Bilinear pseudodifferential operators of Hörmander type

Árpád Bényi

Department of Mathematics Western Washington University Bellingham, WA 98226 arpad.benyi@www.edu

February Fourier Talks 2012

- Linear ψDOs
- Some classical boundedness results
- Bilinear ψ DOs
- Results and comparison to linear case

- Linear ψDOs
- Some classical boundedness results
- Bilinear ψ DOs
- Results and comparison to linear case

- Linear ψDOs
- Some classical boundedness results
- Bilinear ψDOs
- Results and comparison to linear case

- ullet Linear $\psi {
 m DOs}$
- Some classical boundedness results
- Bilinear ψDOs
- Results and comparison to linear case

Fourier analysis

For a function f, two complementary representations:

- The function f(x) itself (spatial behavior)
- The Fourier transform $\widehat{f}(\xi)$ (frequency behavior)

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-ix \cdot \xi} dx$$

$$f(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi$$

Fourier analysis

For a function f, two complementary representations:

- The function f(x) itself (spatial behavior)
- The Fourier transform $\widehat{f}(\xi)$ (frequency behavior)

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-ix\cdot\xi} dx$$

$$f(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi$$

Linear multipliers

The synthesis formula above is:

$$Id(f)(x) = \int_{\mathbb{R}^d} \underbrace{(2\pi)^{-d}}_{m} \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$$

Translation invariant extension:

$$T_m(f)(x) = \int_{\mathbb{R}^d} m(\xi) \widehat{f}(\xi) e^{ix \cdot \xi} d\xi$$

Theorem (Mihlin, 1956)

If
$$|\partial^{\beta} m(\xi)| \lesssim (1+|\xi|)^{-|\beta|}$$
, then $T_{\sigma}: L^{p} \to L^{p}, 1$

Linear multipliers

The synthesis formula above is:

$$Id(f)(x) = \int_{\mathbb{R}^d} \underbrace{(2\pi)^{-d}}_{m} \widehat{f}(\xi) e^{ix \cdot \xi} d\xi$$

Translation invariant extension:

$$T_m(f)(x) = \int_{\mathbb{R}^d} m(\xi) \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$$

Theorem (Mihlin, 1956)

If
$$|\partial^{\beta} m(\xi)| \lesssim (1+|\xi|)^{-|\beta|}$$
, then $T_{\sigma}: L^{p} \to L^{p}, 1 .$

Linear pseudodifferential operators (ψDOs)

Non-translation invariant extension:

$$T_{\sigma}(f)(x) = \int_{\mathbb{R}^d} \sigma(x,\xi) \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$$

Theorem (Ching, 1972; a question of Nirenberg)

If
$$|\partial_{\xi}^{\beta}\sigma(x,\xi)| \lesssim (1+|\xi|)^{-|\beta|}$$
, then $T_{\sigma}: L^{2} \not\to L^{2}$.

Boundeness requires also some a priori smoothness in x!

Linear pseudodifferential operators (ψDOs)

Non-translation invariant extension:

$$T_{\sigma}(f)(x) = \int_{\mathbb{R}^d} \sigma(x,\xi) \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$$

Theorem (Ching, 1972; a question of Nirenberg)

If
$$|\partial_{\xi}^{\beta}\sigma(x,\xi)| \lesssim (1+|\xi|)^{-|\beta|}$$
, then $T_{\sigma}: L^{2} \not\to L^{2}$.

Boundeness requires also some a priori smoothness in x!

Linear pseudodifferential operators ($\psi \mathsf{DOs}$)

Non-translation invariant extension:

$$T_{\sigma}(f)(x) = \int_{\mathbb{R}^d} \sigma(x,\xi) \widehat{f}(\xi) e^{ix\cdot\xi} d\xi$$

Theorem (Ching, 1972; a question of Nirenberg)

If
$$|\partial_{\xi}^{\beta}\sigma(x,\xi)|\lesssim (1+|\xi|)^{-|\beta|}$$
, then $T_{\sigma}:L^{2}\not\to L^{2}$.

Boundeness requires also some a priori smoothness in x!

(Linear) Hörmander classes of symbols

Let $m\in\mathbb{R}$ and $0\leq \rho,\delta\leq 1$. A symbol $\sigma(x,\xi)$ belongs to the Hörmander class $S^m_{\rho,\delta}$ if

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)|\lesssim (1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|}$$

In particular: $\sigma \in S_{1,0}^0 \Leftrightarrow |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \lesssim (1+|\xi|)^{-|\beta|}$.

Theorem (Coifman-Meyer, '70s)

If
$$\sigma \in S_{1,0}^0$$
, then $T_{\sigma}: L^p \to L^p, 1 .$

(Linear) Hörmander classes of symbols

Let $m\in\mathbb{R}$ and $0\leq\rho,\delta\leq1$. A symbol $\sigma(x,\xi)$ belongs to the Hörmander class $S^m_{\rho,\delta}$ if

$$|\partial_x^{lpha}\partial_{\xi}^{eta}\sigma(x,\xi)|\lesssim (1+|\xi|)^{m+\delta|lpha|-
ho|eta|}$$

In particular: $\sigma \in S_{1,0}^0 \Leftrightarrow |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \lesssim (1+|\xi|)^{-|\beta|}$.

Theorem (Coifman-Meyer, '70s)

If
$$\sigma \in S^0_{1,0}$$
, then $T_{\sigma}: L^p \to L^p, 1 .$

(Linear) Hörmander classes of symbols

Let $m \in \mathbb{R}$ and $0 \le \rho, \delta \le 1$. A symbol $\sigma(x, \xi)$ belongs to the Hörmander class $S^m_{\rho, \delta}$ if

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)|\lesssim (1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|}$$

In particular: $\sigma \in S_{1,0}^0 \Leftrightarrow |\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma(x,\xi)| \lesssim (1+|\xi|)^{-|\beta|}$.

Theorem (Coifman-Meyer, '70s)

If $\sigma \in S_{1,0}^0$, then $T_{\sigma}: L^p \to L^p, 1 .$

Note that: $S_{1,0}^0 \subset S_{1,\delta}^0 \subset S_{1,1}^0$.

Theorem

The class $S_{1,1}^0$ is the largest one such that T_{σ} has a Calderón-Zygmund kernel.

That is

$$T_{\sigma}(f)(x) = \int K(x,y)f(y) dy,$$

where K(x, y) satisfies

$$|\partial_x^\alpha \partial_y^\beta K(x,y)| \lesssim |x-y|^{-n-|\alpha|-|\beta|}.$$

In particular, $T_{\sigma}:L^{p}\rightarrow L^{p}\Leftrightarrow T_{\sigma}:L^{2}\rightarrow L^{2}$

$$S^0_{1,\delta}:L^2\to L^2, 0\leq \delta<1$$
 but $S^0_{1,1}:L^2\not\to L^2$

Note that: $S_{1,0}^0 \subset S_{1,\delta}^0 \subset S_{1,1}^0$.

Theorem

The class $S_{1,1}^0$ is the largest one such that T_{σ} has a Calderón-Zygmund kernel.

That is,

$$T_{\sigma}(f)(x) = \int K(x,y)f(y) dy,$$

where K(x, y) satisfies

$$|\partial_x^{\alpha}\partial_y^{\beta}K(x,y)|\lesssim |x-y|^{-n-|\alpha|-|\beta|}.$$

In particular, $T_{\sigma}:L^{p}\rightarrow L^{p}\Leftrightarrow T_{\sigma}:L^{2}\rightarrow L^{2}$.

$$S^0_{1,\delta}:L^2 o L^2, 0\leq \delta < 1 \ {
m but} \ S^0_{1,1}:L^2
eq L^2$$

Note that: $S_{1,0}^0 \subset S_{1,\delta}^0 \subset S_{1,1}^0$.

Theorem

The class $S_{1,1}^0$ is the largest one such that T_{σ} has a Calderón-Zygmund kernel.

That is,

$$T_{\sigma}(f)(x) = \int K(x,y)f(y) dy,$$

where K(x, y) satisfies

$$|\partial_x^{\alpha}\partial_y^{\beta}K(x,y)| \lesssim |x-y|^{-n-|\alpha|-|\beta|}.$$

In particular, $T_{\sigma}: L^{p} \rightarrow L^{p} \Leftrightarrow T_{\sigma}: L^{2} \rightarrow L^{2}$.

$$S^0_{1,\delta}:L^2 o L^2, 0\leq \delta < 1 \text{ but } S^0_{1,1}:L^2
eq L^2$$

Note that: $S_{1,0}^0 \subset S_{1,\delta}^0 \subset S_{1,1}^0$.

Theorem

The class $S_{1,1}^0$ is the largest one such that T_{σ} has a Calderón-Zygmund kernel.

That is,

$$T_{\sigma}(f)(x) = \int K(x,y)f(y) dy,$$

where K(x, y) satisfies

$$|\partial_x^{\alpha}\partial_y^{\beta}K(x,y)| \lesssim |x-y|^{-n-|\alpha|-|\beta|}.$$

In particular, $T_{\sigma}: L^{p} \rightarrow L^{p} \Leftrightarrow T_{\sigma}: L^{2} \rightarrow L^{2}$.

$$S_{1,\delta}^0: L^2 \to L^2, 0 \le \delta < 1 \text{ but } S_{1,1}^0: L^2 \not\to L^2$$

1. Let $a_k \in C^{\infty}$ and $|\partial_x^{\alpha} a_k(x)| \lesssim 1$. Define the PDO

$$T = \sum_{|k| \le m} a_k(x) \partial_x^k.$$

Then: $T = T_{\sigma}$, where

$$\sigma(x,\xi) = \sum_{|k| \le m} a_k(x) (i\xi)^k.$$

We have: $\sigma \in S_{1,0}^m$.

2. Let $|\partial_x^{\alpha} a_k(x)| \lesssim 2^{k|\alpha|}$ and $\psi(\xi)$ supported in $1/2 \leq |\xi| \leq 2$. Define

$$\sigma(x,\xi) = \sum_{k=1}^{\infty} a_k(x) \psi(2^{-k}\xi)$$

We have: $\sigma \in \mathcal{S}^0_{1,1}$.

1. Let $a_k \in C^{\infty}$ and $|\partial_x^{\alpha} a_k(x)| \lesssim 1$. Define the PDO

$$T = \sum_{|k| \le m} a_k(x) \partial_x^k.$$

Then: $T = T_{\sigma}$, where

$$\sigma(x,\xi) = \sum_{|k| \le m} a_k(x) (i\xi)^k.$$

We have: $\sigma \in S_{1,0}^m$.

2. Let $|\partial_x^{\alpha} a_k(x)| \lesssim 2^{k|\alpha|}$ and $\psi(\xi)$ supported in $1/2 \le |\xi| \le 2$. Define

$$\sigma(x,\xi) = \sum_{k=1}^{\infty} a_k(x) \psi(2^{-k}\xi).$$

We have: $\sigma \in S_{1,1}^0$.

3. The heat operator

$$L = \partial_t - \sum_{k=1}^n \partial_{x_k^2}^2$$

has an approximate inverse $T=T_{\sigma}$ ($LT\sim I$) and

$$\sigma \in S_{1/2,0}^{-1}$$
.

The classes $\mathcal{S}^0_{ ho, ho}$

Motivation

Kumano-go, Nagase-Shinkai ('70s): applications to parabolic and semi-elliptic operators

Theorem (Calderón-Vaillancourt, 1970)

If $\sigma \in S^0_{0,0}$, then $T_\sigma : L^2 \to L^2$ (but not on L^p , $p \neq 2$, in general).

Recall that

$$\sigma \in S_{0,0}^0 \Leftrightarrow |\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma(x,\xi)| \lesssim 1.$$

Theorem (Cordes, 1975)

If $\sigma \in S_{\rho,\rho}^0$, $0 \le \rho < 1$, then $T_{\sigma} : L^2 \to L^2$.

The classes $S_{\rho,\rho}^0$

Motivation

Kumano-go, Nagase-Shinkai ('70s): applications to parabolic and semi-elliptic operators

Theorem (Calderón-Vaillancourt, 1970)

If $\sigma \in S^0_{0,0}$, then $T_\sigma : L^2 \to L^2$ (but not on L^p , $p \neq 2$, in general).

Recall that

$$\sigma \in S^0_{0,0} \Leftrightarrow |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \lesssim 1.$$

Theorem (Cordes, 1975)

If
$$\sigma \in S_{\rho,\rho}^0$$
, $0 \le \rho < 1$, then $T_{\sigma} : L^2 \to L^2$.

The classes $S_{\rho,0}^m$

Theorem (Fefferman-Stein, 1972)

If
$$\sigma \in S_{\rho,0}^m, 0 < \rho < 1, -(1-\rho)n/2 < m \le 0$$
, then $T_{\sigma} : L^2 \to L^2$.

Theorem (Fefferman, 1973)

If
$$\sigma \in S_{\rho,0}^{-(1-\rho)n/2}, 0 < \rho \leq 1$$
, then $T_{\sigma}: L^{\infty} \to BMO$.

Fefferman's result uses the fact (due to Hörmader, '70s) that

$$S_{\rho,\delta}^0: L^2 \to L^2, 0 < \delta < \rho \le 1.$$

The classes $S_{\rho,0}^m$

Theorem (Fefferman-Stein, 1972)

If
$$\sigma \in S_{\rho,0}^m, 0 < \rho < 1, -(1-\rho)n/2 < m \le 0$$
, then $T_{\sigma} : L^2 \to L^2$.

Theorem (Fefferman, 1973)

If
$$\sigma \in S_{\rho,0}^{-(1-\rho)n/2}$$
, $0 < \rho \le 1$, then $T_{\sigma} : L^{\infty} \to BMO$.

Fefferman's result uses the fact (due to Hörmader, '70s) that

$$S_{\rho,\delta}^0: L^2 \to L^2, 0 < \delta < \rho \le 1.$$

Bilinear Hörmander classes of symbols

Let $m \in \mathbb{R}$ and $0 \le \rho, \delta \le 1$. A symbol $\sigma(x, \xi, \eta)$ belongs to the bilinear Hörmander class $BS_{\rho, \delta}^m$ if

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}$$

Associated to such a symbol we have a bilinear ψDO :

$$T_{\sigma}(f,g)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix \cdot (\xi+\eta)} d\xi d\eta$$

Bilinear ψ DOs generalize the product of two functions $f\cdot g$.

Question

Do the results for linear ψ DOs go through in the bilinear case?

Bilinear Hörmander classes of symbols

Let $m \in \mathbb{R}$ and $0 \le \rho, \delta \le 1$. A symbol $\sigma(x, \xi, \eta)$ belongs to the bilinear Hörmander class $BS^m_{\rho, \delta}$ if

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}$$

Associated to such a symbol we have a bilinear ψDO :

$$T_{\sigma}(f,g)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix \cdot (\xi+\eta)} d\xi d\eta.$$

Bilinear ψ DOs generalize the product of two functions $f \cdot g$.

Question

Do the results for linear ψ DOs go through in the bilinear case?

Bilinear Hörmander classes of symbols

Let $m \in \mathbb{R}$ and $0 \le \rho, \delta \le 1$. A symbol $\sigma(x, \xi, \eta)$ belongs to the bilinear Hörmander class $BS_{\rho, \delta}^m$ if

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}$$

Associated to such a symbol we have a bilinear ψDO :

$$T_{\sigma}(f,g)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix \cdot (\xi+\eta)} d\xi d\eta.$$

Bilinear ψ DOs generalize the product of two functions $f \cdot g$.

Question

Do the results for linear ψ DOs go through in the bilinear case?

- **1.** Let $\xi, \eta \in \mathbb{R}$ and $\sigma(\xi, \eta) = \xi^k \eta^l (1 + |\xi|^2 + |\eta|^2)^{-1/2}$. We have: $\sigma \in BS_{1,0}^{k+l}$.
- **2.** Let $\sigma(\xi,\eta) = \varphi(\xi,\eta)(1+|\xi|^2+|\eta|)^{-1}$, where φ is a smooth function such that $\varphi=1$ away from the set $\{(\xi,\eta):\eta=0\}$. We have: $\sigma \in BS_{1,0}^{-1}$.
- 3. Similarly, we have

$$\varphi(\xi,\eta)(1+|\xi+\eta|^2+|\xi|^2+|\eta|)^{-1}\in BS_{1,0}^{-2}$$

- **1.** Let $\xi, \eta \in \mathbb{R}$ and $\sigma(\xi, \eta) = \xi^k \eta^l (1 + |\xi|^2 + |\eta|^2)^{-1/2}$. We have: $\sigma \in BS_{1,0}^{k+l}$.
- **2.** Let $\sigma(\xi,\eta)=\varphi(\xi,\eta)(1+|\xi|^2+|\eta|)^{-1}$, where φ is a smooth function such that $\varphi=1$ away from the set $\{(\xi,\eta):\eta=0\}$. We have: $\sigma\in BS_{\frac{1}{2},0}^{-1}$.
- 3. Similarly, we have

$$\varphi(\xi,\eta)(1+|\xi+\eta|^2+|\xi|^2+|\eta|)^{-1}\in BS_{1,0}^{-2}$$

- **1.** Let $\xi, \eta \in \mathbb{R}$ and $\sigma(\xi, \eta) = \xi^k \eta^l (1 + |\xi|^2 + |\eta|^2)^{-1/2}$. We have: $\sigma \in BS_{1,0}^{k+l}$.
- **2.** Let $\sigma(\xi,\eta)=\varphi(\xi,\eta)(1+|\xi|^2+|\eta|)^{-1}$, where φ is a smooth function such that $\varphi=1$ away from the set $\{(\xi,\eta):\eta=0\}$. We have: $\sigma\in BS_{\frac{1}{2},0}^{-1}$.
- 3. Similarly, we have

$$\varphi(\xi,\eta)(1+|\xi+\eta|^2+|\xi|^2+|\eta|)^{-1}\in BS_{1,0}^{-2}.$$

Bilinear ψDOs : why?

- Multilinear operators as intermediate tools to study specific linear and nonlinear operators (Coifman-Meyer, '70s)
- ② Commutator estimates to study the regularity of solutions of nonlinear PDEs (Kato-Ponce, '88)
- ② Proof of Calderón's conjecture on the boundedness of the bilinear Hilbert transform. This question was posed in connection with the Cauchy integral on Lipschitz curves and the so-called Calderón commutators (Lacey-Thiele, '97; Grafakos-Li, '01)
- Bilinear pseudodifferential operators with non-smooth symbols (Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)
- Systematic study of multilinear singular integrals (Grafakos-Torres, '99)
- A theory of multilinear pseudodifferential operators...

Bilinear ψ DOs : why?

- Multilinear operators as intermediate tools to study specific linear and nonlinear operators (Coifman-Meyer, '70s)
- 2 Commutator estimates to study the regularity of solutions of nonlinear PDEs (Kato-Ponce, '88)
- Proof of Calderón's conjecture on the boundedness of the bilinear Hilbert transform. This question was posed in connection with the Cauchy integral on Lipschitz curves and the so-called Calderón commutators (Lacey-Thiele, '97; Grafakos-Li, '01)
- Bilinear pseudodifferential operators with non-smooth symbols (Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)
- Systematic study of multilinear singular integrals (Grafakos-Torres, '99)
- A theory of multilinear pseudodifferential operators...

Bilinear ψ DOs : why?

- Multilinear operators as intermediate tools to study specific linear and nonlinear operators (Coifman-Meyer, '70s)
- 2 Commutator estimates to study the regularity of solutions of nonlinear PDEs (Kato-Ponce, '88)
- Proof of Calderón's conjecture on the boundedness of the bilinear Hilbert transform. This question was posed in connection with the Cauchy integral on Lipschitz curves and the so-called Calderón commutators (Lacey-Thiele, '97; Grafakos-Li, '01)
- Bilinear pseudodifferential operators with non-smooth symbols (Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)
- Systematic study of multilinear singular integrals (Grafakos-Torres, '99)
- 6 A theory of multilinear pseudodifferential operators..

Bilinear ψ DOs : why?

- Multilinear operators as intermediate tools to study specific linear and nonlinear operators (Coifman-Meyer, '70s)
- 2 Commutator estimates to study the regularity of solutions of nonlinear PDEs (Kato-Ponce, '88)
- Proof of Calderón's conjecture on the boundedness of the bilinear Hilbert transform. This question was posed in connection with the Cauchy integral on Lipschitz curves and the so-called Calderón commutators (Lacey-Thiele, '97; Grafakos-Li, '01)
- Bilinear pseudodifferential operators with non-smooth symbols (Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)
- Systematic study of multilinear singular integrals (Grafakos-Torres, '99)
- A theory of multilinear pseudodifferential operators...

Bilinear ψ DOs : why?

- Multilinear operators as intermediate tools to study specific linear and nonlinear operators (Coifman-Meyer, '70s)
- 2 Commutator estimates to study the regularity of solutions of nonlinear PDEs (Kato-Ponce, '88)
- Proof of Calderón's conjecture on the boundedness of the bilinear Hilbert transform. This question was posed in connection with the Cauchy integral on Lipschitz curves and the so-called Calderón commutators (Lacey-Thiele, '97; Grafakos-Li, '01)
- Bilinear pseudodifferential operators with non-smooth symbols (Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)
- Systematic study of multilinear singular integrals (Grafakos-Torres, '99)
- A theory of multilinear pseudodifferential operators...

The bilinear Coifman-Meyer classes: $BS_{1,\delta}^0$, $0 \le \delta < 1$

Theorem (Coifman-Meyer '78; Grafakos-Torres '02; B.-Torres '03)

If
$$\sigma \in BS^0_{1,0}$$
, then $T_\sigma : L^p \times L^q \to L^r$, $1/p + 1/q = 1/r < 2$.

Theorem (B.-Oh, '10)

If
$$\sigma \in BS_{1,\delta}^0$$
, $0 \le \delta < 1$, then $T_{\sigma} : L^p \times L^q \to L^r$
 $1/p + 1/q = 1/r < 2$.

Tools: Littlewood-Paley theory; elementary symbols

The bilinear Coifman-Meyer classes: $BS_{1,\delta}^0$, $0 \le \delta < 1$

Theorem (Coifman-Meyer '78; Grafakos-Torres '02; B.-Torres '03)

If
$$\sigma \in BS_{1,0}^0$$
, then $T_{\sigma}: L^p \times L^q \to L^r$, $1/p + 1/q = 1/r < 2$.

Theorem (B.-Oh, '10)

If
$$\sigma \in BS_{1,\delta}^0$$
, $0 \le \delta < 1$, then $T_{\sigma} : L^p \times L^q \to L^r$, $1/p + 1/q = 1/r < 2$.

Tools: Littlewood-Paley theory; elementary symbols.

Calderón-Zygmund theory and transposition calculus

Theorem (Grafakos-Torres, '02)

The class $BS_{1,1}^0$ is the largest one to produce bilinear Calderón-Zygmund kernels.

That is,

$$T_{\sigma}(f,g)(x) = \int \int K(x,y,z)f(y)g(z) dydz,$$

and K(x,y,z) satisfies appropriate smoothness-decay estimates. Both previous ψDO boundedness results on the Coifman-Meyer classes follow once we can establish a transposition symbolic

Theorem (B.-Maldonado-Naibo-Torres, '10)

If
$$\sigma \in BS_{\rho,\delta}^m$$
, $0 \le \delta < \rho \le 1$, then $T_{\sigma}^{*j} = T_{\sigma^{*j}}$ with $\sigma^{*j} \in BS_{\sigma,\delta}^m$, $j = 1, 2$.

Calderón-Zygmund theory and transposition calculus

Theorem (Grafakos-Torres, '02)

The class $BS_{1,1}^0$ is the largest one to produce bilinear Calderón-Zygmund kernels.

That is,

$$T_{\sigma}(f,g)(x) = \int \int K(x,y,z)f(y)g(z) dydz,$$

and K(x,y,z) satisfies appropriate smoothness-decay estimates. Both previous ψDO boundedness results on the Coifman-Meyer classes follow once we can establish a transposition symbolic calculus.

Theorem (B.-Maldonado-Naibo-Torres, '10)

If
$$\sigma \in BS^m_{\rho,\delta}$$
, $0 \le \delta < \rho \le 1$, then $T^{*j}_{\sigma} = T_{\sigma^{*j}}$ with $\sigma^{*j} \in BS^m_{\rho,\delta}$, $j = 1, 2$.

Theorem (B.-Torres, '04)

There exists a symbol in $BS_{0,0}^0$ such that $T: L^2 \times L^2 \not\to L^1$.

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If $\sigma \in BS^0_{\rho,\rho}$, $0 \le \rho < 1$, then $BS^0_{\rho,\rho} : L^2 \times L^2 \not\to L^1$.

Theorem (B.-Torres, '04)

If $\sigma \in BS_{0,0}^0$ and $\partial_{\xi}^{\alpha} \sigma \in L_x^{\infty} L_{\xi}^1 L_{\eta}^2$, $\partial_{\eta}^{\alpha} \sigma \in L_x^{\infty} L_{\eta}^1 L_{\xi}^2$, then $T: L^2 \times L^2 \to L^1$.

Theorem (B.-Torres, '04)

There exists a symbol in $BS_{0,0}^0$ such that $T: L^2 \times L^2 \not\to L^1$.

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If $\sigma \in BS^0_{\rho,\rho}$, $0 \le \rho < 1$, then $BS^0_{\rho,\rho} : L^2 \times L^2 \not\to L^1$.

Theorem (B.-Torres, '04)

If $\sigma \in BS_{0,0}^0$ and $\partial_{\xi}^{\alpha} \sigma \in L_{x}^{\infty} L_{\xi}^{1} L_{\eta}^{2}$, $\partial_{\eta}^{\alpha} \sigma \in L_{x}^{\infty} L_{\eta}^{1} L_{\xi}^{2}$, then $T: L^2 \times L^2 \to L^1$.

Theorem (B.-Torres, '04)

There exists a symbol in $BS_{0.0}^0$ such that $T:L^2\times L^2\not\to L^1$.

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If $\sigma \in BS_{\rho,\rho}^0$, $0 \le \rho < 1$, then $BS_{\rho,\rho}^0 : L^2 \times L^2 \not\to L^1$.

Theorem (B.-Torres, '04)

If $\sigma \in BS_{0,0}^0$ and $\partial_{\xi}^{\alpha} \sigma \in L_{x}^{\infty} L_{\xi}^{1} L_{\eta}^{2}$, $\partial_{\eta}^{\alpha} \sigma \in L_{x}^{\infty} L_{\eta}^{1} L_{\xi}^{2}$, then $T: L^2 \times L^2 \to L^1$.

Theorem (B.-Torres, '04)

There exists a symbol in $BS_{0,0}^0$ such that $T: L^2 \times L^2 \not\to L^1$.

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If $\sigma \in BS_{\rho,\rho}^0$, $0 \le \rho < 1$, then $BS_{\rho,\rho}^0 : L^2 \times L^2 \not\to L^1$.

Theorem (B.-Torres, '04)

If $\sigma \in BS_{0,0}^0$ and $\partial_{\xi}^{\alpha} \sigma \in L_{x}^{\infty} L_{\xi}^{1} L_{\eta}^{2}$, $\partial_{\eta}^{\alpha} \sigma \in L_{x}^{\infty} L_{\eta}^{1} L_{\xi}^{2}$, then $T: L^2 \times L^2 \to L^1$.

A link to modulation spaces

Theorem (B.-Gröchenig-Heil-Okoudjou, '05)

If
$$\sigma \in BS^0_{0,0}$$
, then $T: L^2 \times L^2 \to M^{1,\infty} \supseteq L^1$

An instructive statement (not completely correct):

$$f \in M^{p,q} \sim f \in L^p$$
 and $\hat{f} \in L^q$

Fefferman's result in the bilinear case

Although the classes $BS^0_{\rho,\delta}$ fail to be bounded on products of Lebesgue spaces, we have surprisingly

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If
$$\sigma \in BS_{\rho,0}^{n(\rho-1)}$$
, $0 \le \rho < \frac{1}{2}$, then $T_{\sigma} : L^{\infty} \times L^{\infty} \to BMO$.

The crucial observation in the proof:

$\mathsf{Theorem}\; (\mathsf{B}. ext{-}\mathsf{Bernicot-Maldonado-Naibo-Torres, '11})$

If λ is a symbol such that

$$\sup_{\substack{|\beta| \leq [\frac{\beta}{2}]+1 \\ |\alpha| \leq 2(2n+1)}} \sup_{\xi, y \in \mathbb{R}^n} \|\partial_{\xi}^{\alpha} \partial_{y}^{\beta} \lambda(y, \xi - \cdot, \cdot)\|_{L^{2}} < \infty,$$

then $T_{\lambda}: L^2 \times L^2 \to L^2$.

Fefferman's result in the bilinear case

Although the classes $BS^0_{\rho,\delta}$ fail to be bounded on products of Lebesgue spaces, we have surprisingly

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If
$$\sigma \in BS_{\rho,0}^{n(\rho-1)}$$
, $0 \le \rho < \frac{1}{2}$, then $T_{\sigma} : L^{\infty} \times L^{\infty} \to BMO$.

The crucial observation in the proof:

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If λ is a symbol such that

$$\sup_{\substack{|\beta| \leq [\frac{n}{2}]+1\\ |\alpha| \leq 2(2n+1)}} \sup_{\xi,y \in \mathbb{R}^n} \|\partial_{\xi}^{\alpha} \partial_{y}^{\beta} \lambda(y,\xi-\cdot,\cdot)\|_{L^{2}} < \infty,$$

then $T_{\lambda}: L^2 \times L^2 \to L^2$.

Thank you!

