos(2TTy)uo + cos(2TTy)ul(t)
v(x; y; t) = 2 cos(2TTx) sin(2TTy)uo + cos(2TTy)vi(t)
h(x; y; t) = sin(2TTx) sin(2TTy)uo + sin(2TTy)h1(t)

Drifter trajectories given by:
d x /dtu[x(t); y(t); t]
dy /dt = v[x(t); y(t); t]



ED & LCSs:
Two Measures of Complexity (CM)

(1) Correlation dlmen5|on C
Compute F(s) = —Z(N ()
Use F(s)« s® to estlmate C

(2) Ergodicity defect d
adjust d to analyze individual

trajectories and take the mean over
scales of interest d.an



Background: ED with respect to Haar mother
wavelets

1, x € [0,1)
0, else

v (X) = Xp1H)(X) = {

y () =y (2°x-(j-1), j=1..2° | .

averages
4 N
23 1_1 23 1 2+ .
d(s)= d(s-1)+ (=% 2
=26 S T

!

Better for scaling analysis



ED 3 dimensions + time — Numerical
Algorithm

For different fixed initial depth (z) levels,

O
O
O

Generate trajectory from (time) snapshots
Take mapped trajectory in unit cube

Partition the unit cube into smaller cubes
with sides of length S

3
Space average = S

Use number of trajectory points N;(s)
inside each cube to estimate the average
time spent in each cube (time average)

Combine info from all depth levels



ED & LCSs:
General Setup

For 2d fluid flows, trajectories satisfy
—> —>—>
d x/dt = u(x,t)
Trajectories exhibit a wide range of

behavior

from stationary

:> densely covering

i.e., trajectories have different
complexities



