
Harmonic Analysis and Big Data: Introduction

Wojciech Czaja

Institute for Mathematics and Its Applications 2015 PI Summer
Graduate Program

College Park, August 5–7, 2015

Wojciech Czaja Harmonic Analysis and Big Data



Introduction

There is an abundance of available data. This data is often large,
high-dimensional, noisy, and complex, e.g., geospatial imagery.
Typical problems associated with such data are to cluster,
classify, or segment it; and to detect anomalies or embedded
targets.
Our proposed approach to deal with these problems is by
combining techniques from harmonic analysis and machine
learning:

Harmonic Analysis is the branch of mathematics that studies the
representation of functions and signals.
Machine Learning is the branch of computer science concerned
with algorithms that allow machines to infer rules from data.
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Big Data

“Big Data” refers to the exponential growth data, with many
challenging tasks of analyzing and efficiently finding the important
information that is given in this complex setting.

The roots of big data are in the data storage, database
management, and data analytics for, both, commercial and
non-profit applications.
The integration of many large datasets is a primary source of big
data problems present in the modern scientific and research
environment, as is evident in applications ranging from ‘omics’
data analysis for cancer research, to studies of social networks.
Another source of big data problems are large and
heterogeneous dynamic data sets, such as those arising in the
context of climate change analysis, or for the analysis of network
traffic patterns.
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Big Data Characteristics

In view of the above, big data can be identified by the following:
volume;
heterogeneity;
dynamics.

In addition to the above major characteristics, we can add: ambiguity,
complexity, noise, variability, etc.

Wojciech Czaja Harmonic Analysis and Big Data



Big Data Example 1

Large Eddy simulation (LES) around an Eppler foil at Re=10,000. A
series of high fieldity LES of the flow around Eppler airfoils has been
conducted to generate a comprehensive data base. Reynolds
numbers vary from 10,000 to 120,000 and the angle of attach varies
from 0 to 20 degrees.
Courtesy of Prof. Elias Balaras (GWU), via US Air Force contract FA9550-12-C-058 (2012): Learning from Massive Data Sets Generated
by Physics Based Simulations
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Big Data Example 2

A simplified case of the previous LES for a 3-dimensional flow over a
dimpled plate.
Courtesy of Prof. Elias Balaras (GWU), via US Air Force contract FA9550-12-C-058 (2012): Learning from Massive Data Sets Generated
by Physics Based Simulations

Wojciech Czaja Harmonic Analysis and Big Data



Big Data Example Estimation

Let us provide a small numerical estimation:
2,000 x 1,000 x 1,000 = 2 x 109 grid points;
Each grid point characterized by 3 spatial coordinates and 3
velocity components, pressure, plus possibly some other
parameters;
Flow simulation for 200 time steps;
One way to look at it: 2 x 109 points in a space of dimension
1,400;
As an example, think of computing PCA for M points in N
dimensional space. The cost is O(MN2) + O(N3);
In our case this results in a problem with complexity on the order
of 4 x 1015 = 4 petaFLOPs;
Lawrence Livermore National Laboratory’s IBM Sequoia reaches
16 petaFLOPS (16 x 1015 floating point operations per second) -
it was considered to be the fastest computer in 2012, it runs 1.57
million PowerPC cores, costs approx. 250M USD.
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Another Big Data Example

Consider the human genome. First estimates pointed at 100,000
genes. Nowadays this number has been scaled down to
appprox. 45,000.
There are many ways of representing genes. One of the more
popular is by means of base pairs: approx. three billion DNA
base pairs represent human genome.
Alternatively, we could consider gene expressions (think of it as a
function). There are many ways of assembling such expressions,
and they are different for different individuals. Hence resulting in
a much larger data set.
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HA and Big Data

Multiscale methods
Compressive sensing
Sparse representations
Geometric and graph-based methods
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Multiscale representations

Multiscale representation (Multiresolution analysis (MRA),
pyramid algorithms) can be described as a class of design
methods in representation theory, where the input is subject to
repeated transformation (filtering) in order to extract features
associated with different scales.
In image processing and computer graphics the concept of
multiscale representations can be traced back to P. Burt and E.
Adelson, and J. Crowley.
In mathematics, it is associated with wavelet theory and MRA as
introduced by Y. Meyer and S. Mallat
S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE TPAMI, 1989, Vol. 11, pp. 674–693.

Multiscale representations found many applications to image
processing and remote sensing: compression, feature detection,
segmentation, classification, but also in registration and image
fusion.
G. Pajares and J. Cruz, “A wavelet-based image fusion tutorial”, Pattern Recognition, 2004, Vol. 37(9), pp. 1855–1872.
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Limitations of traditional wavelet representations

Wavelets provide optimal representations for 1-dimensional
signals in the sense of measuring asymptotic error with N largest
coefficients in wavelet expansion, and are superior to
Fourier-type representations.
However, in dimensions higher than 1, wavelets are known to be
suboptimal for representing objects with curvilinear singularities
(edges), even though they outperform Fourier methods.
D. Donoho et al., “Data compression and harmonic analysis”, IEEE TIT, 1998, Vol. 44, pp. 2435–2476.

A number of techniques have been proposed since the
introduction of wavelets to address this issue, and to find better
description of geometric features in images.
L. Jacques et al., “A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity”,

Signal Processing, 2011, Vol. 91, pp. 2699–2730.
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Anisotropic Harmonic Analysis

Harmonic analysis decomposes signals into simpler elements
called analyzing functions.
Classical HA methods include Fourier series and aforementioned
wavelets. These have proven extremely influential and quite
effective for many applications.
However, they are fundamentally isotropic, meaning they
decompose signals without considering how the signal varies
directionally.
Wavelets decompose an image signal with respect to translation
and scale. Since the early 2000s, there have been several
attempts to incorporate directionality into the wavelet
construction.
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Multiscale Directional Representations

Early attempts to make wavelets more sensitive to directionality
included appropriate filter design, anisotropic scaling, steerable
filters, and similar techniques.
Directional wavelets: J.-P. Antoine, R. Murenzi, P.
Vandergheynst, and S. Ali introduced more complicated group
actions for parametrization of 2-dimesnional wavelet transforms,
including rotations or similitude group. These results were later
generalized to construct wavelets on sphere and other manifolds.

J.-P. Antoine, D. Rosca, P. Vandergheynst,“Wavelet transform on manifolds: old and new approaches”, ACHA, 2010, Vol. 28 (2),189–202.

Subsequently Radon transform has been introduced in
combination with wavelet transforms to replace the angular
parametrization; This results in systems such as ridgelets (E.
Candès and D. Donoho) or Gabor ridge functions (L. Grafakos
and C. Sansing)
Contourlets: M. Do and M. Vetterli constructed a
discrete-domain multiresolution and multidirection expansion
using non-separable filter banks, in much the same way that
wavelets were derived from filter banks.
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Multiscale Directional Representations

Curvelets: E. Candès and D. L. Donoho introduced the
curvelets as an efficient tool to extract directional information
from images. Curvelets consist of translations and rotations of a
sequence of basic functions depending on a parabolic scaling
parameter. The curvelet transform is first developed in the
continuous domain and then discretized for sampled data.
Wavelets with Composite Dilations: K. Guo, D. Labate, W.-Q.
Lim, B. Manning, G. Weiss, and E. Wilson studied affine systems
built by using a composition of two sets of matrices as the
dilation.
Shearlets: D. Labate, K. Guo, G. Kutyniok, and G. Weiss
introduced a special example of the Composite Dilation
Wavelets.
Surfacelets (Do, Lu), bandlets (Le Pennec, Mallat), brushlets
(Meyer, Coifman), wedgelets (Donoho), phaselets (Gopinath),
complex wavelets (Daubechies), surflets (Baraniuk), etc etc ...
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Anisotropic Harmonic Analysis

These constructions incorporate directionality in a variety of
ways.
To summarize, some of the major constructions include:

Ridgelets.
E. Candès. Ridgelets: theory and applications. PhD thesis. (1998).

Curvelets.
D. Donoho and E. Candès. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Curve and Surface Fitting. (1999).

Contourlets.
M. Do and M. Vetterli. Contourlets. Beyond Wavelets. (2001).

Shearlets.
D. Labate, W.-Q. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional representation using shearlets. Proc. SPIE 5914. (2005).

Wavelets, ridgelets, curvelets, and shearlets are surprisingly
related, as they all are special cases of the recently introduced
α−molecules.

P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer. α−molecules. arXiv: 1407.4424. (2014).
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Multiscale Directional Representations

Many of the aforementioned representations were designed
specifically for dealing with images, i.e., for the case of
2-dimensional Euclidean space.
Multiscale directional representations can also be constructed
analogously for higher dimensional spaces, as well as for some
manifolds.
A different approach is needed to deal with discrete structures,
such as graphs, networks, or point clouds. R. Coifman and M.
Maggioni proposed to use diffusion processes on such structures
to introduce the notion of scale and certain directions.
R. R. Coifman and M. Maggioni, “Diffusion wavelets,” ACHA, 2006, Vol. 21(1), pp. 53–94.
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Anisotropic Harmonic Analysis

A useful model for real images is the class of cartoon-like
images, E2(R2).
Roughly, they are functions that are smooth away from a smooth
curve of discontinuity.
Let f ∈ E2(R2) and let fN be its best N-term approximation with
respect to a set of analyzing functions. The optimal asymptotic
decay rate of ||f − fN ||22 is O(N−2),N →∞, achieved adaptively.
Up to a log factor, curvelets, contourlets, and shearlets satisfy
this optimal decay rate (ridgelets are only optimal for linear
boundaries). Hence, these analyzing functions are essentially
optimally sparse for cartoon-like images. Wavelets can only
achieve O(N−1). Fourier series are even worse with O(N−1/2).
We focus on shearlets since they have multiple, efficient
numerical implementations.
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Shearlets
Continuous shearlets in R2 depend on three parameters: the scaling
parameter a > 0, the shear parameter s ∈ R, and the translation
parameter t ∈ R2, and they are defined as follows:
We define the parabolic scaling matrices

Aa =

(
a 0
0 a1/2

)
, a > 0

and the shearing matrices

Ss =

(
1 s
0 1

)
, s ∈ R.

Also, let DM be the dilation operator defined by

DMψ = |det M|−1/2ψ(M−1·), M ∈ GL2(R)

and Tt the translation operator defined by

Ttψ = ψ(· − t), t ∈ R2.
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Shearlets

Definition

Let ψ ∈ L2(R2). The Continuous Shearlet Transform of f ∈ L2(R2) is

f 7→ SHψf (a, s, t) = 〈f ,TtDAaDSsψ〉,a > 0, s ∈ R, t ∈ R2.

Parabolic scaling allows for directional sensitivity.
Shearing allows us to change this direction.
By carefully choosing ψ and discretizing the parameter space,
we can decompose f ∈ L2(R2) into a Parseval frame.
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Shearlets

It’s generally assumed that ψ̂ splits as
ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).

The basic shearlet ψ is only used in a horizontal cone, while the
reflection of ψ across the line ξ2 = ξ1 is used in a vertical cone. A
scaling function φ is used for the low-pass region. This
construction is known as cone-adapted shearlets.

Figure : Frequency tiling for cone-adapted shearlets.

G. Kutyniok and D. Labate, eds. Shearlets: Multiscale analysis for multivariate data. Birkhäuser. (2012).
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Shearlet Implementations

Shearlets have several efficient numerical implementations in
MATLAB that are freely available.

2D Shearlet Toolbox (Easley, Labate, and Lim). 1

Shearlab (Kutyniok, Shahram, Zhuang et al.). 2

Fast Finite Shearlet Transform (Häuser and Steidl).3

We used the last option (FFST) here, which is in many ways the
most intuitive of the implementations.

1http://www.math.uh.edu/˜dlabate/software.html
2http://www.shearlab.org/
3http://www.mathematik.uni-kl.de/imagepro/software/ffst/
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Fast Finite Shearlet Transform (FFST)

Consider an M × N image. Define j0 := blog2 max{M,N}c. We
discretize the parameters as follows:

aj := 2−2j =
1
4j , j = 0, . . . , j0 − 1,

sj,k := k2−j , −2j ≤ k ≤ 2j ,

tm :=
(m1

M
,

m2

N

)
, m1 = 0, . . . ,M − 1, m2 = 0, . . . ,N − 1.

Note that the shears vary from −1 to 1. To fill out the remaining
directions, we also shear with respect to the y -axis.
Shearlets whose supports overlap are “glued” together.
The transform is computed through the 2D FFT and iFFT.
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Fast Finite Shearlet Transform

Figure : Frequency tiling for FFST.

S. Häuser and G. Steidl. Fast finite shearlet transform: a tutorial. arXiv:1202.1773. (2014).
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Additional Picture for FFST

Figure : ψ̂1 and ψ̂2 for the FFST (ibid.).
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Fast Finite Shearlet Transform

Figure : Demonstration of output from the FFST on the cameraman image.
The shearlet coefficients are from scale 3 (out of 4) in the direction of slope 4.
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How Well Can the FFST Resolve Directions?

We can prove that the direction of the shearlet coefficient of maximum
magnitude determines the direction, at least in the ideal case.

Theorem (with D. Weinberg, 2015)

Let f (x) = Hy>rx be a 2D Heaviside function and assume WLOG that
|r | ≤ 1. Fix a scale j and position m. Then the shearlet coefficient of
the FFST SH(f )(j , k ,m) is only nonzero for at most two consecutive
values of the shearing parameter k. The value of k that maximizes
|SH(f )(j , k ,m)| satisfies

∣∣sj,k − r
∣∣ < 1

2j .

Furthermore, for this k, sj,k is closest to r over all k.

D. Weinberg, Multiscale and Directional Representations of High-dimensional Information in Remotely Sensed Data, Ph.D. Thesis,

University of Maryland College Park, 2015
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Sketch of Proof

We first show by direct computation that∫
R ψ̂(−rω, ω)dω =

∫
R ψ(x , rx)dx for all ψ ∈ S(R2), r ∈ R.

Since ∂
∂y Hy>rx = δy−rx , Ĥy>rx = 1

2πiω2
δ̂y−rx .

Using the above, 〈δ̂y−rx , ψ̂〉 =
∫
R ψ̂(−rω, ω)dω, ψ̂ ∈ C∞c (R2).

We compute

SH(f )(j , k ,m) = 〈f , ψjkm〉

= 〈f̂ , ψ̂jkm〉

=

∫
R2

1
2πiω2

δ̂y−rx (ω1, ω2)ψ̂jkm(ω1, ω2)dω1dω2

=
1

2πi

∫
R

1
ω2
ψ̂jkm(−rω2, ω2)dω2.
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Sketch of Proof

By the way ψ̂ decomposes,

ψ̂jkm(−rω2, ω2) = ψ̂1(4−jω2)ψ̂2(−2j r+k) exp(−2πi(−rω2m1/M+ω2m2/N)).

Since k only appears in ψ̂2(−2j r + k), we examine that term
separately.
By assumption, ψ̂2 is a positive, smooth function supported on
[−1,1] that is strictly increasing on [−1,0] and decreasing on
[0,1].
Hence, to obtain a nonzero shearlet coefficient, we must have
| − 2j r + k | < 1 or |sj,k − r | < 1/2j .
The shearlet slopes differ by 1/2j , so this can only occur at most
twice.
The coefficient is maximized when −2j r + k is closest to 0, that
is, when sj,k is closest to r .
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Shearlets - a few results

Shearlet multiresolution analysis theory and decomposition
algorithm - G. Kutyniok and T. Sauer
Shearlet approach to edge detection - S. Yi, D. Labate, G.
Easley, and H. Krim
Shearlet-based method to invert the Radon transform - F.
Colonna, G. R. Easley, K. Guo, and D. Labate

All of the above results are in the setting of R2. But we are also
interested in higher dimensional constructions.
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Translation-dilation-shearing group

E. Cordero, F. DeMari, K. Nowak, and A. Tabacco introduced the
following group interpretation of shearlets, by means of the
Translation-Dilation-Shearing Group:{

At,`,y =

(
t−1/2S`/2 0

t−1/2By S`/2 t1/2(St
−`/2)

)
: t > 0, ` ∈ R, y ∈ R2

}
,

where By =

(
0 y1
y1 y2

)
, y = (y1, y2)t ∈ R2, S` =

(
1 `
0 1

)
.

Stems from attempts to characterize reproducing subgroups of
R2d o Sp(2d ,R).
We aim to generalize it to d ≥ 2.
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Translation-dilation-shearing group in Rk

For k ≥ 1, we define (TDS)k to be{
At,`,y =

(
t−1/2S`/2 0

t−1/2By S`/2 t1/2St
−`/2)

)
: t > 0, ` ∈ Rk−1, y ∈ Rk

}
y = (y1, y2, · · · , yk )t ∈ Rk

By =


0 0 . . . y1
0 0 . . . y2
...

...
. . .

...
y1 y2 . . . yk

, S` =


1 0 . . . 0 `1
0 1 . . . 0 `2
...

...
. . .

...
0 0 . . . 1 `k−1
0 0 . . . 0 1


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Translation-dilation-shearing group in Rk

The symplectic group Sp(d ,R) is the subgroup of 2d × 2d
matrices g ∈ M(2d ,R) which satisfy gtJ g = J , where

J =

(
0 Id
−Id 0

)
.

Theorem (with E. King)

For any k ≥ 1, (TDS)k is a Lie subgroup of Sp(k ,R) of dimension 2k.
The left Haar measures, up to normalization, of (TDS)k are
dτ = dt

t2 dy for k = 1 and dτ = dt
tk+1 dyd` for k > 1, where dt, dy and

d` are the Lebesgue measures over R+, Rk and Rk−1, respectively.

E. J. King, Wavelet and frame theory: frame bound gaps, generalized shearlets, Grassmannian fusion frames, and p-adic wavelets, Ph.D.
Thesis, University of Maryland College Park, 2009

W. Czaja, E. King, Isotropic shearlet analogs for L2(Rk ) and localization operators, Numerical Functional Analysis and Optimization 33
(2012), no. 7-9, pp. 872–905

W. Czaja, E. King, Shearlet analogs of L2(Rd ), Math. Nachr. 287 (2014), no. 89, pp. 903–916
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Reproducing functions

We are interested in reproducing formulas, which hold for all
f ∈ L2(Rd ),

f =

∫
H
〈f , µe(h)φ〉µe(h)φdh,

where H is a Lie subgroup of a particular Lie group, µe is a
representation of that group, φ is a suitable window in L2(Rd ),
and the equality is interpreted weakly.
Define the metaplectic representation:

µ(At,`,y )f (x) = tk/4e−iπ〈By x,x〉f (t1/2S−`/2x).
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Calderón admissibility condition

Theorem (Calderón formula, with E. King)

The following equality holds

‖f‖2
L2(Rk ) =

∫
(TDS)k

|〈f , µ(At,`,y )φ〉|2 dt
tk+1 dyd`

for all f ∈ L2(Rk ), if and only if

2−k =

∫
Rk

+

|φ(y)|2 dy
y2k

k
=

∫
Rk

+

|φ(−y)|2 dy
y2k

k
(1)

0 =

∫
Rk

+

φ(y)φ(−y)
dy
y2k

k
. (2)

The case k = 1 was proven by DeMari and Nowak.
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Building reproducing functions

Theorem (with E. King)

Let f : R→ R be supported in some interval [0,b], b > 0 and satisfy∫
f 2(x)dx = 1

4 . For a > 0, define

φ(x) = x (f (x − a)− f (−x + a + 2b) + f (x + a + b) + f (−x − a− b)) .

Then φ is a reproducing function for (TDS)1.

f = 1[0, 1
4 ]

f = 1√
π

cos ·1[0,π2 ]

f ∈ C∞c (R) has support in [0,b] and is scaled so that
∫

f 2 = 1
4 ,

then the resulting φ will also lie in C∞c
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Uniqueness of generalization

Dahlke, Steidl, and Teschke introduced another k -dimensional
shearlet transform.
This construction does not yield a reproducing subgroup of
Sp(k ,R).
The only pseudo-TDS collection which is a reproducing
subgroup of Sp(k ,R) and has a representation onto the
operators Ty Dt−1(St

`) is (TDS)k .
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Shearlets are not perfect

Shearlet algorithms result in frames with high redundancy.
There does not exist any compactly supported MRA shearlet
with a desirable level of regularity (Houska, 2009), e.g., Hölder
continuous in e2 with exponent β > 0.5.
Most common implementations of shearlets involve separable
generating functions..
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Composite Dilation Wavelets

We return to the origin of wavelets: translations and dilations.
Shearlets descend from the idea of composite wavelets as
introduced by Guido Weiss.
For any c ∈ GLn(R) we define the dilation operator
Dc : L2(Rn)→ L2(Rn) as Dc f (x) = |det c|−1/2f (c−1x).
Let A,B ⊂ GLn(R) and L ⊂ Rn be a full rank lattice, then the set
{ψ1, . . . ψL} ⊂ L2(Rn) forms a Composite Dilation Wavelet (CDW)
system if the collection

AABL(ψ) = {DaDbTkψ
i : a ∈ A,b ∈ B, k ∈ L,1 ≤ i ≤ L}

forms a normalized tight frame.
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Composite Dilation Wavelets

Under the assumption that B is a finite group with B(L) ⊂ L and
|det b| = 1, for b ∈ B, Manning (2012) proposed to group the
dilations B and the lattice L together into a single group of shifts
Γ = BL.
B. Maning, Composite Multiresolution Analysis Wavelets, Ph.D. Thesis, Washington University in St. Louis, 2012

For any γ ∈ Γ, we define the shift operator Lγ : L2(Rn)→ L2(Rn)
as Lγ f (x) = f (γ−1(x)).
Given a ∈ GLn(R), the set {ψ1, . . . , ψL} forms a CDW if the
system

AaΓ(ψ) = {Daj Lγψi : j ∈ Z, γ ∈ Γ,1 ≤ i ≤ L}

forms a tight frame.
CDW are usual wavelets except the commutative group of
translates Zn is replaced with the non-commutative group of
shifts Γ.
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Composite Dilation Wavelets

Figure : Example of a composite dilation wavelet. The picture on the left is
the Fourier transform of the scaling function. The picture on the right is the
Fourier transform of the wavelet.
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Variational methods with directional multiscale
representations

Ginzburg-Landau energy functionals have been used by A.
Bertozzi and her collaborators in a number of image processing
applications that involve variational techniques.
J. Dobrosotskaya and A. Bertozzi, “Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,” SIAM J.

Imaging Sci., 2013, Vol. 6 (1), pp. 698–729.

Wavelet-modified GL energies reduce blurring effects of the TV
functionals, increase robustness, and sharpen edges.
Isotropic wavelets are unable to take advantage of directional
content. Anisotropy of wavelet bases and wavelet generator
functions leads to biased analysis of singularities along different
directions.
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Shearlet Ginzburg-Landau energy

Let
ψi,j,t = 23i/2ψ(Sj

1Ai
2x − t),

for x ∈ R2 and ψ̂(ξ) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).
Shearlet Besov seminorm is

‖u‖2
S =

∞∑
i=0

22i
∑
j∈Z

∫
(|〈u, ψi,j,t〉|2 + |〈u∗, ψi,j,t〉|2) dt ,

where u∗(x , y) = u(y , x).
Shearlet Ginzburg-Landau energy is

SGLα(u) =
α

2
‖u‖2

S +
1

4α

∫
((u2(x)− 1)2 dx .
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Composite Wavelet Ginzburg-Landau energy

Let
ψi,γ = Da−i Lγψ,

for i ∈ Z and γ ∈ Γ.
Composite Wavelet Besov seminorm is

‖u‖2
CW =

∞∑
i=0

|det a|i
∑
γ∈Γ

|〈u, ψi,γ〉|2.

Composite Wavelet Ginzburg-Landau energy is

CWGLα(u) =
α

2
‖u‖2

CW +
1

4α

∫
((u2(x)− 1)2 dx .
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Applications to data recovery

In many imaging applications variational methods are based on
minimizing an energy consisting of two parts: regularizing and
forcing terms.
DGL energy (D = S or CW) plays the role of a regularizer, while
the forcing term is expressed as the L2 norm between the
minimizer u and the known image f on the known domain:

E(u) = DGL(u) +
µ

2
‖u − f‖2

L2(Ω).

We recover the complete image as the minimizer of the modified
DGL functional.
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Applications to data recovery

The minimizer is a stable state solution of the respective gradient
descent equation:

ut = α∆Du − 1
ε

W ′(u)− µχΩ(u − f )

Here χΩ is the characteristic function of the known domain,
W (x) = (x2 − 1)2, and

∆CW u = −
∞∑
i=0

|det a|i
∑
γ∈Γ

〈u, ψi,γ〉ψi,γ ,

or

∆S(u) = −
∞∑
i=0

22iui −
∞∑
i=0

22i ((u∗)i )
∗.
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Shearlet inpainting

Figure : Results of anisotropic shearlet inpainting which preserves the
directional distribution of the input data, as an illustration of the need to know
the local and global directions in image processing.

W. Czaja, J. Dobrosotskaya, B. Manning, Shearlet representations for reconstruction of missing data, Proc. SPIE Vol. 8750 (2013), no. 8750-2
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Composite Dilation Wavelet Inpainting

(a) (b) (c)

Figure : (a) Original image with gray area missing, (b) image reconstructed
via minimizing CWGL after 100 iterations, ε = 1/24, µ = 1600; (c)
post-processed images (b)
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Composite Dilation Wavelets vs Shearlets

(a) (b)

Figure : (a) Original image with gray area missing, (b) Shearlet inpainting
does not show the required anisotropy, post-processing does not help
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Composite Dilation Wavelets may fail too

Figure : Another example of a composite dilation wavelet. The figure above
describes the Haar scaling function and wavelet for the twelve element group
B. The scaling function is supported and constant on both the light and dark
shaded areas. There are four wavelet functions. Each wavelet function is
supported on both the light and dark shaded areas and is constant on each
of the smaller triangles.
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Composite Dilation Wavelets may fail too

(a) (b)

Figure : (a) Original image with a missing annulus is shown in gray, (b) the
output of the inpainting simulation fails to reproduce our earlier results.

Wojciech Czaja Harmonic Analysis and Big Data



Applications to superresolution

Jointly with researchers from NGA, we exploited applications of
directional methods for image super-resolution.
E. H. Bosch,et al., “Multiscale and multidirectional tight frames for image analysis,” Proc. SPIE, Vol. 8750, 2013.

(a) Original Image

(b) Bicubic Interpolation (c) Tight Frame Superresolution

Figure : Image taken from the MUUFL HSI-LIDAR dataset, courtesy of P.
Gader (UFL) and A. Zare (UM). Spatial subset of a false-RGB combination
comparing directional tight frame scheme to bicubic interpolation for doubling
the resolution in each direction.
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Summary and Conclusions

We have covered some of the multiscale directional
representations systems in use today.
These systems come equipped with good approximation
properties and have fast implementations.
The difficulties arise in higher dimensions, where the
computational complexity increases.
Additionally, for more complex data structures, the a priori notion
of direction may not be well defined.
Finally, determining the set of directions without the reference to
specific data is limiting. Next, we shall take a look at data
dependent representations.
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