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Introduction

We have introduced several examples of data dependent
representation methods, such as PCA or Laplacian Eigenmaps.
These methods are well suited for the analysis of complex, noisy,
high-dimensional data.
As a drawback, we are going to encounter increased
computational requirements in comparison to fast a priori
methods, such as FFT or DWT.
Also, the nonlinear dimensionality reduction methods such as LE
or SE are typically non-invertible.
We shall show today how to resolve some of these limitations.
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Overview

Today we shall cover several important topics:
The computational bottleneck of data dependent methods;
Approximate preimage for kernel methods;
Diffusion wavelets;
Frames for real data applications.
Data recovery based on LE.
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Computational Bottleneck

Output normalized DR methods provide us with good approximate
models for complex heterogeneous data structures. However, the
computation of those approximations comes at a price.

If D is the ambient dimension, and N is the number of points,
time complexity of constructing an adjacency graph is O(DN2).
What can we do about D?
What can we do about the exponent 2?
What can we do about N?
What can we do about the computational complexity of
eigendecomposition?
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Numerical acceleration

1 Data Compression via Incoherent Random Projections
2 Fast Approximate k Nearest Neighbors algorithms
3 Quantization Landmarking
4 Randomized low-rank SVD decompositions
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1. Setting for data compression

Dataset {x1, x2, . . . , xN} in RD, sampled from a compact
K -dimensional Riemannian manifold
Assume ‖xi − xj‖ ≤ A for all i , j and some A > 0
Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λK be the first K nonzero eigenvalues
computed by LE, assumed simple, with r = mini,j |λi − λj |, and
let fj be a normalized eigenvector corresponding to λj

Use a random orthogonal projector Φ to map the points to RM .
Let f̂j be the j th eigenvector computed by LE for the projected
data set
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1. Laplacian Eigenmaps with random projections

Theorem (with A. Halevy)

Fix 0 < α < 1 and 0 < ρ < 1. If

M ≥ 4− 2 ln(1/ρ)

ε2/200 + ε3/3000
K ln(CKD/ε), where ε =

rα
4AN(N − 1)

,

then, with probability at least 1− ρ,

‖fj − f̂j‖ < α.

The constant C depends on properties of the manifold. Precisely,
C = 1900RV

τ1/3 , where R,V and 1/τ are the geodesic covering regularity,
volume, and condition number, respectively.

Similar results for other output normalized DR methods, e.g., for
Schroedinger Eigenmaps.

A. Halevy, Extensions of Laplacian Eigenmaps for Manifold Learning, Ph.D. Thesis, University of Maryland College Park, 2011
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1. Application: Classification of Hyperspectral Data

Table : Comparison of performance on Urban

Method Time (min) Accuracy (percent)
LE 15.26 79.05
LERP 11.78 78.44

HYDICE Scene from Copperas Cove, TX, courtesy of NGA
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1. Application: Classification of Hyperspectral Data

Figure : Urban class 2 (secondary road): left - LE, right - LERP
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2. Fast Approximate k Nearest Neighbors

There are many approximate nearest neighbor algorithms, e.g.,
Locality-sensitive Hashing (P. Indyk), Best Bin First (D. Lowe), or
Clustered Point Sets Search (D. Mount). We present the Divide
and Conquer method of Chen, Fang, and Saad
Divide the set of points into two overlapping subsets using
spectral bisection based on the Lanczos algorithm
Once the size of a subset is less than a threshold r , compute
using brute-force.
If a point belongs to more than one subset, its nearest neighbors
are selected from the neighbors in each of the subsets.

J. Chen, H.Fang and Y. Saad, Y. Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection,

Journal of Machine Learning Research, 10 (2009), pp. 1989–2012.Wojciech Czaja Harmonic Analysis and Big Data



2. Numerical Experiments: Synthetic Data

(a) Helix (b) Exact (c) Approximate

Figure : Mapping a one-dimensional helix embedded in R3. In the above
example the exponent used is approx. 1.16 (depends on the size of overlap).
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3. Landmarking

Random sampling.
Deterministic Landmarking via quantization techniques

PCM or Sigma-Delta quantization from analog-to-digital conversion
Vector quantization

Hierarchical clustering with cluster centroids
Supervoxel technology

W. Sun, A. Halevy, J. J. Benedetto, W. Czaja, W. Li, C. Liu, B. Shi, and R. Wang, “Nonlinear dimensionality reduction via the
enh-ltsa method for hyperspectral image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 7, no. 2, pp. 375 - 388, 2014.

W. Sun, A. Halevy, J. J. Benedetto, W. Czaja, W. Li, C. Liu, B. Shi, and H. Wu, “UL-isomap based dimensionality reduction
for hyperspectral imagery classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 89, no. 3, pp. 25 - 36, 2014.
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4. Approximate SVD

Rokhlin, Szlam and Tygert introduced a randomized,
approximate SVD algorithm (ASVD) that works well when matrix
is low rank.
ASVD algorithm constructs an approximate SVD UΣV T of a real
m × n matrix A that satisfies

||A− UΣV T || ≤ Cm1/(4i+2)σk+1

with high probability.
Since the normalized graph Laplacian is symmetric, we can use
the ASVD algorithm to obtain the r largest eigenvalues.
However, for the purposes of Laplacian Eigenmaps (LE), we
need the smallest eigenvalues. This can be accomplished in the
following manner. Let A be the normalized graph Laplacian. Use
ASVD with r = 1 to compute the largest eigenvalue, σ1. Next,
use ASVD again to find the largest r ′ eigenvalues of 2σ1I − A.
The smallest r ′ eigenvalues of A are given by subtracting the
results of the previous step from 2σ1.

V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component analysis, SIAM JMAA, 2009.
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4. Robust Principle Component Analysis

Consider PCA of data, with a fraction of the entries grossly
corrupted due to, e.g., sensor malfunction on some
measurements or random pixels occluded by irrelevant data.
E. Candès (Stanford) introduced a version of PCA that eliminates
such gross corruption via compressive sensing.
Algorithm relies on using Singular Value Decomposition (SVD)
which is computationally too expensive.
It can be combined with V. Rokhlin’s (Yale) randomized,
approximate SVD algorithm that works well when matrix is low
rank.

Speed up of Robust PCA (with A. Cloninger and G. Warnell)

Under certain assumptions on corrupted entries, Rokhlin’s
randomized SVD algorithm is used to speed up Candès PCA by
several orders of magnitude without loss of precision.
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Preimage Problem

How to map data back from feature space to input space?
The pre-image of ψ ∈ Rm is a point x ∈ Rd such that φ(x) = ψ.
Because x may not necessarily exist, this problem is ill-defined.
Thus, instead, we look for x ∈ Rd such that φ(x) is “as close as
possible” to ψ.
Optimality criteria for “closeness” include, e.g.,

x = arg min
x∈Rd

‖φ(x)− ψ‖2, (Distance)

or

x = arg max
x∈Rd

〈
φ(x)

‖φ(x)‖
,

ψ

‖psi‖

〉
. (Collinearity)

Preimage problem introduced by Mika, Schoelkopf, and Kwok.
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Recent developments

Bakir et al. (2004) exploit labeling available for the unknown
pre-image map, combined with a kernel regression technique.
G. Bakõr, A. Zien, and K. Tsuda, Learning to find graph pre-images, in Pattern Recognition. Springer, 2004, pp. 253–261.

G. H. Bakõr, J. Weston, and B. Schoelkopf, Learning to find pre-images, Advances in neural information processing systems, vol.

16, no. 7, pp. 449–456, 2004.

F. Segonne et al. (2007-09) use diffusion maps as their
embedding technique and seek to find a pre-image for the
purposes of learning shape priors.
P. Etyngier, F. Segonne, and R. Keriven, Shape priors using manifold learning techniques, in International Conference on

Computer Vision. IEEE, 2007, pp. 1–8.

A non-iterative solution to the pre-image problem proposed by P.
Honeine and C. Richard (2009), which improves the
computational complexity of the original algorithms.
P. Honeine and C. Richard, Solving the pre-image problem in kernel machines: A direct method, in IEEE International Workshop

on Machine Learning for Signal Processing. IEEE, 2009, pp. 1–6.
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Recent developments

Zheng et al. (2010) use weakly supervised penalty functions, in
conjunction with the optimization function, to improve the
pre-image learning process.
W.-S. Zheng, J. Lai, and P. C. Yuen, Penalized preimage learning in kernel principal component analysis, IEEE Transactions on

Neural Networks, vol. 21, no. 4, pp. 551–570, 2010.

R. Talmon, D. Kushnir, R. Coifman, I. Cohen, and S. Gannot
(2012), use diffusion kernels with interpolation to learn the
pre-image map.
R. Talmon, D. Kushnir, R. Coifman, I. Cohen, and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE

Transactions on Signal Processing, vol. 60, no. 3, pp. 1159–1173, 2012.

P. Arias, G. Randall, and G. Sapiro (2005) introduced Nystroem
extension for Kernel PCA pre-image.
P. Arias, G. Randall, and G. Sapiro, Connecting the out-of-sample and pre-image problems in kernel methods, 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1–8, Jun. 2007.

D. Kushnir, A. Haddad, and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification,

Applied and Computational Harmonic Analysis, 2012.
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Nystroem Extension for Kernel Methods

Given x 6= x1, . . . , xN , the Nystroem extension is an approximation of
φ(x):

φ̂(x) =
N∑

i=1

Kx,iφ(xi ),

where Kx,i is a normalized extension of the original kernel:

Kx,i =
k(x , xi )√

N∑
j=1

k(x , xj )
N∑

j=1
k(xi , xj )

.

Letting Kx := [Kx,i ]i=1,...,N , we have φ̂(x) = V ∗Kx , for V = [φ1, ..., φm].
Also, ‖Kx‖0 = #N (x) for a nearest neighbor Gaussian kernel.
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Preimage Problem with Nystroem Extension

Sapiro et al. proposed to modify the pre-image problem by using the
Nystroem extension. Let E ∈ Rm×N be the Nystroem extension for a
general dimension reduction scheme. Create a new objective
function by solving:

arg min
x∈RD

‖EKx − ψ‖2.

They note that, due to normalization and since ψ is constant,
minimizing ‖EKx − ψ‖2 is equivalent to maximizing the collinearity:

‖a− b‖2
2 = 1 + 〈b,b〉 − 2〈a,b〉.

However, they also point out that for a generic approximation of a
pre-image, one needs to assume that ψ is normalized, as well.
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Preimage Problem with Nystroem Extension

Since our objective is now in the form of a linear least squares
problem, the optimal Kx can be obtained by, e.g., calculating the
Penrose-Moore pseudo-inverse:

K̂x = E†ψ.

The map E in our construction is unitary, so we can define the pseudo
inverse as, e.g., the left inverse:

E† = (E∗E)−1E∗.

In the special case of kernel PCA, Kx,i = e−
‖x−xi‖

2
2

2σ2 . This yields

‖x − xi‖2
2 = −2σ2 log(K̂x,i ).

Finding x now reduces to a localization problem that is solved using
MDS and the distances between x and N (x).
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Preimage Problem for LE

With A. Cloninger and T. Doster (2014).
Laplacian Eigenmaps does not have a simple, closed form
solution that relates Kx,i to ‖x − xi‖2, as each Kx,i is a function of
‖x − xl‖2 for all xl ∈ N (x).
Utilize the sparsity of LE construction, ‖Kx‖0 = c � n, to solve
for ‖x − xi‖2

2.
Our approach:

Use pseudo-inverse or L1 regularization to obtain estimates for Kx .
Modify the Kx term to correct for noise.
Use Newton’s method or a constrained optimization to solve the
resulting system of equations.
This solution leads to a localization problem.
Solve the localization problem using MDS.
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Digit denoising

ε2 = .2 ε2 = .4 ε2 = .6
Digit kPCA LE w/ L1 kPCA LE w/ L1 kPCA LE w/ L1

0 4.28 5.38 4.08 5.09 4.20 4.75
1 5.37 4.85 5.02 4.64 5.13 4.45
2 4.27 5.12 3.92 4.76 3.68 4.54
3 4.17 4.73 4.02 4.30 3.94 4.32
4 3.66 4.65 3.66 4.32 3.37 3.72
5 3.54 4.63 3.48 4.39 3.35 3.99
6 4.20 5.41 3.98 5.07 3.99 4.85
7 4.33 4.85 4.35 4.50 4.04 3.90
8 3.68 4.44 3.33 4.16 3.55 4.10
9 3.97 4.72 3.76 4.25 3.67 4.01

Avg. 4.15 4.88 3.96 4.55 3.89 4.26

Table : SNR for MNIST Dataset Comparing Pre-image Algorithms for kernel
PCA, and Laplacian Eigenmaps with L1 Regularization. White Gaussian
noise added at several intensities, and the SNR is calculated over 10
samples of each digit by means of Liu, Tanaka and Okutomi algorithm.
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Diffusion maps and diffusion wavelets

Coifman and Lafon introduced the diffusion distance - a new
and efficient metric measuring distances in graphs and point
clouds:

D2
t (x , y) =

∑
z

(p(z, t |x)− p(z, t |y))2

φ0(z)
,

where each p(z, t |x) is the probability of transition in time t from
z to x , and φ0(z) is the stationary eigenvector of the probability
transition matrix.
R. R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis 21 (2006) no. 1, pp. 5–30.

Coifman and Maggioni used the diffusion distances to construct
a new notion of wavelet representations of graphs, diffusion
wavelets.
R. R. Coifman and M. Maggioni, “Diffusion wavelets”, ACHA , 2006, Vol. 21(1), 53–94.
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Diffusion maps and diffusion wavelets

Singer and Wu generalized this concept to vector diffusion
maps (VDM).
A. Singer and H. Wu, Vector diffusion maps and the connection Laplacian, Communications on Pure and Applied Mathematics

vol., 65 (2012) no. 8, pp. 1067–1144.

Bremer, Coifman, Maggioni, and Szlam showed how to construct
diffusion wavelet packets, generalizing the classical
construction of wavelet packets of Coifman and Wickerhauser.
J. C. Bremer, R. R. Coifman, M. Maggioni, and A. D. Szlam, Diffusion wavelet packets, Applied and Computational Harmonic

Analysis 21 (2006) no. 1, pp. 95–112.
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Kernel methods

Given is {δn}N
n=1, the standard orthonormal basis for V0 = RN .

V0 = span {δn : n = 1, . . . ,N}

K dilation

��
V1 = span {K (δn) : n = 1, . . . ,N}

{Φn = K (δn)}N
n=1 is a frame for V1 = K.
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Diffusion wavelets

We want to compute the eigenbasis {en}r
n=1 for K . Recall that

V1 = K = span {K (δn) : n = 1, . . . ,N} and r = dimV1.

Hence, {en}r
n=1 is an orthonormal basis for K .

Diffusion wavelets solution: Use a modified Gramm- Schmidt
orthogonalization algorithm on the frame {Φn = K (δn)}N

n=1 to obtain
an orthonormal basis {Ψn}r

n=1 for K.
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Applications of diffusion maps in remote sensing

Coifman and Hirn (2013) proposed to use diffusion maps and
their embeddings for change detection in hyperspectral imagery
over time.
Diffusion geometry principles via tree structures with evolving
graphs were proposed by Lee and Maggioni (2012).
Evolving Riemannian manifold with changing diffusion processes
were studied by H. Abdallah (2010).
Shape analysis via heat kernels was proposed by F. Mémoli
(2011).
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Diffusion wavelet frames

Another solution: Use the frame minimization algorithm on K to
obtain a FUNTF {Ψn}r

n=1. Since r = dim K, {Ψn}r
n=1 is an

orthonormal basis for K.
Additional advantage: A FUNTF generalizes the concept of an
orthonormal basis. We can obtain FUNTFs with s elements for
any s > r . The truly redundant FUNTFs can be optimized for
sparsity.
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Motivation for frames originating in remote sensing

Different classes of interest may not be orthogonal to each other;
however, they may be captured by different frame elements. It is
plausible that classes may correspond to elements in a frame but
not elements in a basis.
A frame generalizes the concept of an orthonormal basis. Frame
elements are non–orthogonal.
Frames provide over-complete data decompositions, often useful
for numerical stability and noise reduction.
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HYDICE Copperas Cove data set

HYDICE Copperas Cove, TX, HSI dataset with 23 different
classes.
If the 23 classes were to correspond roughly to orthogonal
subspaces, then one cannot achieve effective dimension
reduction less than dimension d = 23.
However, we could have a frame with 23 elements in a space of
reduced dimension d < 23.

Figure : HYDICE Copperas Cove, TX — http://www.tec.army.mil/Hypercube/
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Spectral signatures of selected classes

Figure : Spectral signatures of Walmart, pasture, and trees are not
orthogonal to each other.
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Comparison of spectral signatures

We focus on Walmart, pasture, and trees.

Angles between the mean signature of each class:
Walmart and pasture: 36 degrees.
Walmart and trees: 42 degrees.
Pasture and trees: 14 degrees.

Maximum angles between classes:
Walmart and pasture: 40 degrees.
Walmart and trees: 49 degrees.
Pasture and trees: 28 degrees.
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Frame vs ONB representations in HSI

Figure : Frame vectors
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ONB representations in HSI

Figure : An element of an orthonormal Laplacian eigenmap basis
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Frame representations in HSI

(a) Frame coefficients (b) Frame coefficients

(c) LE on frame coeffs (d) LE on frame coeffs

Frame coefficients provide a more suitable representation of the
classes of objects which may be spectrally close to each other.
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Frame optimization problems

Define the W (`1, `∞) Wiener amalgam penalty term

pk =
N∑

m=1

|〈ym,Ψk 〉| , for all k = 1, . . . , s.

Our frame–theoretic method has two steps:

Step 1: Choose q < s and find a pseudo-FUNTF Ψ = {Ψk}s
k=1 by

solving the following minimization problem:

Ψ = arg min
Ψ̃

TFP(Ψ̃) +
s2

d

s∑
k=q+1

pk . (1)

(1) is solved using a gradient descent method. The method is
initialized with a d × s matrix with entries that are uniformly
distributed on [0,1].
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Frame optimization problems

Step 2: Solve for the minimum `1 norm coefficients of the frame Ψ:

∀ m = 1, . . . ,N, âm = arg min
ã
‖ã‖1 such that ym = Ψã.

`1 minimization is used instead of `0 minimization.
Set am = â+

m.
Select ` significant frame elements, Ψk1 , . . . ,Ψk` .
The new coordinates for xm are (am[k1], . . . ,am[k`]).

J. J. Benedetto, W. Czaja, and M. Ehler, Frame potential classification algorithm for retinal data, Springer Proceedings Series: Intern. Fed.

for Medical and Biological Engineering, 26th Southern Biomedical Engineering Conference (2010).

J. J. Benedetto, W. Czaja, J. C. Flake, and M. Hirn, Frame based kernel methods for automatic classification in hyperspectral data, in:

Proceedings of the IEEE 2009 International Geoscience and Remote Sensing Symposium, vol. 4, pp. 697–700, 2009.
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Frame coefficients

(a) Original (b) Road coefficients

(c) Tree coefficients (d) White house coefficients
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Frame coefficients

(a) Original (b) Road coefficients

(c) Tree coefficients (d) Dirt/grass coefficients
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Frames in remote sensing

Specifically constructed frames with built-in features have been
utilized in remote sensing data processing (E. H. Bosch, A.
Gonz’alez, J. Vivas, and G. Easley)
2D tight frames that provide a new way to analyze, visualize, and
process data at multiple scales and directions was proposed by
Bosch et al.
Olshausen and his collaborators used learned dictionaries, which
are frames, in their work on improving the performance of
supervised classiffication algorithms for HSI data.
Z. Xing, M. Zhou, A. Castrodad, G. Sapiro and L. Carin
constructed dictionary learning algorithms for noisy and
incomplete Hyperspectral images.
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Feature Space Rotation for LE

Our final example deals with data recovery which exploits
heterogeneous data structures. We begin with a brief description of
the feature space rotations.

Feature space rotation for LE is a modification from rotation for
diffusion maps, introduced by Coifman and Hirn (2013).

R. R. Coifman and M. Hirn, Diffusion maps for changing data, Applied and Computational Harmonic Analysis, vol. 36 (2014) no. 1, pp. 79–107.

For LE, define weight function as a(x , y) = 1
2

(
δx,y − k(x,y)√

m(x)m(y)

)
,

where m(x) =
∑

y k(x , y).
LE distance for two different kernels, kα and kβ , is defined as

D(xα, yβ) = ‖aα(x , ·)− aβ(y , ·)‖2.

Can show D(xα, yβ) = ‖Φα(x)−Oβ→αΦβ(y)‖`2 , where

(Oβ→αx)i =
∑

j

xj〈φ(i)
α , φ

(j)
β 〉L2(X), x ∈ `2

β .
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HSI and LIDAR Data: Gulfport

With A. Cloninger and T. Doster (2014) we proposed to use LE
preimage for a data recovery application in heterogeneous setting.

Figure : Lidar and HSI data were acquired concurrently and coregistered
using Optech Inc. Gemini Airborne Topographic LIDAR Mapper (ALTM)
system, and ITRES Inc. hyperspectral Compact Airborne Spectrographic
Imager (CASI-1500). Out of the original 72 HSI bands, 58 bands were
selected for higher signal to noise ratio. Courtesy of Paul Gader, University of
Florida, and Alina Zare, University of Missouri.
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Results

Figure : LIDAR Heat Map, Occluded region, and Reconstruction from HSI

A. Cloninger, Exploiting Data Dependent Structure for Improving Sensor Acquisition and Integration, Ph.D. Thesis, University of Maryland

College Park, 2014

T. Doster, Harmonic Analysis Inspired Data Fusion for Applications in Remote Sensing, Ph.D. Thesis, University of Maryland College Park,

2014

Wojciech Czaja Harmonic Analysis and Big Data



Inpainting

Figure : Euler Elastica Inpainting directly (left) and in the new representation
(right)

J. Shen, S. H. Kang, and T. Chan, Euler’s Elastica and Curvature-Based Inpainting, SIAM J. Appl. Math., 63 (2003) no. 2, pp. 564–592.
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Summary and Conclusions

Over these 3 days of lectures we have covered a wide range of
methods in harmonic analysis that can be potentially applied in
Big Data applications.
Two major classes of techniques we have introduced were:
multiscale methods and data-dependent kernel methods.
There is also a long list of topics in harmonic analysis which can
be applied in these applications, but which we have not had an
opportunity to cover in this short tutorial.
The major points which we emphasized are that harmonic
analysis is one of the best approaches to deal with big data, but
there is still a lot to be done before HA techniques are widely
applicable in true big data settings.
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