Algebro-Geometric Techniques and Geometric Insights for Finite Frames

Nate Strawn Department of Mathematics Duke University

Finite Frames: Early Motivations

- Optimization over spaces of finite frames for applications
- Weaver's formulation of the Kadison-Singer Conjecture
- Development of new techniques for infinite frames

A collection of vectors $\{f_i\}_{i=1}^N \subset \mathbb{R}^d$ is a **frame** if there are constants $0 < A \leq B$ such that

$$A||x||^2 \le \sum_{i=1}^N |\langle x, f_i \rangle|^2 \le B||x||^2 \text{ for all } x \in \mathbb{R}^d.$$

If we can take A = B, then we say that the frame is **tight**.

If we have that $||f_i|| = 1$ for all *i* in the *N*-set [N], then we say that the frame is **unit-norm**.

If a finite frame is both unit-norm and tight, we say that it is a **FUNTF**.

Identification with Matrices

In this talk, we identify an indexed finite frame with the matrix

$$F = \begin{pmatrix} \langle f_1, e_1 \rangle & \langle f_2, e_1 \rangle & \cdots & \langle f_N, e_1 \rangle \\ \langle f_1, e_2 \rangle & \langle f_2, e_2 \rangle & \cdots & \langle f_N, e_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle f_1, e_d \rangle, & \langle f_2, e_d \rangle & \cdots & \langle f_N, e_d \rangle \end{pmatrix} \in M_{d,N}$$

where $\{e_i\}_{i \in [d]}$ is the standard orthonormal basis of \mathbb{R}^d .

Identification with Matrices

We also write $F = [f_1 \ f_2 \cdots f_N]$. Letting F^* denote the transpose of this matrix, we have the **frame operator** of F

$$FF^* = \sum_{i=1}^{N} f_i f_i^* = \sum_{i=1}^{N} \begin{pmatrix} \langle f_i, e_1 \rangle \langle f_i, e_1 \rangle & \langle f_i, e_1 \rangle \langle f_i, e_2 \rangle & \cdots & \langle f_i, e_1 \rangle \langle f_i, e_d \rangle \\ \langle f_i, e_2 \rangle \langle f_i, e_1 \rangle & \langle f_i, e_2 \rangle \langle f_i, e_2 \rangle & \cdots & \langle f_i, e_2 \rangle \langle f_i, e_d \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle f_i, e_d \rangle \langle f_i, e_1 \rangle & \langle f_i, e_d \rangle \langle f_i, e_2 \rangle & \cdots & \langle f_i, e_d \rangle \langle f_i, e_d \rangle \end{pmatrix}$$

and the **Grammian** of F

$$F^*F = \begin{pmatrix} \langle f_1, f_1 \rangle & \langle f_1, f_2 \rangle & \cdots & \langle f_1, f_N \rangle \\ \langle f_2, f_1 \rangle & \langle f_2, f_2 \rangle & \cdots & \langle f_2, f_N \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle f_N, f_1 \rangle & \langle f_N, f_2 \rangle & \cdots & \langle f_N, f_N \rangle \end{pmatrix}.$$

Identification with Matrices

Lemma. Let $F \in M_{N \times d}$.

• F is a tight frame with frame bounds $A = B = \frac{N}{d}$ if and only if

$$F \in St_{d,N} = \{X \in M_{d,N} : XX^* = \frac{N}{d}I_d\}.$$

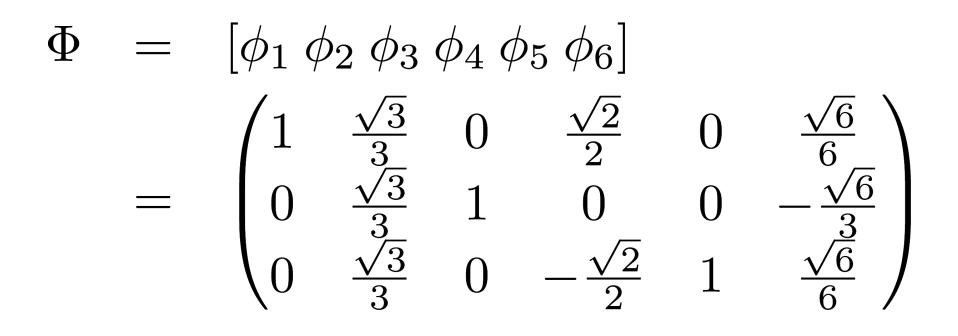
• F is unit-norm if and only if

 $F \in \mathbb{T}_{d,N} = \{ X = [x_1 \cdots x_N] \in M_{d,N} : ||x_i|| = 1 \text{ for all } i \in [N] \}$

• F is a FUNTF if and only if

$$F \in St_{d,N} \cap \mathbb{T}_{d,N} = \mathcal{F}_{d,N}.$$

Our Standard Examples



Our Standard Examples

$\Xi = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$

Spaces of FUNTFs as Algebraic Varieties

An algebraic variety is the zero set of a system of polynomials.

Spaces of FUNTFs as Algebraic Varieties

 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{pmatrix}$ is in $St_{3,6}$ if and only if

- $x_{11}^2 + x_{12}^2 + x_{13}^2 + x_{14}^2 + x_{15}^2 + x_{16}^2 = 2$
- $x_{21}^2 + x_{22}^2 + x_{23}^2 + x_{24}^2 + x_{25}^2 + x_{26}^2 = 2$
- $x_{31}^2 + x_{32}^2 + x_{33}^2 + x_{34}^2 + x_{35}^2 + x_{36}^2 = 2$
- $x_{11}x_{21} + x_{12}x_{22} + x_{13}x_{23} + x_{14}x_{24} + x_{15}x_{25} + x_{16}x_{26} = 0$
- $x_{11}x_{31} + x_{12}x_{32} + x_{13}x_{33} + x_{14}x_{34} + x_{15}x_{35} + x_{16}x_{36} = 0$
- $x_{21}x_{31} + x_{22}x_{32} + x_{23}x_{33} + x_{24}x_{34} + x_{25}x_{35} + x_{26}x_{36} = 0$

Spaces of FUNTFs as Algebraic Varieties

 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{pmatrix}$ is in $\mathbb{T}_{3,6}$ if and only if

$$\begin{array}{rcl} x_{11}^2 + x_{21}^2 + x_{31}^2 &=& 1 \\ x_{12}^2 + x_{22}^2 + x_{32}^2 &=& 1 \\ x_{13}^2 + x_{23}^2 + x_{33}^2 &=& 1 \\ x_{14}^2 + x_{24}^2 + x_{34}^2 &=& 1 \\ x_{15}^2 + x_{25}^2 + x_{35}^2 &=& 1 \\ x_{16}^2 + x_{26}^2 + x_{36}^2 &=& 1 \end{array}$$

Basic Question: Local Structure

What are the non-singular points of $\mathcal{F}_{d,N}$?

Basic Question: Local Structure

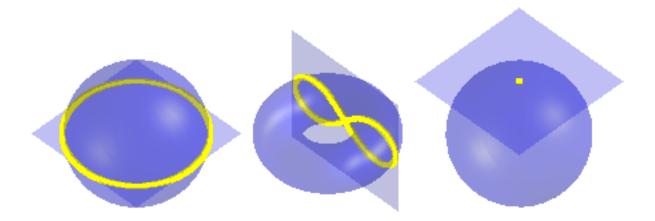
If $F \in \mathcal{F}_{d,N}$ is non-singular, then what is $T_F \mathcal{F}_{d,N}$?

From Global to Local

 $\mathcal{F}_{d,N} = \operatorname{St}_{d,N} \cap \mathbb{T}_{d,N}$, so $T_F \mathcal{F}_{d,N} = T_F \operatorname{St}_{d,N} \cap T_F \mathbb{T}_{d,N}$?

Transversal Intersections

Definition. Suppose \mathcal{M} and \mathcal{N} are two smooth manifolds embedded in the same smooth manifold \mathcal{K} , and suppose $X \in \mathcal{M} \cap \mathcal{N}$. Then we say \mathcal{M} and \mathcal{N} intersect transversally in \mathcal{K} at X if $T_X \mathcal{K} = T_X \mathcal{M} + T_X \mathcal{N}$ (where + is the Minkowski sum).



Transversal Intersections

Proposition. Suppose \mathcal{M} and \mathcal{N} intersect transversally in \mathcal{K} at X. Then X is a nonsingular point of $\mathcal{M} \cap \mathcal{N}$ and

 $T_X(\mathcal{M}\cap\mathcal{N})=T_X\mathcal{M}\cap T_X\mathcal{N}.$

Characterizations of Singular Points

We may therefore characterize the singular points of $\mathcal{F}_{d,N}$ as the points where the intersection of $\mathrm{St}_{d,N}$ and $\mathbb{T}_{N,d}$ fails to be transversal.

One important point is that $\operatorname{St}_{d,N}$ and $\mathbb{T}_{d,N}$ are both contained in the Hilbert-Schmidt sphere

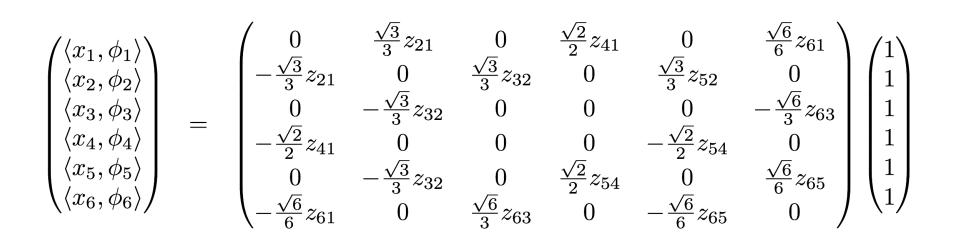
$$\mathcal{S}_{d,N} = \{ X \in M_{d,N} : \operatorname{trace}(XX^*) = N \}.$$

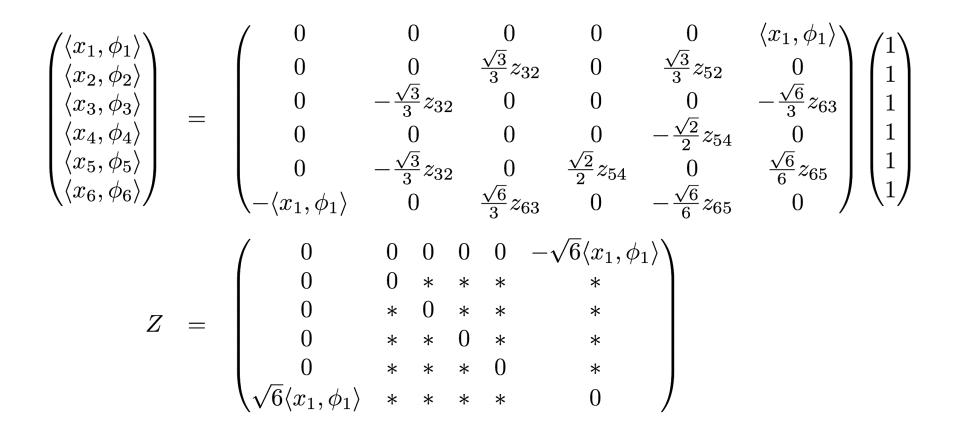
Transversality of the intersection is therefore relative to $S_{d,N}$ instead of $M_{d,N}$.

$$T_{\Phi}S_{3,6} = \{Y \in M_{3,6} : \operatorname{tr}(Y^*\Phi) = 0\}$$
$$T_{\Phi}\mathbb{T}_{3,6} = \{Y \in M_{3,6} : \operatorname{diag}(Y^*\Phi) = \mathbf{0}_N\}$$
$$T_{\Phi}\operatorname{St}_{3,6} = \{\Phi Z \in M_{3,6} : Z \in M_{6,6}, \ Z = -Z^*\}.$$

 $\in T_{\Phi}\mathcal{S}_{3,6} \quad \in T_{\Phi}\mathrm{St}_{3,6} \quad \in T_{\Phi}\mathbb{T}_{3,6}$ $\widehat{X} = \widehat{\Phi Z} + \widehat{Y}$

x_1	=	0	+	$z_{21}\phi_2$	+	$z_{31}\phi_3$	+	$z_{41}\phi_4$	+	$z_{51}\phi_5$	+	$z_{61}\phi_6$	+	y_1
x_2	=	$-z_{21}\phi_1$	+	0	+	$z_{32}\phi_3$	+	$z_{42}\phi_4$	+	$z_{52}\phi_5$	+	$z_{62}\phi_6$	+	y_2
x_3	=	$-z_{31}\phi_1$	_	$z_{32}\phi_2$	+	0	+	$z_{43}\phi_4$	+	$z_{53}\phi_5$	+	$z_{63}\phi_6$	+	y_3
x_4	=	$-z_{41}\phi_1$	—	$z_{42}\phi_2$	—	$z_{43}\phi_3$	+	0	+	$z_{54}\phi_5$	+	$z_{64}\phi_6$	+	y_4
x_5	=	$-z_{51}\phi_1$	_	$z_{52}\phi_2$		$z_{53}\phi_3$		$z_{54}\phi_4$	+	0		$z_{65}\phi_6$	+	y_5
x_6	=	$-z_{61}\phi_1$	—	$z_{62}\phi_2$	—	$z_{63}\phi_3$	—	$z_{64}\phi_4$	—	$z_{65}\phi_5$	+	0	+	y_6





$$\begin{pmatrix} \langle x_1, \phi_1 \rangle \\ \langle x_2, \phi_2 \rangle \\ \langle x_3, \phi_3 \rangle \\ \langle x_4, \phi_4 \rangle \\ \langle x_5, \phi_5 \rangle \\ \langle x_6, \phi_6 \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \langle x_1, \phi_1 \rangle \\ 0 & 0 & 0 & 0 & \langle x_2, \phi_2 \rangle & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{3} z_{63} \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} z_{54} & 0 \\ 0 & -\langle x_2, \phi_2 \rangle & 0 & \frac{\sqrt{2}}{2} z_{54} & 0 & \frac{\sqrt{6}}{6} z_{65} \\ -\langle x_1, \phi_1 \rangle & 0 & \frac{\sqrt{6}}{3} z_{63} & 0 & -\frac{\sqrt{6}}{6} z_{65} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$Z = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{4} z_{65} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{6} \langle x_1, \phi_1 \rangle \\ 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & \langle x_2, \phi_2 \rangle & * & * & 0 & * \\ \sqrt{6} \langle x_1, \phi_1 \rangle & 0 & * & * & * & 0 \end{pmatrix}$$

$$\begin{pmatrix} \langle x_1, \phi_1 \rangle \\ \langle x_2, \phi_2 \rangle \\ \langle x_3, \phi_3 \rangle \\ \langle x_4, \phi_4 \rangle \\ \langle x_5, \phi_5 \rangle \\ \langle x_6, \phi_6 \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & \langle x_1, \phi_1 \rangle \\ 0 & 0 & 0 & 0 & \langle x_2, \phi_2 \rangle & 0 \\ 0 & 0 & 0 & 0 & \langle x_4, \phi_4 \rangle & 0 \\ 0 & -\langle x_2, \phi_2 \rangle & 0 & -\langle x_4, \phi_4 \rangle & 0 & \frac{\sqrt{6}}{6} z_{65} \\ -\langle x_1, \phi_1 \rangle & 0 & -\langle x_3, \phi_3 \rangle & 0 & -\frac{\sqrt{6}}{6} z_{65} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$Z = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \sqrt{6} \langle x_1, \phi_1 \rangle \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{3} \langle x_2, \phi_2 \rangle & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{3} \langle x_2, \phi_2 \rangle & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{2} \langle x_4, \phi_4 \rangle & 0 \\ 0 & \sqrt{3} \langle x_2, \phi_2 \rangle & 0 & \sqrt{2} \langle x_4, \phi_4 \rangle & 0 & * \\ \sqrt{6} \langle x_1, \phi_1 \rangle & 0 & -\frac{\sqrt{6}}{2} \langle x_3, \phi_3 \rangle & 0 & * & 0 \end{pmatrix}$$

$$z_{65} = \sqrt{6} \left(\langle x_2, \phi_2 \rangle + \langle x_4, \phi_4 \rangle + \langle x_5, \phi_5 \rangle \right)$$

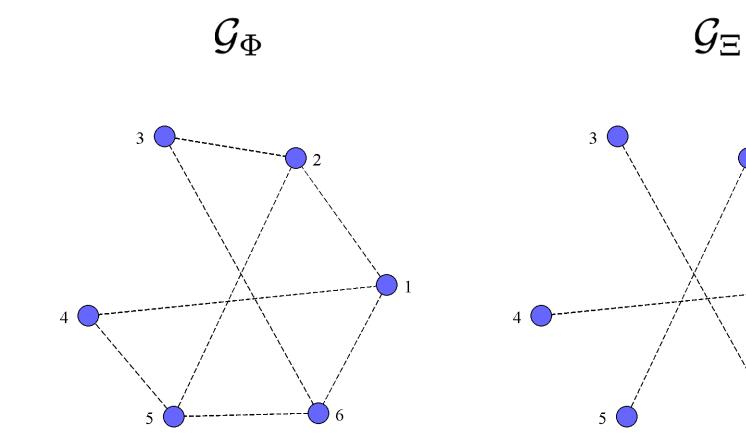
$$z_{65} = -\sqrt{6} \left(\langle x_1, \phi_1 \rangle + \langle x_3, \phi_3 \rangle + \langle x_6, \phi_6 \rangle \right)$$

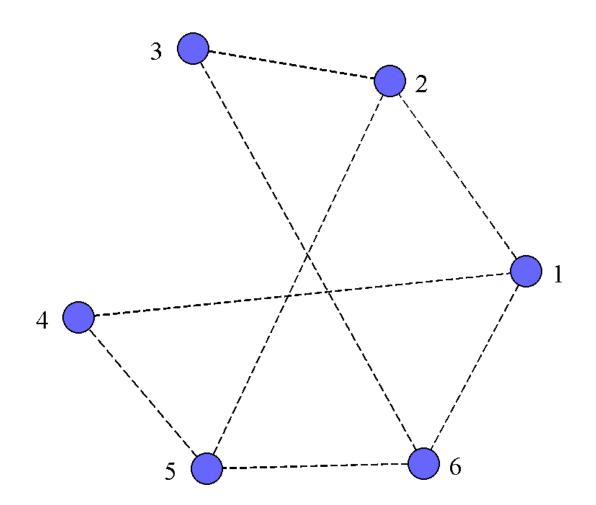
 $\operatorname{tr}(X^*\Phi) = \langle x_1, \phi_1 \rangle + \langle x_2, \phi_2 \rangle + \langle x_3, \phi_3 \rangle + \langle x_4, \phi_4 \rangle + \langle x_5, \phi_5 \rangle + \langle x_6, \phi_6 \rangle = 0$

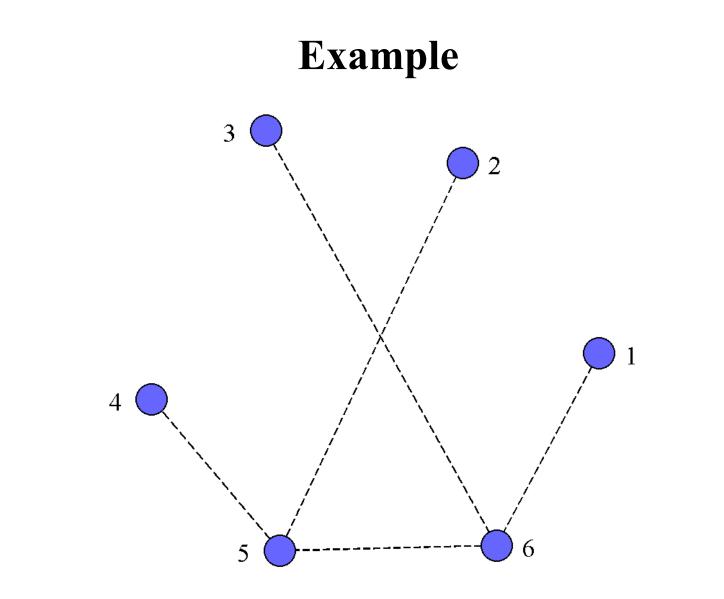
Correlation Networks

Definition. For a frame $F = [f_1 f_2 \cdots f_N] \in M_{d,N}$, the correlation network is the symmetric graph $\mathcal{G}_F = (V, E)$ with vertices $V = \{1, 2, \ldots, N\}$ and edge set

 $E = \{(i,j) : \langle f_i, f_j \rangle \neq 0\}.$







Orthodecomposable Frames

Proposition. The correlation network \mathcal{G}_F is connected if and only if F cannot be partitioned into two non-trivial subsets of matrices with orthogonal column spaces. If F does admit such a partition, we say that F is **orthodecomposable**.

Locally Transversal Intersections of Tori and Stiefel Manifolds

Theorem. Suppose $N \ge d \ge 2$. The manifolds $\mathbb{T}_{d,N}$ and $St_{d,N}$ intersect transversally in $\mathcal{S}_{d,N}$ at $F \in \mathcal{F}_{d,N}$ if and only if F is not orthodecomposable. Moreover, the local dimension of $\mathcal{F}_{d,N}$ around such an F is given by

$$(d-1)N + \left(dN - \binom{d+1}{2}\right) - (dN-1) = (d-1)N - \binom{d+1}{2} + 1$$

When FUNTF Spaces are Manifolds

Proposition. The variety $\mathcal{F}_{d,N}$ is a manifold if and only if N and d are relatively prime.

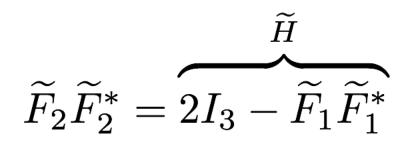
Basic Question: Local Coordinates

Can we write down local parameterizations of $\mathcal{F}_{d,N}$?

Idea: Freely articulate N - d vectors in the frame and then the remaining d vectors react to preserve tightness.

$\widetilde{F} = [\widetilde{f_1} \ \widetilde{f_2} \ \widetilde{f_3} \ \widetilde{f_4} \ \widetilde{f_5} \ \widetilde{f_6}] = [\widetilde{F_1} \ \widetilde{F_2}]$

$\widetilde{F}\widetilde{F}^* = \widetilde{F}_1\widetilde{F}_1^* + \widetilde{F}_2\widetilde{F}_2^* = 2I_3$



 $\widetilde{F}_2 \widetilde{F}_2^* \widetilde{H}^{-1} = I_3$

 $\widetilde{F}_2^* \widetilde{H}^{-1} = \widetilde{F}_2^{-1}$

 $\widetilde{F}_2^* \widetilde{H}^{-1} \widetilde{F}_2 = I_3$

 $\widetilde{f}_4^* H^{-1} \widetilde{f}_4 = 1$ $\widetilde{f}_4^* \widetilde{f}_4 = 1$

$$f_4^* (I_4 - F_1 F_1^*)^{-1} g = 0$$

$$f_4^* g = 0$$

$$\Rightarrow \widetilde{f}_4^* g = \theta$$

$$\widetilde{f}_{4}^{*}\widetilde{H}^{-1}\widetilde{f}_{4} = 1$$

$$\widetilde{f}_{4}^{*}\widetilde{f}_{4} = 1$$

$$\widetilde{f}_{4}^{*}g = \theta$$

$$\widetilde{f}_{4} = xH^{-1}f_{4} + yf_{4} + \theta g$$

Solving a System of Two Quadratics and a Linear Equation

$$(f_4^* H^{-1} \widetilde{H}^{-1} H^{-1} f_4) x^2 + 2f_4^* H^{-1} \widetilde{H}^{-1} (yf_4 + \theta g) x + (yf_4 + \theta g)^* \widetilde{H}^{-1} (yf_4 + \theta g) - 1 = 0 (f_4^* H^{-2} f_4) x^2 + 2yf_4^* H^{-1} f_4 x + y^2 + \theta^2 - 1 = 0$$

Solving a System of Two Quadratics and a Linear Equation

Proposition. The system

$$\alpha_2 x^2 + \alpha_1 x + \alpha_0 = 0$$

$$\beta_2 x^2 + \beta_1 x + \beta_0 = 0$$

where α_2 and β_2 are non-zero admits a solution if and only if the Bézout determinant vanishes:

$$(\alpha_2\beta_1 - \alpha_1\beta_2)(\alpha_1\beta_0 - \alpha_0\beta_1) - (\alpha_2\beta_0 - \alpha_0\beta_2)^2 = 0.$$

Solving a System of Two Quadratics and a Linear Equation

This yields a quartic in the variable y, which has an explicit, but complicated solution.

Eigensteps: Cleaner Local Coordinates

Let $\widetilde{\lambda}: M_{d,d} \to \mathbb{R}^d$ be such that

$$\widetilde{\lambda}(X) = \begin{pmatrix} \lambda_1(X) \\ \lambda_2(X) \\ \vdots \\ \lambda_d(X) \end{pmatrix}$$

where $\{\lambda_i(X)\}_{i=1}^d$ are the eigenvalues of X counting multiplicity, and put in non-increasing order.

Eigensteps: Cleaner Local Coordinates

Define the **eigensteps map**, $\lambda : M_{d,N} \to M_{d,N}$, by

$$\lambda(X) = [\widetilde{\lambda}(X_1 X_1^*) \ \widetilde{\lambda}(X_2 X_2^*) \cdots \widetilde{\lambda}(X X^*)]$$

where $X_i = [x_1 \ x_2 \cdots x_N]$ for all i

Example

$$\lambda(\Phi) = \begin{pmatrix} 1 & (3+\sqrt{3})/3 & (3+\sqrt{6})/3 & 2 & 2 & 2\\ 0 & (3-\sqrt{3})/3 & 1 & (6+\sqrt{6})/6 & 2 & 2\\ 0 & 0 & (3-\sqrt{6})/3 & (6-\sqrt{6})/6 & 1 & 2 \end{pmatrix}$$

Eigensteps

Lemma. $\Delta_{d,N} = \lambda(\mathcal{F}_{d,N})$ is a polytope.

Lifting Eigensteps

Proposition. Let $\Delta_{3,6}^{\circ}$ denote the interior of $\Delta_{3,6}^{\circ}$. There are sequences of vectorvalued functions $v_k : \Delta_{3,6}^{\circ} \to \mathbb{R}^3$ and $w_k : \Delta_{3,6}^{\circ} \to \mathbb{R}^3$, and a sequence of matrixvalued functions $W_k : \Delta_{3,6}^{\circ} \to M_{3,3}$ such that whenever $F \in \mathcal{F}_{3,6}$ satisfies the condition that $\lambda(F) \in \Delta_{3,6}^{\circ}$, then there are sequences of orthogonal matrices V_k , P_k , and Q_k so that when we define the sequences

$$U_{1}(U, \mu) = U$$

$$\phi_{1}(U, \mu) = U_{1}(U, \mu)e_{1}$$

$$\phi_{k+1}(U, \mu) = U_{k}(U, \mu)V_{k}P_{k}^{*}v_{k}(\mu)$$

$$U_{k+1}(U, \mu) = U_{k}(U, \mu)V_{k}P_{k}^{*}W_{k}(\mu)Q_{k}$$

for k = 1, 2, 3, 4, 5 and all $(U, \mu) \in \mathcal{O}(3) \times \Delta_{3,6}^{\circ}$, then

 $\Phi(U,\mu) = [\phi_1(U,\mu) \phi_2(U,\mu) \phi_3(U,\mu) \phi_4(U,\mu) \phi_5(U,\mu) \phi_6(U,\mu)] \in \mathcal{F}_{d,N}$

satisfies $\lambda(\Phi(U,\mu)) = \mu$ and $\Phi(\mathcal{Q}(F),\lambda(F)) = F$ where $\mathcal{Q}(F)$ is Q from the QR decomposition of the first 3 columns of F.

Example: Coordinates from Eigensteps

k	$v_k(\lambda)$	$w_k(\lambda)$	$W_k(\lambda)$
1	$\begin{pmatrix} \sqrt{-\frac{(\lambda_{11}-\lambda_{12})(\lambda_{11}-\lambda_{22})(\lambda_{11}-\lambda_{32})}{(\lambda_{11}-\lambda_{21})(\lambda_{11}-\lambda_{31})}} \\ \sqrt{-\frac{(\lambda_{21}-\lambda_{12})(\lambda_{21}-\lambda_{22})}{(\lambda_{21}-\lambda_{11})}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} \sqrt{\frac{(\lambda_{12}-\lambda_{11})(\lambda_{12}-\lambda_{21})(\lambda_{12}-\lambda_{31})}{(\lambda_{12}-\lambda_{22})(\lambda_{12}-\lambda_{32})}}\\ \sqrt{\frac{(\lambda_{22}-\lambda_{11})(\lambda_{22}-\lambda_{21})}{(\lambda_{21}-\lambda_{11})}}\\ 0 \end{pmatrix}$	$\begin{pmatrix} \frac{v_{11}(\lambda)w_{11}(\lambda)}{\lambda_{12}-\lambda_{11}} & \frac{v_{11}(\lambda)w_{21}(\lambda)}{\lambda_{22}-\lambda_{11}} & 0\\ \frac{v_{21}(\lambda)w_{11}(\lambda)}{\lambda_{12}-\lambda_{21}} & \frac{v_{21}(\lambda)w_{21}(\lambda)}{\lambda_{22}-\lambda_{21}} & 0\\ 0 & 0 & 1 \end{pmatrix}$
2	$\begin{pmatrix} \sqrt{-\frac{(\lambda_{12}-\lambda_{13})(\lambda_{12}-\lambda_{23})(\lambda_{12}-\lambda_{33})}{(\lambda_{12}-\lambda_{22})(\lambda_{12}-\lambda_{32})}} \\ \sqrt{-\frac{(\lambda_{22}-\lambda_{13})(\lambda_{22}-\lambda_{23})(\lambda_{22}-\lambda_{33})}{(\lambda_{22}-\lambda_{12})(\lambda_{22}-\lambda_{32})}} \\ \sqrt{-\frac{(\lambda_{32}-\lambda_{13})(\lambda_{32}-\lambda_{23})(\lambda_{32}-\lambda_{33})}{(\lambda_{32}-\lambda_{12})(\lambda_{32}-\lambda_{22})}} \end{pmatrix}$	$\begin{pmatrix} \sqrt{\frac{(\lambda_{13} - \lambda_{12})(\lambda_{13} - \lambda_{22})(\lambda_{13} - \lambda_{32})}{(\lambda_{13} - \lambda_{23})(\lambda_{13} - \lambda_{33})}} \\ \sqrt{\frac{(\lambda_{23} - \lambda_{12})(\lambda_{23} - \lambda_{22})(\lambda_{23} - \lambda_{32})}{(\lambda_{23} - \lambda_{13})(\lambda_{23} - \lambda_{33})}} \\ \sqrt{\frac{(\lambda_{33} - \lambda_{12})(\lambda_{33} - \lambda_{22})(\lambda_{33} - \lambda_{32})}{(\lambda_{33} - \lambda_{13})(\lambda_{33} - \lambda_{23})}} \end{pmatrix}$	$\begin{pmatrix} \frac{v_{12}(\lambda)w_{12}(\lambda)}{\lambda_{13}-\lambda_{12}} & \frac{v_{12}(\lambda)w_{22}(\lambda)}{\lambda_{23}-\lambda_{12}} & \frac{v_{12}(\lambda)w_{32}(\lambda)}{\lambda_{33}-\lambda_{12}} \\ \frac{v_{22}(\lambda)w_{12}(\lambda)}{\lambda_{13}-\lambda_{22}} & \frac{v_{22}(\lambda)w_{22}(\lambda)}{\lambda_{23}-\lambda_{22}} & \frac{v_{22}(\lambda)w_{32}(\lambda)}{\lambda_{33}-\lambda_{22}} \\ \frac{v_{32}(\lambda)w_{12}(\lambda)}{\lambda_{13}-\lambda_{32}} & \frac{v_{32}(\lambda)w_{22}(\lambda)}{\lambda_{23}-\lambda_{32}} & \frac{v_{32}(\lambda)w_{32}(\lambda)}{\lambda_{33}-\lambda_{32}} \end{pmatrix}$
3	$\begin{pmatrix} \sqrt{-\frac{(\lambda_{13}-\lambda_{14})(\lambda_{13}-\lambda_{24})(\lambda_{13}-\lambda_{34})}{(\lambda_{13}-\lambda_{23})(\lambda_{13}-\lambda_{33})}} \\ \sqrt{-\frac{(\lambda_{23}-\lambda_{14})(\lambda_{23}-\lambda_{24})(\lambda_{23}-\lambda_{34})}{(\lambda_{23}-\lambda_{13})(\lambda_{23}-\lambda_{33})}} \\ \sqrt{-\frac{(\lambda_{33}-\lambda_{14})(\lambda_{33}-\lambda_{24})(\lambda_{33}-\lambda_{34})}{(\lambda_{33}-\lambda_{13})(\lambda_{33}-\lambda_{23})}} \end{pmatrix}$	$\begin{pmatrix} \sqrt{\frac{(\lambda_{14} - \lambda_{13})(\lambda_{14} - \lambda_{23})(\lambda_{14} - \lambda_{33})}{(\lambda_{14} - \lambda_{24})(\lambda_{14} - \lambda_{34})}} \\ \sqrt{\frac{(\lambda_{24} - \lambda_{13})(\lambda_{24} - \lambda_{23})(\lambda_{24} - \lambda_{33})}{(\lambda_{24} - \lambda_{14})(\lambda_{24} - \lambda_{34})}} \\ \sqrt{\frac{(\lambda_{34} - \lambda_{13})(\lambda_{34} - \lambda_{23})(\lambda_{34} - \lambda_{33})}{(\lambda_{34} - \lambda_{14})(\lambda_{34} - \lambda_{24})}} \end{pmatrix}$	$\begin{pmatrix} \frac{v_{13}(\lambda)w_{13}(\lambda)}{\lambda_{14}-\lambda_{13}} & \frac{v_{13}(\lambda)w_{23}(\lambda)}{\lambda_{24}-\lambda_{13}} & \frac{v_{13}(\lambda)w_{33}(\lambda)}{\lambda_{34}-\lambda_{13}} \\ \frac{v_{23}(\lambda)w_{13}(\lambda)}{\lambda_{14}-\lambda_{23}} & \frac{v_{23}(\lambda)w_{23}(\lambda)}{\lambda_{24}-\lambda_{23}} & \frac{v_{23}(\lambda)w_{33}(\lambda)}{\lambda_{34}-\lambda_{23}} \\ \frac{v_{33}(\lambda)w_{13}(\lambda)}{\lambda_{14}-\lambda_{33}} & \frac{v_{33}(\lambda)w_{23}(\lambda)}{\lambda_{24}-\lambda_{33}} & \frac{v_{33}(\lambda)w_{33}(\lambda)}{\lambda_{34}-\lambda_{33}} \end{pmatrix}$
4	$\begin{pmatrix} \sqrt{-\frac{(\lambda_{24}-\lambda_{15})(\lambda_{24}-\lambda_{25})(\lambda_{24}-\lambda_{35})}{(\lambda_{24}-\lambda_{14})(\lambda_{24}-\lambda_{34})}} \\ \sqrt{-\frac{(\lambda_{34}-\lambda_{15})(\lambda_{34}-\lambda_{25})(\lambda_{34}-\lambda_{35})}{(\lambda_{34}-\lambda_{14})(\lambda_{34}-\lambda_{24})}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} \sqrt{\frac{(\lambda_{25}-\lambda_{24})(\lambda_{25}-\lambda_{34})}{(\lambda_{25}-\lambda_{35})}} \\ \sqrt{\frac{(\lambda_{35}-\lambda_{14})(\lambda_{35}-\lambda_{24})(\lambda_{35}-\lambda_{34})}{(\lambda_{35}-\lambda_{15})(\lambda_{35}-\lambda_{25})}} \\ 0 \end{pmatrix}$	$\begin{pmatrix} \frac{v_{14}(\lambda)w_{14}(\lambda)}{\lambda_{25}-\lambda_{24}} & \frac{v_{14}(\lambda)w_{24}(\lambda)}{\lambda_{35}-\lambda_{24}} & 0\\ \frac{v_{24}(\lambda)w_{14}(\lambda)}{\lambda_{25}-\lambda_{34}} & \frac{v_{24}(\lambda)w_{24}(\lambda)}{\lambda_{35}-\lambda_{34}} & 0\\ 0 & 0 & 1 \end{pmatrix}$
5	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

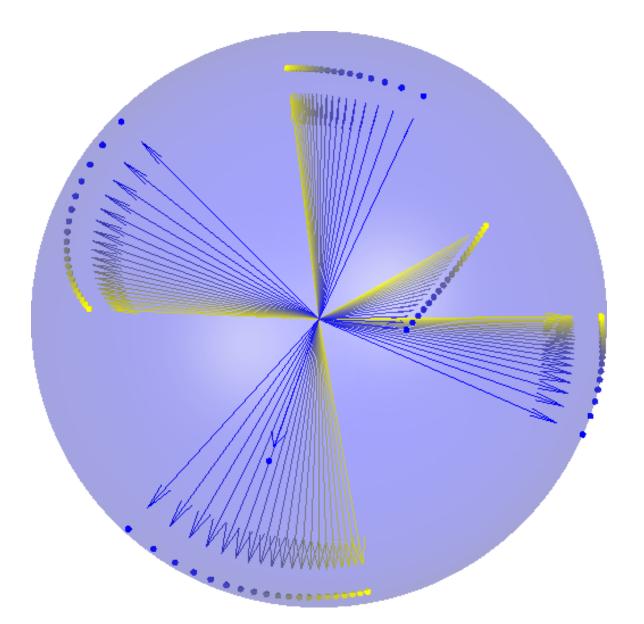
Example: Coordinates from Eigensteps

$$\mathcal{Q}(\Phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2}/2 & \sqrt{2}/2 \\ 0 & \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix},$$

Example: Coordinates from Eigensteps

k	V_k	P_k	Q_k
1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $
2	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
3	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
4	$-egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Eigenstep Trajectories



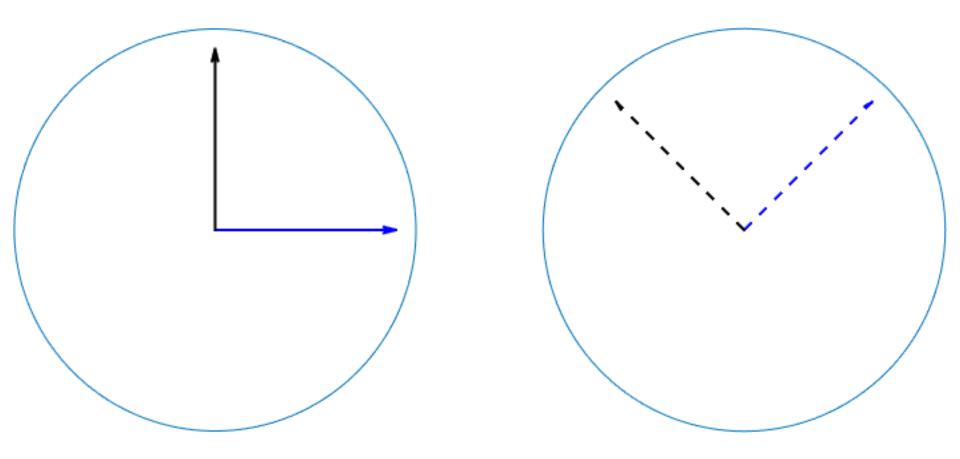
Frame Homotopy Problem

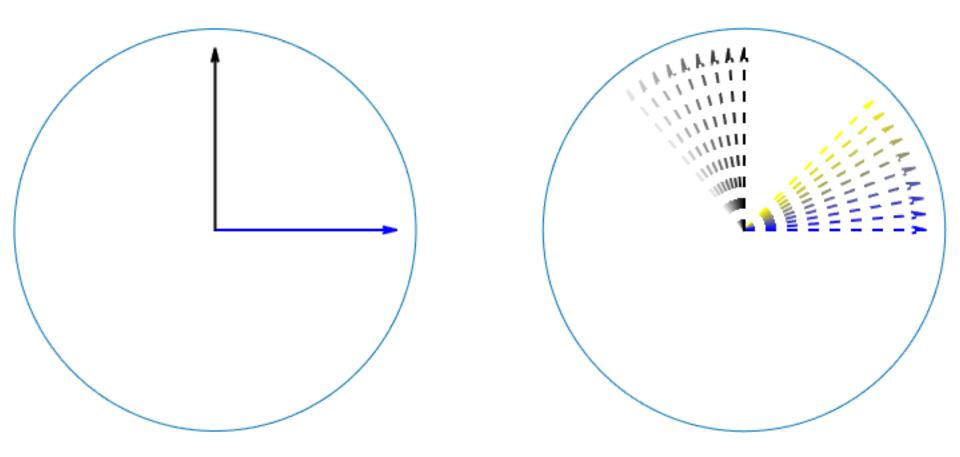
Find all pairs (N, d) such that $\mathcal{F}_{d,N}$ path-connected.

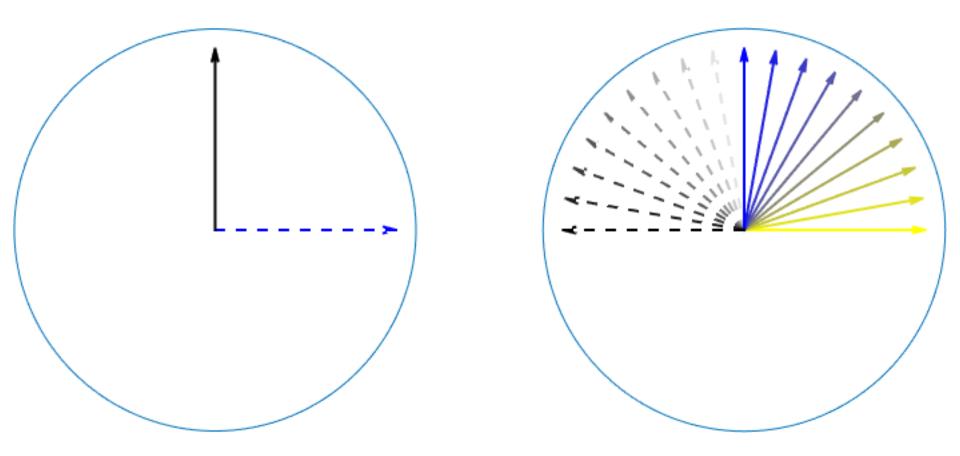
Idea: Identify "Hubs" by Eigensteps and Connect

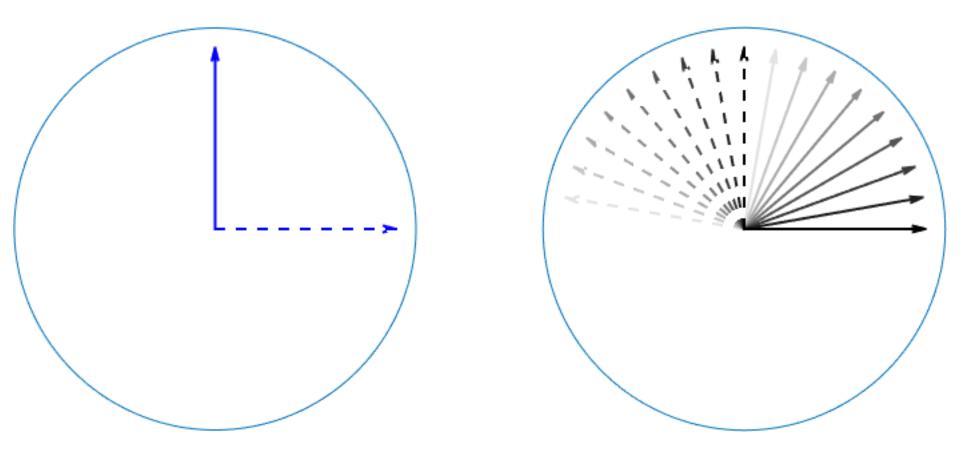
The "hub" for $\mathcal{F}_{3,6}$ is the union of two orthonormal bases indicated by the eigensteps

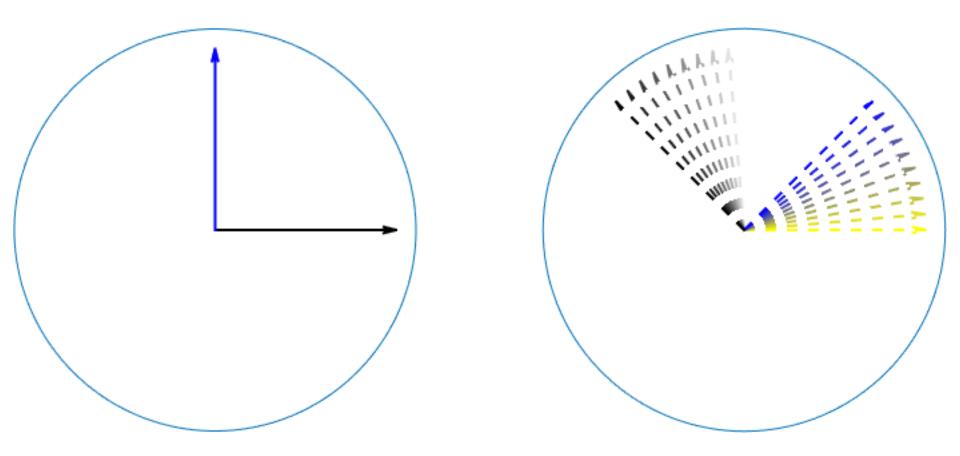
$$\begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$











Basic Question: Are FUNTF Varieties Irreducible?

Proposition. Suppose V is an algebraic variety such that
(i) the set of non-singular points of V is path-connected, and
(ii) the set of non-singular points is dense in V.
Then V is an irreducible algebraic variety.

Nonsingular Points are Dense

Proposition. A frame $F \in \mathcal{F}_{3,6}$ is orthodecomposable if and only if there are two distinct frame vectors f_i and f_j that are parallel.

Proof. If F is orthodecomposable, then there is a partition of F into F_1 and F_2 so that the linear spans of the vectors in F_1 and F_2 (denoted V_1 and V_2) are non-trivial orthogonal subspaces of \mathbb{R}^3 . Consequently, either V_1 or V_2 has dimension equal to 1, and hence by the tight frame bound condition either F_1 or F_2 consists of two parallel vectors.

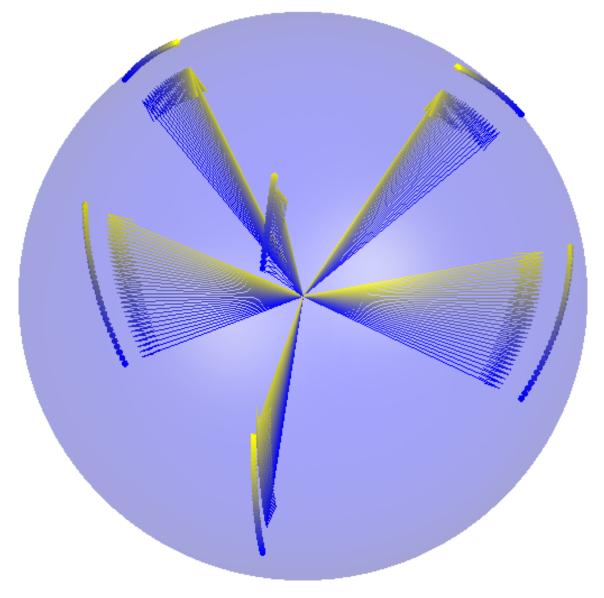
On the other hand, assuming that there are vectors f_i and f_j which are parallel, the tight frame bound condition requires that all other vectors in F are orthogonal to f_i and f_j . Consequently, Fis orthodecomposable.

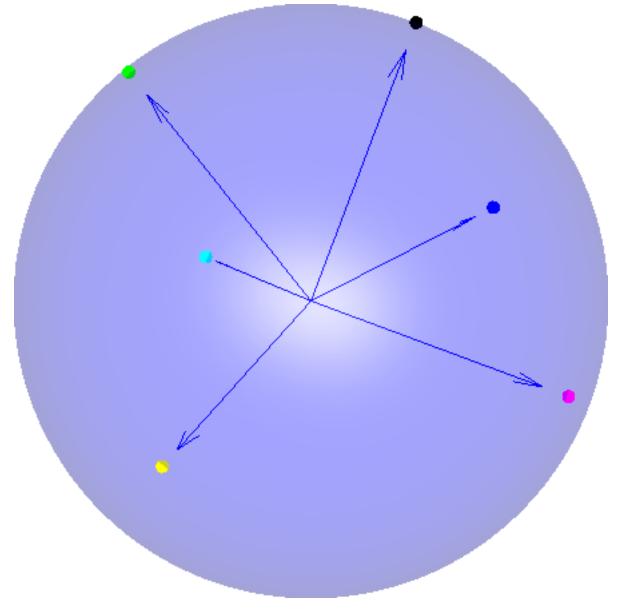
Proposition. If $F \in \mathcal{F}_{3,6}$ is orthodecomposable, then it is a union of two orthonormal bases.

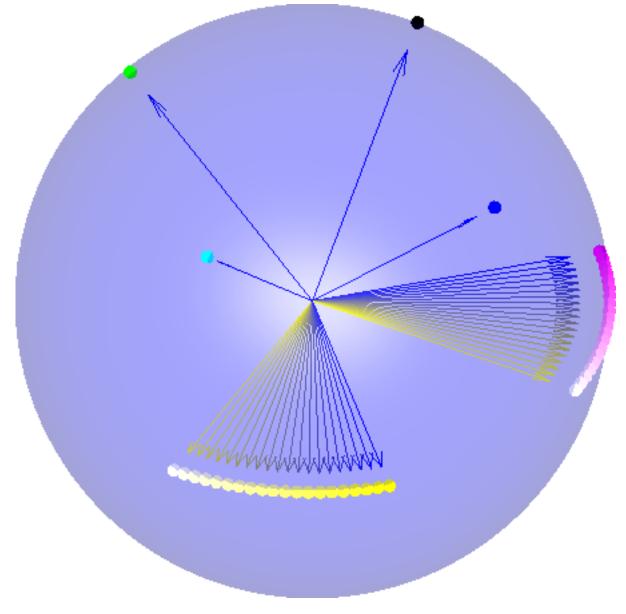
Proposition. The non-singular points of $\mathcal{F}_{3,6}$ are dense in $\mathcal{F}_{3,6}$.

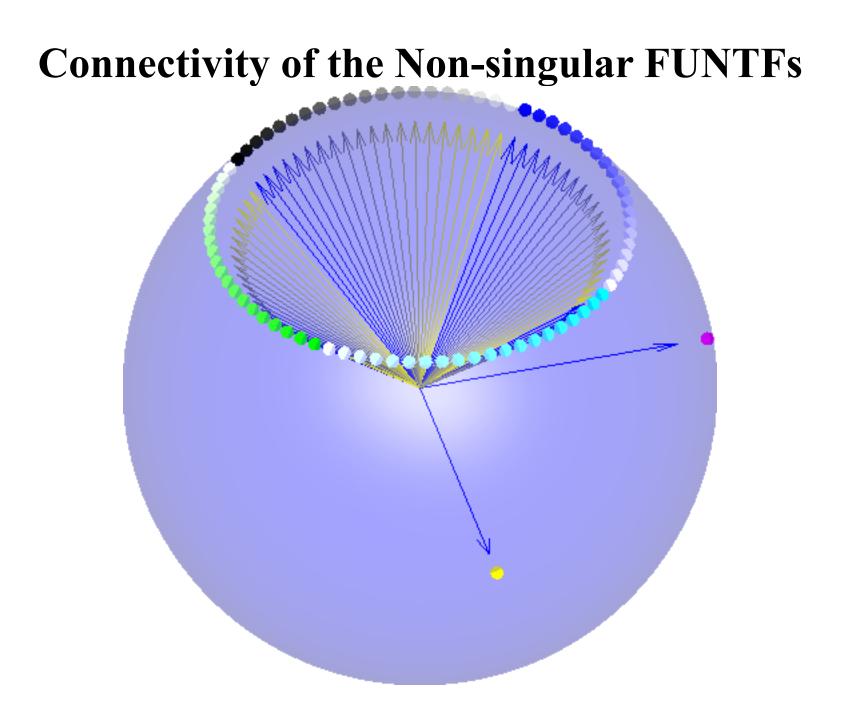
Connect to a frame with eigensteps

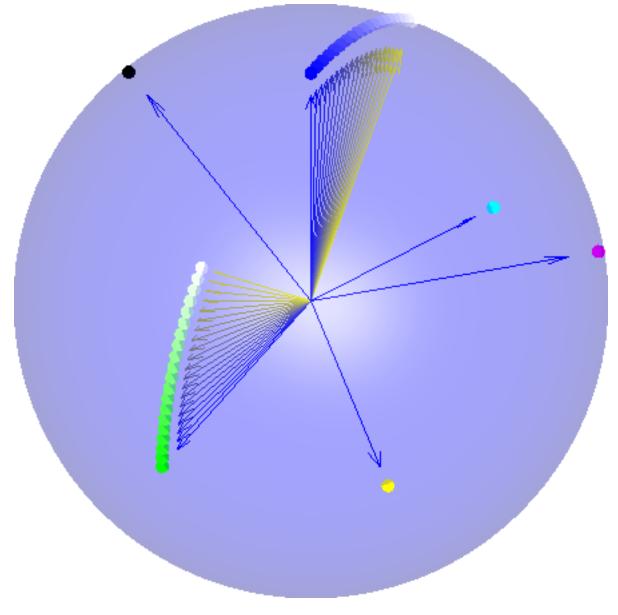
$$\begin{pmatrix} 1 & 3/2 & 3/2 & 2 & 2 \\ 0 & 1/2 & 3/2 & 3/2 & 2 & 2 \\ 0 & 0 & 0 & 1/2 & 1 & 2 \end{pmatrix}$$

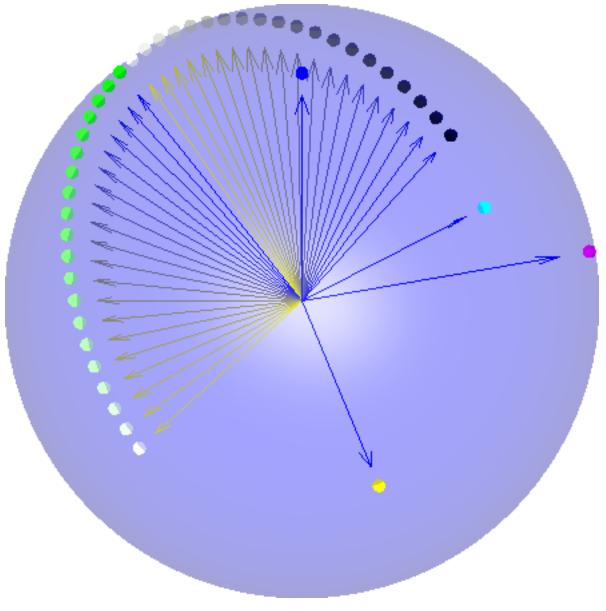


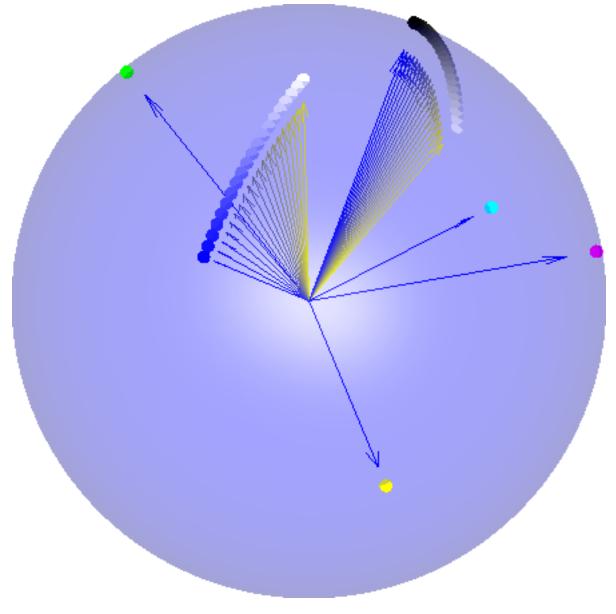












Open Problem: Describe the Local Geometry Around OD Frames

Open Problem: Are there any FUNTF Varieties such that All the Members are Permutation Equivalent to Frames which Map to the Interior of the Eigensteps Polytope?

Open Problem: Compute the Homotopy of the FUNTF Varieties

Open Problem: Construct the FUNTF Varieties as Configuration Spaces

Set $\varphi(f) = ff^*$ and note that $\varphi(S)$ is diffeomorphic to \mathbb{RP}^{d-1} .

FUNTFs correspond to chains in $M_{d,d}$ from 0 to $\frac{N}{d}I_d$ with links in $\varphi(\mathcal{S}^{d-1})$.