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Introduction

1 State the problem.

2 Identify variables and effects.

3 Choose modeling method.

4 Formulate basic model.

5 Build on basic model.

6 Solve equations or run simulations.

7 Make conclusions and criticize model.
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Problem Statement

Model the flow of traffic on a one lane roadway.

Types of possible models:
I Cellular automata: Follow individual cars, give rules for motion
I PDE: Ignore individual cars, consider average densities

PDE approach: Formulate a model for the density ρ(x , t), of cars per
unit length, as a function of position x and time t, given the initial
density ρ(x , 0).

Automata approach: Create a simulation of cars on a 1d lattice by
specifying rules for their movement on the lattice.

S. Doboszczak, V. Forstall (UMD) Math Modeling October 2013 6 / 34



Problem Statement

Model the flow of traffic on a one lane roadway.

Types of possible models:
I Cellular automata: Follow individual cars, give rules for motion
I PDE: Ignore individual cars, consider average densities

PDE approach: Formulate a model for the density ρ(x , t), of cars per
unit length, as a function of position x and time t, given the initial
density ρ(x , 0).

Automata approach: Create a simulation of cars on a 1d lattice by
specifying rules for their movement on the lattice.

S. Doboszczak, V. Forstall (UMD) Math Modeling October 2013 6 / 34



Problem Statement

Model the flow of traffic on a one lane roadway.

Types of possible models:
I Cellular automata: Follow individual cars, give rules for motion
I PDE: Ignore individual cars, consider average densities

PDE approach: Formulate a model for the density ρ(x , t), of cars per
unit length, as a function of position x and time t, given the initial
density ρ(x , 0).

Automata approach: Create a simulation of cars on a 1d lattice by
specifying rules for their movement on the lattice.

S. Doboszczak, V. Forstall (UMD) Math Modeling October 2013 6 / 34



Relevant variables / effects

Variables:

position, x

time, t

density, ρ = ρ(x , t)

velocity, v = v(x , t)

flux, J = J(x , t)

Effects to account for:

length of cars

spacing between cars

length of roadway

number of lanes

merging

on/off ramps

weather

accidents/construction
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Assumptions

Assume density is continuous, that is, ignore individual cars.
I Many cars needed. How many?
I Need assumption on how density is averaged. How big should ∆x be in

the limit?

Assume motion is directed left-to-right on a one-lane roadway of
infinite length. Is this reasonable?

Assume all cars have the same length L and they are evenly spaced at
distance d . This is the uniform distribution model.

Ignore all other effects.
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Uniform distribution model: density

Consider the interval Ix0 = {x0 −∆x < x0 < x0 + ∆x} about the
point x0.

To estimate ρ(x0, t0), count the number of cars in the interval and
divide by its length:

ρ(x0, t0) ≈ 1

2∆x
(# of cars in the interval Ix0 at time t = t0) (1)

The assumption on ∆x is that it is small enough so only cars in the
vicinity matter but large enough so the interval contains many cars.
The continuum view has ∆x → 0.
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Uniform distribution model: density

Recall the assumption is cars have length L and uniform spacing d .
Using (1) we find that

ρ(x0, t0) = lim
∆x→0

1

2∆x

(
2∆x

L + d

)
=

1

L + d

since the number of cars in the interval Ix0 is 2∆x
L+d .

Note that since 0 ≤ d <∞ and L is finite that there is a maximum
density:

0 < ρ ≤ ρmax =
1

L
.

For instance, if L = 17ft and d = 12ft, then ρ = 182 cars
mile and

ρmax = 310.6 cars
mile .
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Uniform distribution model: flux

Question: How many cars pass the point x0 per unit time?

To find the flux of cars through x0 at time t0, count the number of
cars passing x0 during the time interval

It0 = {t0 −∆t < t0 < t0 + ∆t}

and divide by the interval length. In other words,

J(x0, t0) ≈ 1

2∆t
(# of cars passing x0 during the time interval It0) (2)

The assumption on ∆t is that it is small enough so only cars passing
by near time t0 are counted, but big enough so that many cars pass
through. Again, in the continuum limit, ∆t → 0.

S. Doboszczak, V. Forstall (UMD) Math Modeling October 2013 11 / 34



Uniform distribution model: flux

Assume that cars move to the right with constant speed v .

During time 2∆t, cars move a distance equal to 2v∆t, hence the
number of cars passing a point x0 during this time is
ρ× distance = 2v∆t

L+d . Using (2), the flux about x0 at time t0 is

J(x0, t0) = lim
∆t→0

1

2∆t

(
2v∆t

L + d

)
=

v

L + d
.

If for instance L = 17ft and v = 70mph, then J = 5435 cars
mile .

Note also that
J = ρv .
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Balance law for density

The previous model is extended to allow for changes in density. This
is accomplished by using a control volume (CV) and accounting for all
the ways the density can change in the volume.

Assumptions: cars cannot enter through the top or bottom (no
ramps), cars enter from the left and exit from the right (one way
traffic).
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Balance law for density

Consider the CV consisting of the interval Ix during the time interval
It . The idea is simple, the net change of cars in Ix during It is equal
to the net flux of cars through the boundaries during this time. In
other words:

{# of cars in Ix during time t0 + ∆t} − {# cars in Ix during time t0 −∆t}
= {# of cars that enter through x0 −∆x during It}
− {# of cars that leave through x0 + ∆x during It}
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Balance law for density

In terms of density and flux:

2∆x [ρ(x0, t0 + ∆t)− ρ(x0, t0 −∆t)]

= 2∆t [J(x0 −∆x , t0)− J(x0 + ∆x , t0)]

The goal is, as before, to take ∆x ,∆t → 0 to deduce the continuum
limit. This is accomplished by expanding ρ and J in Taylor series and
considering the leading order terms.
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Balance law for density

By Taylor expanding we find that (about the point (x0, t0)):

2∆x [ρ+∆tρt +
1

2
(∆t)2ρtt + O((∆t)3)

− ρ− (−∆tρt)−
1

2
(∆t)2ρtt + O((∆t)3)]

= 2∆t[J−∆xJx +
1

2
(∆x)2Jxx + O((∆x)3)

− J −∆xJx −
1

2
(∆x)2Jxx + O((∆x)3)]

This reduces to

2∆x [2∆tρt + O((∆t)3)] = 2∆t[−2∆xJx + O((∆x)3)]

or as ∆x ,∆t → 0,
∂ρ

∂t
= −∂J

∂x
. (3)
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Balance law for density

If the flux function J is known, then (3) tells us how ρ evolves. This
is usually deduced empirically.

Instead focus on v . Assume J = ρv as before, where v = v(x , t) is
the average velocity of the cars at (x , t).

The PDE model for traffic flow then reads:{
∂ρ
∂t + ∂

∂x (ρv) = 0

ρ(x , 0) = f (x)
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Some remarks on the model

PDE can now be solved analytically or numerically.

BUT, the PDE model is an approximation! Discrete traffic flow has
been modeled by continuous density.

Low densities are therefore a problem. We don’t expect the PDE to
hold when there are few cars on the road.

The velocity v is still needed. We need a constitutive law relating v
to ρ. This can be obtained by examining the physics or determined
from empirical evidence.
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Determining velocity: empirical data
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Determining velocity

Assume the velocity is constant,

v = v(ρ) = a.

Then
ρt + aρx = 0.

This perhaps is too unrealistic, except maybe low densities.
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Determining velocity

Assume a linear velocity,

v = v(ρ) = a− bρ.

This is known as the Greenshields model. It is commonly written as

v = vmax

(
1− ρ

ρmax

)
.

From the Merritt Parkway and Lincoln Tunnel data, we can use least
squares to find that vmax = 36.821mph and ρmax = 166.4226 cars

mile are
the constants of best fit for the linear velocity.
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Determining velocity

Using this form of v in our PDE we get that now

ρt + c(ρ)ρx = 0,

where c(ρ) = vmax

(
1− 2ρ

ρmax

)
.

Other more complicated velocity fits can be considered.
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Numerical Solution

Return to the model with a constant velocity on a finite length highway:

∂ρ

∂t
+ a

∂ρ

∂x
= 0 for 0 < x < L, t > 0 (4)

with an initial condition

ρ(x , 0) =

{
1 if x ≤ 0
0 if x > 0

and a boundary condition

ρ(0, t) = g(t) .

Note

This initial condition could represent
a stoplight at x = 0 turning green at
t = 0.

Question?

Why is boundary specified at x = 0
and not at x = L?
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Discretized problem

Goal: Given g(t) and a, numerically compute the density at time T.

Basic Idea: Discretize the time interval [0,T ] into intervals of length
∆t and the spatial interval [0, l ] into intervals of length ∆x and use a
finite difference to approximate the derivative.

x0 ... xj xj+1 ... xnx

∆x0 L
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Finite differences

Recall the definition of the derivative

lim
h→0

f (x + h)− f (x)

h
(5)

Let x = xj and h = ∆x . Without the limit, we have forward difference of
the first derivative

f (xj+1)− f (xj)

∆x
. (6)

The backward difference of the first derivative is

f (xj)− f (xj−1)

∆x
. (7)
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Finite differences

Let us return to our model,

∂ρ

∂t
+ a

∂ρ

∂x
= 0 for 0 < x < L, t > 0 (8)

Denote ρ(xj , tn) = ρnj .

Use the forward difference to approximate the time derivative and the
backward difference to approximate the spatial derivative:

ρn+1
j − ρnj

∆t
+ a

ρnj − ρnj−1

∆x
= 0 . (9)

Thus we have approximations of the two derivatives, which will approach
continuous equations in the limit as ∆x → 0 and ∆t → 0.
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Finite differences

Thus our numerical scheme is

ρn+1
j = ρnj +

a∆t

∆x
(ρnj − ρnj−1) (10)
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Example 1

Cars move at a = 30 mph or 1/120 miles per second.

The highway is 3 miles long L = 3.

Let’s run the model for 3 minutes which means T = 180s.

∆x = 0.1 mile, ∆t = 0.1 s

The boundary condition is g(t) = 1 for t > 0.

What does this boundary condition mean in our real world scenario?
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Example 2

The stoplight turns red at t = 1 minute and green again at t = 2 minutes.
There is a constant stream of cars that want to go through the stoplight.

What is this boundary condition?

g(t) =

{
1 if 0 < t < 60, t ≥ 120
0 if 60 ≤ t < 120
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Criticism

We have ignored many effects mentioned earlier, for instance,
intersections, weather, traffic lights, etc.

Perhaps our guess on velocity was too restrictive. A form such as
v = F (ρ, ρx) may be better.

For highway travel, merging and multilane effects become important.

The models presented seem to work only for light to heavy traffic
situations.
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