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N0 = [ @r) R de
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Translation invariant extension:

To(N)x) = [ me)F(e" de

Theorem (Mihlin, 1956)

IF108m(&)| < (1+ |€))~1P1, then T, : LP — LP,1 < p < .
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Linear pseudodifferential operators (/DOs )

Non-translation invariant extension:

TN = | ol (e de

Theorem (Ching, 1972; a question of Nirenberg)
If 100 (x, &) S (1 + [€)VP, then T, : 12 4 12,

Boundeness requires also some a priori smoothness in x!
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(Linear) Hormander classes of symbols

Let me R and 0 < p,d < 1. A symbol o(x,&) belongs to the
Hormander class S,T(i if

182020 (x, €)| S (1 + [¢])mlel=elf]

In particular: o € 5{)70 & |033?0’(X,§)| S L+ g

Theorem (Coifman-Meyer, '70s)

lfJESﬁo, then Ty : LP — LP)1 < p < 0.
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Note that: S0, C S5 C S9,.

The class 5{)71 is the largest one such that T, has a
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That is,
T,(F)(x) = / K(x, y)F(y) dy,

where K(x,y) satisfies
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Some examples

1. Let ay € C* and |0%ak(x)| < 1. Define the PDO

T=) ax)or.

IK|<m

Then: T = T,, where

o(x,€) = Y a(x)(i)~.

lkl<m

We have: o ¢ 577,
2. Let |0%ax(x)| < 2klol and (&) supported in 1/2 < |¢] < 2.
Define

o(x, &) = Zak(x 27ke).

We have: o < 57,



3. The heat operator

n
2
L - 3t - Z 8X£
k=1
has an approximate inverse T = T, (LT ~ /) and

-1
= 51/2AO'



0
The classes S |

Kumano-go, Nagase-Shinkai ('70s): applications to parabolic and
semi-elliptic operators

Theorem (Calderén-Vaillancourt, 1970)

If o € S5, then T, : L2 — L2 (but not on LP, p # 2, in general).

Recall that
7 € S0 0807 (x, &) S 1.

10



0
The classes S |

Kumano-go, Nagase-Shinkai ('70s): applications to parabolic and
semi-elliptic operators

Theorem (Calderén-Vaillancourt, 1970)

If o € S5, then T, : L2 — L2 (but not on LP, p # 2, in general).

Recall that
7 € S0 0807 (x, &) S 1.

Theorem (Cordes, 1975)

IfoeSO

000 < p <1, then T; : 12— (2,
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Theorem (Fefferman-Stein, 1972)

Ifo € S, 0<p<1,—(1—p)n/2<m<0, then T, : 1> — [,

4

Theorem (Fefferman, 1973)
Ifoe S "2 0< p<1, then T, : L — BMO.

Fefferman'’s result uses the fact (due to Hormader, '70s) that

SYsi 2= 120<d<p<L.
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Bilinear Hormander classes of symbols

Let me R and 0 < p,d < 1. A symbol o(x,&,7n) belongs to the
bilinear Hormander class BS/T{)— if

\(’)(X‘(‘,);(‘),ﬁ]’(r(x,f, 0| < (1 + €] + |n|)mHoled=pUBI+I)
Associated to such a symbol we have a bilinear /DO :
TAF ) = [ [ ol enORtne < dedn,

Bilinear ¢/DOs generalize the product of two functions f - g.

Do the results for linear 1yDOs go through in the bilinear case? I
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Some examples

1. Let &, € R and o(&,7) = €n'(1+ [¢2 + [n[*) /2.
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Some examples

L. Let &,n € Rand o(&,n) = £/ (L + [€]> + [n]*) "1/

We have: 0 € 851"!5/.

2. Let o(&,1) = o(£,7)(1 + |€]2 + |n])~L, where ¢ is a smooth
function such that ¢ = 1 away from the set {(&,7n) : n = 0}.
We have: o € BS;é.

2
3. Similarly, we have

P(&m)(L+ 1€+ nl* + 167 + ) € BS;¢.
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Bilinear ¥)DOs : why?

@ Multilinear operators as intermediate tools to study specific
linear and nonlinear operators (Coifman-Meyer, '70s)

@ Commutator estimates to study the regularity of solutions of
nonlinear PDEs (Kato-Ponce, '88)

© Proof of Calderén’s conjecture on the boundedness of the
bilinear Hilbert transform. This question was posed in
connection with the Cauchy integral on Lipschitz curves and
the so-called Calderén commutators (Lacey-Thiele, '97;
Grafakos-Li, '01)

@ Bilinear pseudodifferential operators with non-smooth symbols
(Gilbert-Nahmod, Muscalu-Tao-Thiele, '99)

@ Systematic study of multilinear singular integrals
(Grafakos-Torres, '99)

@ A theory of multilinear pseudodifferential operators...
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The bilinear Coifman-Meyer classes: BS?;,0 < 4§ < 1

Theorem (Coifman-Meyer '78; Grafakos-Torres '02; B.-Torres '03)
Ifoe BSﬁO, then T, : LPx L9 — L", 1/p+1/q=1/r <2.
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The bilinear Coifman-Meyer classes: BS?;,0 < 6 < 1

Theorem (Coifman-Meyer '78; Grafakos-Torres '02; B.-Torres '03)
Ifoe BSﬁO, then T, : LPx L9 — L", 1/p+1/q=1/r <2.

Theorem (B.-Oh, '10)

Ifo € BSY;, 0<6<1,then T, : LP x L9 — L',
1p+1/g=1/r <2.

Tools: Littlewood-Paley theory; elementary symbols.
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Calderén-Zygmund theory and transposition calculus

Theorem (Grafakos-Torres, '02)

The class BS{”I is the largest one to produce bilinear
Calderon-Zygmund kernels.

That is,

To(F.8)(x) = / / K(x,y.2)f(y)e(2) dydz,

and K(x, y, z) satisfies appropriate smoothness-decay estimates.
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Calderén-Zygmund theory and transposition calculus

Theorem (Grafakos-Torres, '02)

The class BS{{1 is the largest one to produce bilinear
Calderon-Zygmund kernels.

That is,

To(F.8)(x) = / / K(x,y.2)f(y)e(2) dydz,

and K(x, y, z) satisfies appropriate smoothness-decay estimates.
Both previous ¥DO boundedness results on the Coifman-Meyer
classes follow once we can establish a transposition symbolic
calculus.

Theorem (B.-Maldonado-Naibo-Torres, '10)

Ifo € BST,0< 6 < p<1,then Ty = T,.; with
o* € BS)s,j =1,2.

16



The bilinear Calderén-Vaillancourt classes: BS°
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The bilinear Calderén-Vaillancourt classes: 85/9/)

Theorem (B.-Torres, '04)
There exists a symbol in BS(?’0 such that T : L2 x L2 4 L1,

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

0 0 .2, (2 1
Ifo€eBS,, 0<p<1,then BS,, : L*x L/ L.

Theorem (B.-Torres, '04)

Ifoe BS&O and Og'o € L§°L§L727, o e L§°L}]L§, then
T:12x 121

Tool: almost orthogonality.
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A link to modulation spaces

Theorem (B.-Grochenig-Heil-Okoudjou, '05)

Ifo e 85870, then T : L2 x > — ML>® D [1

An instructive statement (not completely correct):

feMPI~FfclPandfc LY
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Fefferman’s result in the bilinear case

Although the classes BS0 fail to be bounded on products of
Lebesgue spaces, we have surprisingly

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

Ifo e BS)Y ™, 0< p< i, then T, : L™ x L — BMO.
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Fefferman’s result in the bilinear case

Although the classes BS0 fail to be bounded on products of
Lebesgue spaces, we have surprisingly

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

Ifo e BS)Y ™, 0< p< i, then T, : L™ x L — BMO.

The crucial observation in the proof:

Theorem (B.-Bernicot-Maldonado-Naibo-Torres, '11)

If X is a symbol such that

sup  sup [|OFO)A(y, € — )]l < o0,
1BI<[81+1 £,y€Rn
o] <2(2n+1)

then Ty : L? x L% — L2.
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Thank youl!
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