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The Restricted Isometry Property (RIP)

Definition: Fix K ≤ M ≤ N and let Φ = [ϕ1 · · · ϕN ] ∈ RM×N .

We say Φ has the (K , δ)-Restricted Isometry Property (RIP) if
for every K -element subset K of {1, . . . ,N}, we have

(1− δ)
∑
n∈K
|y(n)|2 ≤

∥∥∥∥∑
n∈K

y(n)ϕn

∥∥∥∥2

≤ (1 + δ)
∑
n∈K
|y(n)|2,

for all y ∈ RN .

Fact: For any K -element subset K of {1, . . . ,N}, consider the
M × K submatrix ΦK of Φ with columns {ϕn}n∈K.

Then Φ is (K , δ)-RIP if and only if the eigenvalues of ΦT
KΦK lie in

[1− δ, 1 + δ] for all K.

2 / 15



RIP: Il buono, il brutto, il cattivo

The Good: Candès and Tao showed that L1-minimization can be
used to quickly and stably find a unique K -sparse solution y to an
underdetermined linear system Φy = z , provided the matrix Φ is
(2K , δ)-RIP and a sparse solution exists.

Moreover, they showed that with overwhelming probability, certain
random matrices will be (K , δ)-RIP for K = O(M/ log(N)).

The Bad: All known deterministic constructions of RIP matrices
are only guaranteed to be (K , δ)-RIP for K = O(M

1
2

+ε). This is
known as the square root bottleneck.

The Ugly: Directly checking whether or not a given Φ has the
RIP involves estimating the singular values of

(N
K

)
possible

submatrices of Φ; see “Certifying the Restricted Isometry Property
is Hard” by Bandeira, Dobriban, Mixon and Sawin (2013).
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Numerically Erasure-Robust Frames (NERFs)

Definition: Fix M ≤ K ≤ N and let Φ = [ϕ1 · · · ϕN ] ∈ RM×N .

We say {ϕn}Nn=1 is a (K , α, β)-NERF for RM if there exists
0 < α ≤ β <∞ such that for every K -element subset K of
{1, . . . ,N} we have {ϕn}n∈K is a frame for RM with frame
bounds α and β:

α‖x‖2 ≤
∑
n∈K
|〈x , ϕn〉|2 ≤ β‖x‖2, ∀x ∈ RM .

Here we want the eigenvalues of ΦKΦT
K to lie in [α, β] for all K.

Recall: For K ≤ M ≤ N, Φ has the (K , δ)-RIP if the eigenvalues
of ΦT

KΦK lie in [1− δ, 1 + δ] for all K ⊆ {1, . . . ,N}, |K| = K .
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Optimal NERF Bounds

Note: For any fixed K , the optimal NERF bounds αK and βK for
{ϕn}Nn=1 are the extreme eigenvalues of ΦT

KΦK:

αK := min
|K|=K

min
‖x‖=1

∑
n∈K
|〈x , ϕn〉|2, βK := max

|K|=K
max
‖x‖=1

∑
n∈K
|〈x , ϕn〉|2.

Estimating αK and βK thus seems combinatorially difficult.

Idea: Rather than find the “worst x for any K,” let’s instead find
the “worst K for any x ,” namely interchange the optimizations:

αK := min
‖x‖=1

min
|K|=K

∑
n∈K
|〈x , ϕn〉|2, βK := max

‖x‖=1
max
|K|=K

∑
n∈K
|〈x , ϕn〉|2.

For a fixed x , these worst K’s are found by sorting
{
|〈x , ϕn〉|2

}N
n=1

.

Problem: There are an infinite number of x ’s on the unit sphere.
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ε-Nets

Definition: Given ε > 0, a sequence of unit norm vectors {ψp}Pp=1

is an ε-net for SM−1 (with respect to chordal distance) if for all
x ∈ SM−1 there exists ψp such that |〈x , ψp〉|2 ≥ 1− ε2.

Idea: Given a ε-net {ψp}Pp=1 for SM−1, estimate the optimal
NERF bounds for {ϕn}Nn=1 as the ε-approximate NERF bounds:

αK ,ε := min
p=1,...,P

K∑
n=1

|〈ψp, ϕσ(n)〉|2,

βK ,ε := max
p=1,...,P

N∑
n=N−K+1

|〈ψp, ϕσ(n)〉|2,

where σ is a p-dependent permutation of {1, . . . ,N} chosen so
that the values

{
|〈ψp, ϕσ(n)〉|2

}N
n=1

are nondecreasing.
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Estimating NERF Bounds with ε-Nets

Theorem: [FJMP (2012)] Optimal NERF bounds αK and βK are
estimated by ε-approximate bounds αK ,ε and βK ,ε according to

1
1−ε2

(
αK ,ε − ε2

1−ε2βK ,ε
)
≤ αK ≤ αK ,ε, βK ,ε ≤ βK ≤ 1

1−ε2βK ,ε.

Moreover, if {ϕn}Nn=1 is a unit-norm tight frame (UNTF)
(ΦΦT = N

M I and ‖ϕn‖ = 1 for all n) then we also have

1
1−ε2 (αK ,ε − ε2 N

M ) ≤ αK ≤ βK ≤ N
M .

Note: For every fixed ψp, we compute
{
|〈ψp, ϕn〉|2

}N
n=1

, and then
sort these values so as to sum the K smallest and largest ones.
Taking the minimum and maximum of these sums over all p yields
αK ,ε and βK ,ε. This uses O((M + logN)NP) operations overall.

Problem: Good ε-nets are enormous, e.g. P = (1 + 2
ε )M .
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Group Frames
Definition: Let U = {Uq}Qq=1 be a finite group of M ×M
orthogonal matrices. We say that {ϕn}Nn=1 is U-invariant if

∀q ∃ a permutation σ of {1, . . . ,N} s.t. Uqϕn = ±ϕσ(n), ∀n.

Note: We focus exclusively on the 2MM!-element group of signed
permutation matrices that arises the symmetry group of the
hypercube in RM . This group is irreducible meaning the orbit of
any unit norm vector under its action is a UNTF.

Example: When M = 4, there are 244! = (16)(24) = 384 distinct
4× 4 signed permutation matrices. The following 4× 12 UNTF is
invariant under the action of this group:

Φ =
1√
2

 1 1 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 1 1 1 1 0 0
0 0 1 −1 0 0 1 −1 0 0 1 1
0 0 0 0 1 −1 0 0 1 −1 1 −1

 .
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Estimating NERF Bounds with Group-Generated ε-Nets

Idea: If {ϕn}Nn=1 is U-invariant, then ∀q,
{
|〈Uqψr , ϕn〉|2

}N
n=1

has

the same K smallest and largest values as
{
|〈ψr , ϕn〉|2

}N
n=1

.

Theorem: [FJMP (2012)] Let U be a finite group of M ×M
orthogonal matrices and let {ϕn}Nn=1 be U-invariant. Choosing
{ψr}Rr=1 ⊆ SM−1 such that {Uqψr}Qq=1,

R
r=1 is an ε-net for SM−1,

the corresponding ε-approximate NERF bounds are:

αK ,ε = min
r=1,...,R

K∑
n=1

|〈ψr , ϕσ(n)〉|2,

βK ,ε = max
r=1,...,R

N∑
n=N−K+1

|〈ψr , ϕσ(n)〉|2,

where σ is chosen so that
{
|〈ψr , ϕσ(n)〉|2

}N
n=1

is nondecreasing.

9 / 15



An ε-Net for Nonnegative, Nonincreasing Vectors

Note: For any x ∈ SM−1, there exists a signed permutation Uq

such that Uqx is nonnegative and nonincreasing, namely such that

Uqx ∈ SM−1
nn := {x ∈ SM−1 : 0 ≤ x(1) ≤ · · · ≤ x(M)}.

Lemma: [FJMP (2012)] Let {ψr}Rr=1 ⊆ SM−1
nn and let {Uq}Qq=1 be

the group all M ×M signed permutations. Then {Uqψr}Qq=1,
R
r=1 is

an ε-net for SM−1 if and only if {ψr}Rr=1 is an ε-net for SM−1
nn .

Note: When combined with the previous result, this means that in
order to estimate the NERF bounds of a U-invariant frame, we
only need to compute

{
|〈ψr , ϕn〉|2

}N
n=1

at every point ψr of an
ε-net for SM−1

nn instead of at every point of an ε-net for SM−1.

The surface area of SM−1
nn is that of SM−1 divided by 2MM!.
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Vector Quantization by “Rounding Up”

Lemma: [FJMP (2012)] For any positive integer M and ε > 0,

let δ = [M(L− 1)]−
1

2L and take any L ≥ 2 such that

(L− 1)(1− ε2)L ≤ 1
M

(
L−1
L

)L
.

Then for any x ∈ SM−1
nn , the step function ψx = ψ̂x/‖ψ̂x‖,

ψ̂x(m) :=

{
δl , δl+1 < x(m) ≤ δl ,
δL−1, 0 ≤ x(m) ≤ δL−1,

satisfies 〈x , ψx〉 >
√

1− ε2.

Note: The set of all such ψx ’s forms an ε-net for SM−1
nn . Since

each ψx arises from a unique nonincreasing {1, . . . , L}-valued
function over {1, . . . ,M}, “stars and bars” reveals the number of
elements in this ε-net to be at most

(M+L−1
L−1

)
≤ C1M

C2(ε) log M .
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Main Result

Theorem: [FJMP (2012)] Let {ϕn}Nn=1 be a UNTF for RM which
is invariant under signed permutations. For any ε > 0, take δ and
L as in the previous lemma and construct {ψr}Rr=1 by normalizing
all {δl}L−1

l=0 -valued nondecreasing step functions.

Then for any M ≤ K ≤ N, the optimal NERF bounds αK and βK
of {ϕn}Nn=1 satisfy the estimates

1
1−ε2

(
αK ,ε − ε2 min

{
N
M ,

1
1−ε2βK ,ε

})
≤ αK ≤ αK ,ε,

βK ,ε ≤ βK ≤ min
{

N
M ,

1
1−ε2βK ,ε

}
,

where αK ,ε and βK ,ε are found by the following process:

For any r = 1, . . . ,R, let αK ,ε,r and βK ,ε,r be the sums of the K
smallest and largest values of

{
|〈ψr , ϕn〉|2

}N
n=1

, respectively.

Let αK ,ε = min
r
αK ,ε,r and βK ,ε = max

r
βK ,ε,r .
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Numerical Example: M = 4, N = 12
Size of ε-net: ε2 L

(
M+L−1
L−1

)
Rimproved

2−1 6 126 45

2−2 19 7315 1107

2−3 47 230300 15916

2−4 110 6438740 202628

2−5 249 164059875 2366922

ε-approximate lower NERF bounds αK ,ε:

ε2\K 1 2 3 4 5 6 7 8 9 10 11 12

2−1 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.72 1.00 1.58 2.10 3.00

2−2 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.52 2.03 3.00

2−3 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.50 2.01 3.00

2−4 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.50 2.00 3.00

2−5 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.50 2.00 3.00
αK 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.50 2.00 3.00

1
1−ε2

(
αK ,ε − ε2 min

{
N
M ,

1
1−ε2βK ,ε

})
:

ε2\K 1 2 3 4 5 6 7 8 9 10 11 12

2−1 −3.00 −3.00 −3.00 −3.00 −3.00 −3.00 −2.23 −1.54 −0.99 0.16 1.21 3.00

2−2 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.49 −0.04 0.33 1.02 1.71 3.00

2−3 −0.42 −0.42 −0.42 −0.42 −0.42 −0.42 0.00 0.39 0.71 1.29 1.87 3.00

2−4 −0.20 −0.20 −0.20 −0.20 −0.20 −0.20 0.20 0.56 0.86 1.40 1.93 3.00

2−5 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09 0.29 0.64 0.93 1.45 1.96 3.00
αK 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.71 1.00 1.50 2.00 3.00
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More Numerical Examples

Example: Let M = 6 and let {ϕn}Nn=1 be the 80 signed
permutations of ϕ = [1 1 1 0 0 0]T which are distinct modulo
negation. Taking ε = 1

2 , our Matlab code took around 8.84
seconds to show that any 61 of these 80 frame elements span R6.
Obtaining this same fact directly involves forming each of the(80

61

)
≈ 1.16× 1018 such submatrices.

Example: Let M = 8 and let {ϕ}Nn=1 be the 560 distinct signed
permutations of ϕ = [1 1 1 1 0 0 0 0]T. Taking ε = 1

2 , our
Matlab code took around three minutes to show that any 399 of
these 560 frame elements span R9. Note

(560
399

)
≈ 2.94× 10144.

Example: Let M = 10 and let {ϕ}Nn=1 be the 4032 distinct signed
permutations of ϕ = [1 1 1 1 1 0 0 0 0 0]T. Taking ε = 1

2 , our
Matlab code took around 77 minutes to show that any 2883 of
these 4032 frame elements span R10. Note

(4032
2883

)
≈ 3.65× 101044.
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Conclusions and Future Work

Conclusions:

I Using explicit ε-nets reduces the problem of numerically
estimating the optimal NERF bounds of any given finite frame
from being exponential in N to being exponential in M.

I Exploiting symmetry can further reduce this problem to being
subexponential in M provided the frame is group-invariant.

I Even after these speedups, estimating NERF bounds still
involves a large amount of computation.

Future Work:

I Methods for constructing smaller ε-nets for SM−1
nn ?

I Apply these techniques to the deterministic RIP problem?
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