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Definition (Fourier Transform and Inversion Formulae)

Let f be a function in L1. The Fourier transform of f is defined as

f̂ (ω) =

∫
R

f (t)e−2πitωdt

for t ∈ R (time), ω ∈ R̂ (frequency). The inversion formula, for

f̂ ∈ L1(R̂), is

f (t) = (f̂ )
∨
(t) =

∫
bR f̂ (ω)e2πiωtdω.

Parseval’s equality –

‖f ‖L2(R) = ‖f̂ ‖L2(bR) .

Definition

Let T > 0 and let g(t) be a function such that supp g ⊆ [0,T ]. The
T -periodization of g is [g ]◦(t) =

∑∞
n=−∞ g(t − nT ) .
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W-K-S Sampling

PW(Ω) = {f : f , f̂ ∈ L2, supp(f̂ ) ⊂ [−Ω,Ω]}.

Theorem (C-W-W-K-S-R-O-... Sampling Theorem)

Let f ∈ PW(Ω), δnσ(t) = δ(t − nσ) and sincσ(t) =
sin( 2π

σ t)

πt .

a.) If σ ≤ 1/2Ω, then for all t ∈ R,

f (t) = σ

∞∑
n=−∞

f (nσ)
sin( 2π

σ (t − nσ))

π(t − nσ)
= σ

([ ∞∑
n=−∞

δnσ

]
f

)
∗ sinc

σ
.

b.) If σ ≤ 1/2Ω and f (nσ) = 0 for all n ∈ Z, then f ≡ 0.
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W-K-S Sampling

Figure: WKS Sampling
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Errors in W-K-S Sampling

Truncation Error :

fN(t) = σ

N∑
n=−N

f (nσ)
sin( 2π

σ (t − nσ))

π(t − nσ)
.

L2 error
EN = ‖f − fN‖2

2 = σ
∑
|n|>N

|f (nσ)|2.

Pointwise error

EN = sup |f (t)− fN(t)| ≤ (σEN)1/2
.
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Errors in W-K-S Sampling, Cont’d

Aliasing Error - Let Ω = 1, σ � 1/2.

EA = sup

∣∣∣∣f (t)−
∫ 1/2

−1/2

(f̂ )
◦
(ω)e2πitω dω

∣∣∣∣ ≤ 2

∫
|u|≥1/2

|f̂ (u)|du.

Jitter Error : If sample values are not measured at intended points,
we can get jitter error EJ . Let {εn} denote the error in the nth
sample point.

First we note that if f ∈ PW(1), then, by Kadec’s 1/4 Theorem, the
set {n± εn}n∈Z is a stable sampling set if |εn| < 1/4. Moreover, this
bound is sharp.

EJ = sup

∣∣∣∣f (t)− σ

([∑∞
n=−∞ δnσ±εn

]
f

)
∗ sincσ(t)

∣∣∣∣. If we assume

|εn| ≤ J ≤ min{1/(4Ω), e−1/2},

EJ ≤ KJ log(1/J),

where K is a constant expressed in terms of ‖f ‖∞ and ‖f ′‖∞.
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Projection Method

Adaptive frequency band and ultra-wide-band systems require either
rapidly changing or very high sampling rates. These rates stress signal
reconstruction in a variety of ways. Clearly, sub-Nyquist sampling creates
aliasing error, but error would also show up in truncation, jitter and
amplitude, as computation is stressed.

A growing number of applications face this challenge, such as miniature
and hand-held devices for communications, robotics, and micro aerial
vehicles (MAVs). Very wideband sensor bandwidths are desired for
dynamic spectrum access and cognitive radio, radar, and ultra-wideband
systems. Multi-channel and multi-sensor systems compound the issue,
such as MIMO (multiple-input and multiple-output – the use of multiple
antennas at both the transmitter and receiver), array processing and
beamforming, multi-spectral imaging, and vision systems.
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Projection Method, Cont’d

Truncation loses the energy in the lost samples.

Aliasing introduces ambiguous information in the signal.

Increased likelihood of jitter error and unstable sampling sets.

Computation is stressed.

We have developed a sampling theory for adaptive frequency band
and ultra-wide-band systems – The Projection Method. Two of the
key items needed for this approach are :

Quick and accurate computations of Fourier coefficients, which are
computed in parallel.

Effective adaptive windowing systems.

The Projection Method is also efficient relative the Power Game
discussed by Vetterli et. al.
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Projection Method – Back of the Envelop Computation

Let f ∈ PW(Ω). For a block of time T , let

f (t) =
∑
k∈Z

f (t)χ[(k)T ,(k+1)T ](t) .

If we take a given block fk(t) = f (t)χ[(k)T ,(k+1)T ](t), we can T−
periodically continue the function, getting

(fk)
◦(t) = (f (t)χ[(k)T ,(k+1)T ](t))

◦ .

Expanding (fk)
◦(t) in a Fourier series, we get

(fk)
◦(t) =

∑
n∈Z

(̂fk)◦[n]exp(2πint/T ) .
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Projection Method – Back of the Envelop Computation

(fk)
◦(t) =

∑
n∈Z

(̂fk)◦[n]exp(2πint/T )

(̂fk)◦[n] =
1

T

∫ (k+1)T

(k)T

f (t)exp(−2πint/T ) dt .

The original function f is Ω band-limited. However, the truncated
block functions fk are not. Using the original Ω band-limit gives us a

lower bound on the number of non-zero Fourier coefficients (̂fk)◦[n]
as follows. We have

n

T
≤ Ω , i.e. , n ≤ T · Ω .
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Projection Method – Back of the Envelop Computation

Choose N = dT ·Ωe, where d·e denotes the ceiling function. For this
choice of N, we compute

f (t) =
∑
k∈Z

f (t)χ[(k)T ,(k+1)T ](t)

=
∑
k∈Z

[
(fk)

◦(t)

]
χ

[(k)T ,(k+1)T ](t)

≈ fP =
∑
k∈Z

[ n=N∑
n=−N

(̂fk)◦[n]exp(2πint/T )

]
χ

[(k)T ,(k+1)T ](t) .
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Projection Method

This process allows the system to individually evaluate each piece
and base its calculation on the needed bandwidth.

Instead of fixing T , the method allows us to fix any of the three
while allowing the other two to fluctuate. From the design point of
view, the easiest and most practical parameter to fix is N.

For situations in which the bandwidth does not need flexibility, it is
possible to fix Ω and T by the equation N = dT · Ωe. However, if
greater bandwidth Ω is need, choose shorter time blocks T .
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Projection Method, Cont’d

Suppose that the signal f (t) has a band-limit Ω(t) which changes
with time.

Change effects the time blocking τ(t) and the number of basis
elements N(t). Let Ω(t) = max {Ω(t) : t ∈ τ(t)}. At minimum,

(̂fk)◦[n] is non-zero if

n

τ(t)
≤ Ω(t) or equivalently, n ≤ τ(t) · Ω(t) .
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Let N(t) = dτ(t) · Ω(t)e.

Let f , f̂ ∈ L2(R) and f have a variable but bounded band-limit
Ω(t). Let τ(t) be an adaptive block of time. Given τ(t), let
Ω(t) = max {Ω(t) : t ∈ τ(t)}. Then, for N(t) = dτ(t) · Ω(t)e ,
f (t) ≈ fP(t) , where

fP(t) =
∑
k∈Z

[ N(t)∑
n=−N(t)

(̂fk)◦[n]e(2πint/τ)

]
χ

[kτ,(k+1)τ ](t).
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Problem : Let f ∈ PW(Ω) and let T be a fixed block of time. Then,
for N = dT · Ωe,

f̂P(ω) =
∞∑

k=−∞

[ N∑
n=−N

(̂fk)◦[n] exp (2πi(k − 1

2
)T )(ω − n

T
)(

sin(π(ωT
2 + n

2 ))

π(ω + n
T )

)]
.
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Adaptive ON Preserving Windowing Systems

General method for segmenting Time-Frequency (R− R̂) space. The
idea is to cut up time into segments of possibly varying length,
where the length is determined by signal bandwidth.

The techniques developed use the theory of splines, which give
control over smoothness in time and corresponding decay in
frequency.

We make our systems so that we have varying degrees of
smoothness with cutoffs adaptive to signal bandwidth.

We also develop our systems so that the orthogonality of bases in
adjacent and possible overlapping blocks is preserved.
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Definition (ON Window System)

Let 0 < r � T . An ON Window System for adaptive and ultra-wide
band sampling is a set of functions {Wk(t)} such that

(i .) supp(Wk(t)) ⊆ [kT − r , (k + 1)T + r ] for all k ,

(ii .) Wk(t) ≡ 1 for t ∈ [kT + r , (k + 1)T − r ] for all k ,

(iii .) Wk((kT + T/2)− t) = Wk(t − (kT + T/2)), t ∈ [0,T/2 + r ] ,

(iv .)
∑

[Wk(t)]
2 ≡ 1 ,

(v .) {Ŵk
◦[n]} ∈ l1 .
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Generate ON Window System by translation of a window WI

centered at the origin.

Conditions (i .) and (ii .) are partition properties.

Conditions (iii .) and (iv .) are needed to preserve orthogonality.

Conditions (v .) gives the following. Let f ∈ PW(Ω) and let {Wk(t)}
be a ON Window System with generating window WI . Then

1

T + 2r

∫ T/2+r

−T/2−r

[f ·WI ]
◦(t) exp(−2πint/[T + 2r ]) dt

= f̂ ∗ ŴI [n] .
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= f̂ ∗ ŴI [n] .

Stephen Casey Adaptive Signal Processing



Motivation
Projection Method

Adaptive Windowing Systems
Projection Revisited

Signal Adaptive Frame Theory

ON Window Systems
Partition of Unity Systems
Almost ON Systems

Adaptive ON Preserving Windowing Systems, Cont’d

Generate ON Window System by translation of a window WI

centered at the origin.

Conditions (i .) and (ii .) are partition properties.

Conditions (iii .) and (iv .) are needed to preserve orthogonality.

Conditions (v .) gives the following. Let f ∈ PW(Ω) and let {Wk(t)}
be a ON Window System with generating window WI . Then

1

T + 2r

∫ T/2+r

−T/2−r

[f ·WI ]
◦(t) exp(−2πint/[T + 2r ]) dt

= f̂ ∗ ŴI [n] .
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Examples :
{Wk(t)} =

⋃
k∈Z

χ
[(k)T ,(k+1)T ](t)

{Wk(t)} =
⋃

k∈Z Cap[(k)T−r ,(k+1)T+r ](t) ,
where

CapI (t) =
0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,
sin(π/(4r)(t + (T/2 + r))) −T/2− r < t < −T/2 + r ,
cos(π/(4r)(t − (T/2− r))) T/2− r < t < T/2 + r .
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Our general window function WI is k-times differentiable, has
supp(WI ) = [−T/2− r ,T/2 + r ], and has values

WI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r

We solve for ρ(t) by solving the Hermite interpolation problem
(a.) ρ(T/2− r) = 1 ,
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . , k ,
(c .) ρ(n)(T/2 + r) = 0 , n = 0, 2, . . . , k ,

[ρ(t)]2 + [ρ(−t)]2 = 1 for t ∈ [±(T/2− r),±(T/2 + r)] .
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Figure: Window WI
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Solving for ρ so that the window in C 1, we get ρ(t) =
1√
2

[
1− sin( π

2r (t + (T/2 + r)))

]
−T/2− r < t < −T/2 ,√[

1− 1
2

[
sin( π

2r (t + (T/2 + r)))

]2]
−T/2 < t < −T/2 + r .

With each degree of smoothness, we get an additional degree of
decay in frequency.

Stephen Casey Adaptive Signal Processing



Motivation
Projection Method

Adaptive Windowing Systems
Projection Revisited

Signal Adaptive Frame Theory

ON Window Systems
Partition of Unity Systems
Almost ON Systems

Adaptive ON Preserving Windowing Systems, Cont’d

Solving for ρ so that the window in C 1, we get ρ(t) =
1√
2

[
1− sin( π

2r (t + (T/2 + r)))

]
−T/2− r < t < −T/2 ,√[

1− 1
2

[
sin( π

2r (t + (T/2 + r)))

]2]
−T/2 < t < −T/2 + r .

With each degree of smoothness, we get an additional degree of
decay in frequency.

Stephen Casey Adaptive Signal Processing



Motivation
Projection Method

Adaptive Windowing Systems
Projection Revisited

Signal Adaptive Frame Theory

ON Window Systems
Partition of Unity Systems
Almost ON Systems

Wk Preserve Orthogonality

Let {ϕj(t)} be an orthonormal basis for L2[−T/2,T/2]. Define

ϕ̃j(t) =


0 |t| ≥ T/2 + r

ϕj(t) |t| ≤ T/2− r
−ϕj(−T − t) −T/2− r < t < −T/2

ϕj(T − t) T/2 < t < T/2 + r
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Theorem (The Orthogonality of Overlapping Blocks)

{Ψk,j} = {Wk ϕ̃j(t)} is an orthonormal basis for L2(R).
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Partition of Unity Systems

Similar construction techniques give us partition of unity functions.
The theory of B-splines gives us the tools to create these systems.

If we replace condition (iv .) with∑
Bk(t) ≡ 1 ,

we get a bounded adaptive partition of unity.

The systems can be built using B-splines, and have Fourier
transforms of the form [

sin(2πTω)

πω

]n

.
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Partition of Unity Systems, Cont’d

Definition (Bounded Adaptive Partition of Unity)

A Bounded Adaptive Partition of Unity is a set of functions {Bk(t)} such
that

(i .) supp(Bk(t)) ⊆ [kT − r , (k + 1)T + r ] ,

(ii .) Bk(t) ≡ 1 for t ∈ [kT + r , (k + 1)T − r ] ,

(iii .) Bk((kT + T/2)− t) = Bk(t − (kT + T/2)), t ∈ [0,T/2 + r ] ,

(iv .)
∑

Bk(t) ≡ 1 ,

(v .) {B̂k
◦[n]} ∈ l1 .
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Partition of Unity Systems, Cont’d

Conditions (i .), (ii .) and (iv .) make {Bk(t)} a bounded partition of
unity.

The change in condition (iv .) means that these systems do not
preserve orthogonality between blocks.

We will again generate our systems by translations and dilations of a
given window BI , where supp(BI ) = [(−T/2− r), (T/2 + r)].

Our first example was developed by studying the de la
Vallée-Poussin kernel used in Fourier series. Let 0 < r � T and let

TriL(t) = max{[((2T/(4r)) + r)− |t|/(2r)], 0} ,

TriS(t) = max{[((2T/(4r)) + r − 1)− |t|/(2r)], 0} and

Trap(t) = TriL(t)− TriS(t) .

The Trap function has perfect overlay in the time domain and 1/ω2

decay in frequency space.
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Examples :
{Bk(t)} =

⋃
k∈Z

χ
[(k)T ,(k+1)T ](t)

{Bk(t)} =
⋃

k∈Z Trap[(k)T−r ,(k+1)T+r ](t) .

Our general window function WI is k-times differentiable, has
supp(BI ) = [(−T/2− r), (T/2 + r)] and has values

BI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r
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We again solve for ρ(t) by solving the Hermite interpolation problem
(a.) ρ(T/2− r) = 1
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . , k
(c .) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ρ ∈ C k and

[ρ(t)] + [ρ(−t)] = 1 for t ∈ [T/2− r ,T/2 + r ] .

We use B-splines as our cardinal functions. Let 0 < α � β and
consider χ

[−α,α]. We want the n-fold convolution of χ
[α,α] to fit in

the interval [−β, β].
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Partition of Unity Systems, Cont’d

Then we choose α so that 0 < nα < β and let

Ψ(t) = χ
[−α,α] ∗ χ

[−α,α] ∗ · · · ∗ χ
[−α,α](t)︸ ︷︷ ︸

n−times

.

The β-periodic continuation of this function, Ψ◦(t) has the Fourier
series expansion∑

k 6=0

α

nβ

[
sin(πkα/nβ)

2πkα/nβ

]n

exp(πikt/β) .
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Partition of Unity Systems, Cont’d

The C k solution for ρ is given by a theorem of Schoenberg.
Schoenberg solved the Hermite interpolation problem (a.) S (n)(−1) = 0 , n = 0, 1, 2, . . . , k ,

(b.) S(1) = 1 ,
(b.) S (n)(1) = 0 , n = 1, 2, . . . , k .

An interpolant that minimizes the Chebyshev norm is called the
perfect spline. The perfect spline S(t) for Hermite problem above is
given by the integral of the function

M(x) = (−1)n
k∑

j=0

Ψ(t − tj)

φ′(tj)
,

where Ψ is the (k + 1) convolution of characteristic functions, the

knot points are tj = − cos(πj
k ) and φ(t) =

∏k
j=0(t − tj).
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We then have that

ρ(t) = S ◦ `(t) , where `(t) =
1

r
t − 2T

2r
.

For this ρ, and for

BI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r

we have that B̂I (ω) is given by the antiderivative of a linear
combination of functions of the form[

sin(2πTω)

πω

]k+1

,

and therefore has decay 1/ωk+2 in frequency.
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Almost ON Systems

Cotlar, Knapp and Stein introduced almost orthogonality via
operator inequalities.

We are looking to create windowing systems that are more
computable/constructible such as the Bounded Adaptive Partition of
Unity systems {Bk(t)} with the orthogonality preservation of the
ON Window System {Wk(t)}.
Consider {Wk(t)} =

⋃
k∈Z Cap[(k)T−r ,(k+1)T+r ](t) ,

where
CapI (t) =

0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,
sin(π/(4r)(t + (T/2 + r))) −T/2− r < t < −T/2 + r ,
cos(π/(4r)(t − (T/2− r))) T/2− r < t < T/2 + r .
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Definition (Almost ON System)

Let 0 < r � T . An Almost ON System for adaptive and ultra-wide band
sampling is a set of functions {Ak(t)} for which there exists δ,
0 ≤ δ ≤ 1/2, such that

(i .) supp(Ak(t)) ⊆ [kT − r , (k + 1)T + r ] for all k ,

(ii .) Ak(t) ≡ 1 for t ∈ [kT + r , (k + 1)T − r ] for all k ,

(iii .) Ak((kT + T/2)− t) = Ak(t − (kT + T/2)), t ∈ [0,T/2 + r ] ,

(iv .) 1− δ ≤ [Ak(t))]
2 + [Ak+1(t))]

2 ≤ 1 + δ for t ∈ [kT , (k + 1)T ] ,

(v .) {Âk
◦[n]} ∈ l1 .
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Start with
⋃

k∈Z Cap[(k)T−r ,(k+1)T+r ](t) ,
where

CapI (t) =
0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,
sin(π/(4r)(t + (T/2 + r))) −T/2− r < t < −T/2 + r ,
cos(π/(4r)(t − (T/2− r))) T/2− r < t < T/2 + r .

Let ∆(T ,r) = T+2r
m . By placing equidistant knot points

−T/2− r = x0,−T/2− r + ∆(T ,r) = x1, . . . ,T/2 + r = xm,

we can construct Cm polynomial splines Sm+1 approximating

Cap(t) in [(−T/2− r), (T/2 + r)] .
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A theorem of Curry and Schoenberg gives that the set of B-splines

{B(m+1)
−(m+1), . . . ,B

(m+1)
k }

forms a basis for Sm+1.

Therefore,

Cap(t) ≈
k∑

i=−(m+1)

aiB
(m+1)
i (t) .

Let

δ =

∥∥∥∥ k∑
i=−(m+1)

aiB
(m+1)
i (t)− Cap(t)

∥∥∥∥
∞

.

Then, δ < 1/2, with the largest value for the piecewise linear spline
approximation. Moreover, δ −→ 0 as m and k increase.
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The partition of unity systems do not preserve orthogonality between
blocks. However, they are easier to compute, being based on spline
constructions.

Therefore, these systems can be used to approximate the Cap
system with B-splines. Here we get windowing systems that nearly
preserve orthogonality. Each added degree of smoothness in time
adds to the degree of decay in frequency.
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Theorem (Wideband Sampling via Projection)

Let {Wk(t)} be a ON Window System, and let {Ψk,j} be an orthonormal
basis that preserves orthogonality between adjacent windows. Let
f ∈ PW(Ω) and N = N(T ,Ω) be such that 〈f ,Ψn〉 = 0 for all n > N.
Then, f (t) ≈ fP(t), where

fP(t) =
∞∑

k=−∞

[ N∑
n=−N

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]
.
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Theorem (Adaptive Sampling via Projection)

Let f , f̂ ∈ L2(R) and f have a variable but bounded band-limit Ω(t). Let
τ(t) be an adaptive block of time. Let {Wk(t)} be a ON Window
System with window size τ(t) + 2r on the kth block, and let {Ψk,n} be
an orthonormal basis that preserves orthogonality between adjacent
windows. Let N(t) = N(τ(t),Ω(t)) be such that 〈f ,Ψk,n〉 = 0 for all
n > N. Then, f (t) ≈ fP(t), where

fP(t) =
∞∑

k=−∞

[ N(t)∑
n=−N(t)

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]
.
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Figure: WKS Sampling
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Figure: Projection Part 1 – Windowed Stationarity
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Figure: Projection Part 2 – Windowed Stationarity
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Thus – Ultra-wide Bandwidth : Some may take this a bit too far...

Figure: FT of Cat – Blame Jens!
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Error Analysis

The general windowing systems have decay 1/(ω)k+2 in frequency.

We assume Wk is C k . Therefore, Ŵk ∼ 1/(ω)k+2. We will analyze
the error EkP on a given block. Let M = ‖(f ·Wk)‖L2(R). Then

EkP = sup

∣∣∣∣(f (t) ·Wk)−
[ N∑

n=−N

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]∣∣∣∣
= sup

[ ∑
|n|>N

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]

≤
[ ∑
|n|>N

M

nk+2

]
.

Additional projection onto the Gegenbauer polynomials gives error
summable over all blocks.
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The Energy Game – Two Experiments

Range of Human hearing ≈ 20 Hz and 20,000 Hz (20 kHz) –
decreases with age and exposure to rock-and-roll.
Dogs!! ≈ 60,000 Hz !!

Nyquist Frequency = 44.1 kHz.

”Ultra-wide band” – Caprice Number 5, Paganini (thanks to Jeff
Adler) – projection with Cap windows ≈ 14% decrease in the
number of sample values.

”Adaptive band” – Open Country Joy, Mahavishnu Orchestra,
album – Birds of Fire – projection with Cap windows ≈ 26%
decrease in the number of sample values.

Computational Modeling of Adaptive Signal Processing, William
Moore, M. A. in Mathematics, American University, 2012.
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Time-Frequency Analysis

Let τ(t) be an adaptive block of time. Let {Wk(t)} be a ON
Window System with window size τ(t) + 2r on the kth block, and
let {Ψk,j} be an orthonormal basis that preserves orthogonality
between adjacent windows. Let N(t) = N(τ(t),Ω(t)) be such that
〈f ·Wk ,Ψk,n〉 = 0 Then, f (t) ≈ fP(t), where

fP(t) =
∞∑

k=−∞

[ N(t)∑
n=−N(t)

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]
.

Adaptive “Gabor-Type” System for Time-Frequency Analysis.
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Signal Adaptive Frame Theory

The theory of frames gives us the mathematical structure in which
to express sampling via the projection method. In fact one could
express all non-uniform sampling schemes in terms of the language
of frames.

Recall : Let H be a Hilbert Space. A Reisz basis B for H is a bounded
unconditional basis. As is well known, B is a Reisz basis if and only if it is
equivalent to E , an orthonormal basis for H.

Definition

A sequence of elements F = {fn}n∈Z in a Hilbert space H is a frame in
there exist constants A and B such that

A‖f ‖ ≤
∑
n∈Z

|〈f , fn〉|2 ≤ B‖f ‖ .
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Signal Adaptive Frame Theory

If we work with the ON windowing system {Wk(t)}, let {Ψk,j} be
an orthonormal basis that preserves orthogonality between adjacent
windows. Let f ∈ PWΩ and N = N(T ,Ω) be such that
〈f ·Wk ,Ψk,n〉 = 0 for all n > N.

Then

f (t) =
∑
k∈Z

[∑
n∈Z

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]
.

This also gives

‖f ‖2 =
∑
k∈Z

[∑
n∈Z

|〈f ·Wk ,Ψk,n〉|2
]

.
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an orthonormal basis that preserves orthogonality between adjacent
windows. Let f ∈ PWΩ and N = N(T ,Ω) be such that
〈f ·Wk ,Ψk,n〉 = 0 for all n > N.

Then

f (t) =
∑
k∈Z

[∑
n∈Z

〈f ·Wk ,Ψk,n〉Ψk,n(t)

]
.

This also gives

‖f ‖2 =
∑
k∈Z

[∑
n∈Z

|〈f ·Wk ,Ψk,n〉|2
]

.
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Signal Adaptive Frame Theory, Cont’d

L. Borup and M. Nielsen

Frame Expansion Using BAPUs.

L. Borup and M. Neilsen, “Frame Decomposition of Decomposition
Spaces” Journal of Fourier Analysis and Applications 13 (1), 39-70,
2007.

Theorem (Almost Orthogonal Window Frames – Conjecture)

A1−δ‖f ‖2 ≤
∑
k∈Z

[∑
n∈Z

|〈f · Ak ,Ψn,k〉|2
]
≤ A1+δ‖f ‖2

.

Moreover, this −→ Normalized Tight Frame as δ −→ 0.
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Walsh Functions

The Walsh functions {Γn} form an orthonormal basis for L2[0, 1].
The basis functions have the range {1,−1}, with values determined
by a dyadic decomposition of the interval. The Walsh functions are
of modulus 1 everywhere.

The functions are give by the rows of the unnormalized Hadamard
matrices, which are generated recursively by

H(2) =

[
1 1
1 −1

]

H(2(k+1)) = H(2)⊗ H(2k) =

[
H(2k) H(2k)
H(2k) −H(2k)

]
.
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Projection Method and Binary Signals

Translate and scale the function on this kth interval back to [0, 1] by
a linear mapping. Denote the resultant mapping as fkT

. The
resultant function is an element of L2[0, 1]. Given that f ∈ PW(Ω),
there exists an M > 0 (M = M(Ω)) such that 〈fkT

, Γn〉 = 0 for all
n > M. The decomposition of fkT

into Walsh basis elements is∑M
n=0 〈fk , Γn〉 Γn . Translating and summing up gives the Projection

representation fPT

fPT
(t) =

∑
k∈Z

[ N∑
n=0

〈fkT
, Γn〉 Γn

]
Wk(t).
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Wk Preserve Orthogonality Revisited

Theorem (The Orthogonality of Overlapping Blocks)

{Ψk,j} = {Wk ϕ̃j(t)} is an orthonormal basis for L2(R).

Sketch of Proof : We want to show that 〈Ψk,j ,Ψm,n〉 = δk,m · δj,n. The
partitioning properties of the windows give that we need only check
overlapping and adjacent windows. Moreover, we need only check
window centered at origin.
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Wk Preserve Orthogonality, Cont’d

〈WI ϕ̃i , WI ϕ̃j〉 =

∫ −T/2

−T/2−r

(WI (t))
2ϕi (−T − t)ϕj(−T − t) dt

+

∫ −T/2+r

−T/2

((WI (t))
2 − 1)ϕi (t)ϕj(t) dt

+

∫ T/2

−T/2

ϕi (t)ϕj(t) dt

+

∫ T/2

T/2−r

((WI (t))
2 − 1)ϕi (t)ϕj(t) dt

+

∫ T/2+r

T/2

(WI (t))
2ϕi (T − t)ϕj(T − t) dt .
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Wk Preserve Orthogonality, Cont’d

Since {ϕj} is an ON basis, the third integral equals 1 when i = j .

We apply the linear change of variables t = −T/2− τ to the first
integral and t = −T/2 + τ to the second integral. We then add
these two integrals together to get∫ r

0

[(WI (T/2−τ))2+(WI (τ−T/2))2−1]ϕi (−T/2+τ)ϕj(−T/2+τ) dτ .

Conditions (iii .) and (iv .) give
[(WI (T/2− τ))2 + (WI (τ − T/2))2 − 1] = 0.

Applying the linear change of variables t = T/2− τ to the fourth
integral and t = T/2 + τ to the fifth integral gives that these two
integrals also sum to zero.
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Wk Preserve Orthogonality, Cont’d

A similar computation gives that

〈Wk ϕ̃i , Wk+1ϕ̃j〉 = 0 .

The partitioning property gives that for |k − l | ≥ 2,

〈Wk ϕ̃i , Wl ϕ̃j〉 = 0 .

To finish, we need to show {Ψk,j} spans L2(R). Given any function
f ∈ L2, consider the windowed element fk(t) = Wk(t) · f (t). Let
fI (t) = WI (t) · f (t). We have that {ϕj(t)} is an orthonormal basis
for L2[−T/2,T/2].
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Wk Preserve Orthogonality, Cont’d

Let fI (t) = WI (t) · f (t). We have that {ϕj(t)} is an orthonormal basis
for L2[−T/2,T/2]. Given fI , define

f̄I (t) =
0 |t| ≥ T/2 + r

fI (t) |t| ≤ T/2− r
fI (t)− fI (−T − t) −T/2− r < t < −T/2

fI (t) + fI (T − t) T/2 < t < T/2 + r
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Since f̄I ∈ L2[−T/2,T/2], we may expand it as

∞∑
j=1

〈
f̄I , ϕj

〉
ϕj(t) .

To extend this to L2[−T/2− r ,T/2 + r ], we expand using {ϕ̃j(t)},
getting ˜̄fI =

∞∑
j=1

〈
f̄I , ϕj

〉
ϕ̃j(t) .
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Wk Preserve Orthogonality, Cont’d

Then ˜̄fI =
∞∑
j=1

〈
f̄I , ϕj

〉
ϕ̃j(t) .

˜̄fI (t) =
0 |t| ≥ T/2 + r

fI (t) |t| ≤ T/2− r
fI (t)− fI (−T − t) −T/2− r < t < −T/2 + r

fI (t) + fI (T − t) T/2− r < t < T/2 + r

This construction preserves orthogonality between adjacent blocks.
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Wk Preserve Orthogonality, Cont’d

To finish, let f be any function in L2. Consider the windowed
element fk(t) = Wk(t) · f (t). Repeat the construction above for this
window. This shows that, for fixed k, {Ψk,j} spans
L2([kT − r , (k + 1)T + r ]) and preserves orthogonality between
adjacent blocks on either side. Summing over all k ∈ Z gives that
{Ψk,j} is an ON basis for L2(R). 2
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