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Motivation

• Integral-geometry models used for image reconstruction are
replaced by physical and statistical models

◮ PET and SPECT already use iterative reconstruction algorithms
with corrections for physical effects

◮ X-ray Computed Tomography (CT) has started the transition to
iterative reconstruction algorithms
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Motivation

• Integral-geometry models used for image reconstruction are
replaced by physical and statistical models

◮ PET and SPECT already use iterative reconstruction algorithms
with corrections for physical effects

◮ X-ray Computed Tomography (CT) has started the transition to
iterative reconstruction algorithms

• In CT there is a need to reduce the dose while maintaining
diagnostic effectiveness
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CT dose reduction estimation problem

• The iterative reconstruction algorithms (IRA) promise improved
image quality (IQ)
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CT dose reduction estimation problem

• The iterative reconstruction algorithms (IRA) promise improved
image quality (IQ)

• Need to determine an IQ metric related with diagnostic
performance

• It should be a scalar, generate IQ vs. dose plots and find the
equivalence points
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Traditional CT image reconstruction

• Integral-geometry model

g(y) =

∫

L(y)

f(l)dl
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Traditional CT image reconstruction

• Integral-geometry model

g(y) =

∫

L(y)

f(l)dl

• X-ray transmission tomography model

gj = g0je
−

∫
Lj

µ(l)dl
⇒

∫

Lj

µ(l)dl = log

(

g0j

gj

)

where

g0j data recorded without the object
gj data recorded with the object
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Discrete representation

• Projection
g = Hf
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Discrete representation

• Projection
g = Hf

• Reconstruction

f = H−1g

• In the presence of noise

f̂ = f + n̂f = H−1(g + n̂g)

• The image quality is linearly determined by H−1 and n̂g

• Noise propagation is independent of the object (system property)

n̂f = H−1n̂g
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X-ray transmission tomography in real world
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• Polychromatic source

• Attenuation dependent on energy. Scatter

• Energy integrating detectors, nonlinear response

• Statistical behavior
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X-ray transmission tomography physical model

gj = I

∫

φj(E)e
−

∫
Lj

µ(l,E)dl
εj(E)ξ(E)dE + Isj

where

gj the detector signal for projection j

I the X-ray source intensity

φj(E) the source spectrum

e
−

∫
Lj

µ(l,E)dl
attenuation along the projection j

εj(E) detector efficiency

ξ(E) detector response signal; e.g. ξ(E) ∝ E

Isj scattered photons contribution
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Iterative reconstruction algorithm

• The voxel’s attenuation represented as µi(E) = fiµ0(E)

• Find the extreme value of a cost function

S(f) =
∑

j

(ĝj − gj)
2

ηjgj
+ βR(f)

βR(f) regularization term, R(f) =
∑

i

∑

k∈Ni

ψ(fi − fk)
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Iterative reconstruction algorithm

• The voxel’s attenuation represented as µi(E) = fiµ0(E)

• Find the extreme value of a cost function

S(f) =
∑

j

(ĝj − gj)
2

ηjgj
+ βR(f)

βR(f) regularization term, R(f) =
∑

i

∑

k∈Ni

ψ(fi − fk)

• Properties
◮ Nonlinear behavior
◮ Noise strongly dependent on the object
◮ External constraints can be introduced
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Image quality (IQ) measures

• Resolution
◮ identify line or grid patterns
◮ point spread function (PSF)
◮ modulation transfer function, MTF = F [PSF]
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Image quality (IQ) measures

• Resolution
◮ identify line or grid patterns
◮ point spread function (PSF)
◮ modulation transfer function, MTF = F [PSF]

• Noise
◮ pixel variance (no spatial correlations)
◮ noise power spectrum (NPS)

• For ranking we need to express the IQ as a single number
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Contrast to noise ratio (CNR)

CNR =
ROI contrast

pixel variance

• Does not account for spatial correlations of the noise

• Depends on the ROI original contrast

• Arbitrary scaling
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Task based evaluation

• A test task relevant for the clinical application
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Task based evaluation

• A test task relevant for the clinical application

• Yet simple enough
◮ Can be analytically studied
◮ Convenient to be applied experimentally

Detection of small, low contrast, signals
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Detection of a signal at known location

• We have
◮ g1 – signal average
◮ g0 – background average
◮ K – noise covariance (same for signal and background)
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]
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Detection of a signal at known location

• We have
◮ g1 – signal average
◮ g0 – background average
◮ K – noise covariance (same for signal and background)

• Likelihood ratio test for a given location ĝ

λ(ĝ) = log

[

Pr(ĝ|1)

Pr(ĝ|0)

]

= (g0 − g1)
tK−1ĝ

If λ(ĝ) > λth then ĝ is declared positive

• Signal to noise ratio (SNR)

d2 =
{E[λ(g1)]−E[λ(g0)]}

2

1
2
{var[λ(g1)]− var[λ(g0)]}
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Interpretation of SNR

• At high dose “noise” → 0 ⇒ SNR → ∞
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Interpretation of SNR

• At high dose “noise” → 0 ⇒ SNR → ∞

• If we compare two modalities, then at high dose
∆SNR = SNR2 − SNR1 can have arbitrary values

• SNR is not suited for direct quantitative comparisons

• We need to turn SNR into quantity that has a more direct
connection with the signal detection performance
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Relative operating characteristic (ROC)
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Relative operating characteristic (ROC)

signal f(z)
backgr. g(z)

Template matching score, z

P
ro
b
.
d
en
s.

543210-1-2

0.6

0.4

0.2

0

1 - Specificity,
∫
∞

zd

g(z)dz

S
en
si
ti
v
it
y,

∫
∞

z
d

f
(z

)d
z

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

• Area under the ROC curve

A = Prob (signal score > background score) ∈ (0.5, 1)

• Relation with SNR: A = 1
2

[

1 + erf
(

d
2

)]
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Detection of signals at unknown locations
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Detection of signals at unknown locations

• One dimensional random field example

f(x) ideal
f̂(x) sample

x [mm]
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‘Image’ scanning

z(x) scan value
f̂(x) sample

scan window

x [mm]
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• Sometimes the signal scan-value is less than the background
maximum

z(x) scan value
f̂(x) sample

4.75.3*6.8 7.68.8

x [mm]
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• Fraction of signals correctly localized Q = 95%
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Scan distributions

scan score, z
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Scan distributions

scan score, z
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0.2
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g0(x) background fixed (known) loc.

g(x) background maximum

s(x) signal fixed (known) loc.

f(x) signal searched

• loc. known: SNR =
〈zs〉−〈zg0〉

√

1

2 (σ2
s
+σ

2
g0
)
= 4.15; ROC A0 = 0.998

• loc. unknown: Q = 0.95, Q×2 = 0.92, Q×4 = 0.88, . . .
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Signal known location vs. unknown location

• Signal known location

− Does not account for the extreme background values
− Requires signals with very low contrast in order to achieve

moderately difficult detectability levels
+ Well modeled theoretically
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Signal known location vs. unknown location

• Signal known location

− Does not account for the extreme background values
− Requires signals with very low contrast in order to achieve

moderately difficult detectability levels
+ Well modeled theoretically

• Signal unknown location

+ More realistic for many clinical applications
+ Allows for more reasonable signal contrast levels
− Difficult to model analytically, approximate solutions
+ Practical approaches for signal searching and data analysis are

available
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Signal searching example
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n x y score status

1 -1.74 4.11 7.48 true

2 -0.96 -4.41 6.67 true

3 3.42 2.94 5.91 true

4 3.90 -2.34 5.61 true

5 -1.83 1.11 4.56

6 -4.50 -0.33 4.37 true

7 0.45 -1.38 4.36

8 -4.56 3.45 3.91

9 -2.52 3.12 3.67

10 -0.99 1.95 3.56

11 -3.54 -1.05 3.56

12 0.12 4.08 3.56

13 1.35 3.03 3.37

14 2.43 4.38 3.27

15 -0.81 3.90 3.12

16 -0.51 -1.11 3.09
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Free-response data analysis

Exponential transformation of the FROC (EFROC)

(Popescu, Med. Phys., 2011)
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• AUC estimation: ÂFE = 1
I

I
∑

i=1

e
− 1

N

J∑

j=1
H(yj−xi)

H(z) =







1 ; z > 0
1

2
; z = 0

0 ; z < 0

• N = total area scanned
reference area
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Filtered Back Projection vs. Iterative Reconstruction

FBP IRA
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FBP IRA
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1 -1.74 4.08 9.25 true
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3 3.39 2.91 7.83 true

4 -1.05 -4.35 6.89 true

5 3.87 -2.46 6.72 true

6 0.39 -1.38 6.35

7 5.07 -3.03 5.98

8 -3.54 -1.05 5.82

9 0.09 -4.47 5.80

10 0.18 4.08 5.76

11 -4.50 -0.36 5.76 true

12 4.17 3.24 5.63

13 1.32 -6.33 5.56

14 -5.07 -1.62 5.51

15 1.74 -3.30 5.48

16 -2.61 0.78 5.29

n x y score status

1 -1.74 4.11 7.48 true

2 -0.96 -4.41 6.67 true

3 3.42 2.94 5.91 true

4 3.90 -2.34 5.61 true

5 -1.83 1.11 4.56

6 -4.50 -0.33 4.37 true

7 0.45 -1.38 4.36

8 -4.56 3.45 3.91

9 -2.52 3.12 3.67

10 -0.99 1.95 3.56

11 -3.54 -1.05 3.56

12 0.12 4.08 3.56

13 1.35 3.03 3.37

14 2.43 4.38 3.27
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FBP and IRA performance as function of dose

fbp
itr-C

I [au]

P
er
fo
rm

an
ce

m
ea
su
re
,
A

F
E

5004003002001000

1

0.8

0.6

0.4

0.2

0

• The results obtained from 20 signal-present and 20 signal-absent
image samples
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• The nonlinear behavior limits the use of traditional image quality
metrics

25



Conclusions

• The nonlinear behavior limits the use of traditional image quality
metrics

• We have to use task-based evaluations

25



Conclusions

• The nonlinear behavior limits the use of traditional image quality
metrics

• We have to use task-based evaluations

• Detection of small signals at unknown locations proves to be a
versatile approach

25



Conclusions

• The nonlinear behavior limits the use of traditional image quality
metrics

• We have to use task-based evaluations

• Detection of small signals at unknown locations proves to be a
versatile approach

• Confirmed that IRA is better than FBP for the studied case

25



Conclusions

• The nonlinear behavior limits the use of traditional image quality
metrics

• We have to use task-based evaluations

• Detection of small signals at unknown locations proves to be a
versatile approach

• Confirmed that IRA is better than FBP for the studied case

• Future work
◮ Refine signal searching algorithms
◮ Signals of different sizes and shapes
◮ Compare with human observers performance
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Thank you
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