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introduction



introduction

Geometric Multi-Resolution Analysis [1, 4] is a method for dictionary and

manifold learning that admits provable properties for a wide class of

models. In order to realize this procedure as a full-fledged algorithm with

an approximation theory, we need to develop an understanding of Cover

Trees and Principal Component Analysis.
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cover trees



metric spaces

Definition

A metric space is a pair (X , d) where X is a set of points and the function

d : X × X → R (the metric) satisfies

1. Positivity: d(x , y) ≥ 0 for all x , y ∈ X and d(x , y) = 0 if and only

if x = y

2. Symmetry: d(x , y) = d(x , y) for all x , y ∈ X
3. Triangle Inequality: d(x , y) ≤ d(x , z) + d(y , z) for all x , y , z ∈ X
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cover trees

Cover Trees were introduced in [2].

Definition

For a metric space (X , d), a cover tree over a finite set X ⊂ X is a

sequence of sets (“covers”) {Ck}k∈Z satisfying

1. Nesting: Ck ⊂ Ck+1 and X =
⋃

k∈Z Ck

2. Covering: for all x ∈ Ck+1 there is a y ∈ Ck such that

d(x , y) ≤ 2−k

3. Separation: for all x , y ∈ Ck with x 6= y , d(x , y) > 2k
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insertion

Insert(C, p,Q, k) where C = {Ck}k∈Z is a cover tree in the metric space

(X , d), p ∈ C is the point to be inserted, Q ⊂ Ck is the current cover,

and k is the insertion level

1. Q ′ ← {q ∈ Ck+1 : d(q,Q) ≤ 2−k}
2. IF d(p,Q ′) > 2−k return FAIL

3. ELSE

3.1 Q ′′ ← {q ∈ Q ′ : d(p, q) ≤ 2−k}
3.2 IF Insert(C, p,Q ′′, k + 1) = FAIL AND d(p,Q) ≤ 2−k

• Cj ← Cj ∪ {p} for all j > k

• return SUCCESS

3.3 ELSE return FAIL

13



insertion proof

For a cover tree C on X ⊂ X , let K be the largest number such that

C−∞ = CK , suppose p 6∈ X , and let κ denote the largest number such

that d(p,C−∞) ≤ 2−κ. Then, we initialize insertion at scale min(κ,K ).
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insertion proof

Since X ⊂ X is finite and p 6∈ X , we have that d(p,X ) > 0, and the

recursion is destined to return FAIL at some finite index. This triggers

the Step 3.2 to test that the input cover Q satisfies d(p,Q) ≤ 2−k .

Since we know that d(p,Cmin(κ,K)) ≤ 2−min(κ,K), we conclude there is

some index k ≤ min(κ,K ) where Step 3.2 succeeds.
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insertion proof

For this K , we know the following:

1. p is added to all cover sets Cj for j > k

2. d(p,Q) ≤ 2−k for the local variable Q ⊂ CK

3. Insert(C, p,Q ′′, k + 1) returned FAIL, and hence d(p,Q ′′) > 2−k−1

Nesting follows from this first observation, and covering follows from the

second.
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insertion proof

We now demonstrate that d(p,Cj) > 2−j holds for all j > k, and hence

the separation condition is satisfied when p is added to each Cj with

j > K . Let a ∈ Cj . If q ∈ Q, then the third observation above implies

that d(p, q) > 2−k−1 ≥ 2−j . If q 6∈ Q, then there is a scale i and an

ancestor of q, r ∈ Ci+1, such that r was eliminated in Step 3.1 of

Insert(C, p, Q̃, i). Thus, d(p, r) > 2−i and the covering property imply

d(p, q) ≥ d(p, r)− d(q, r) > 2−i −
j−1∑

t=i+1

2−t = 2−i − 2−i + 2−j = 2−j .

From these two cases, we conclude that the separation condition holds.
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nearest neighbor

NN(p, C) where C = {Ck}k∈Z is a cover tree on the finite set X in the

metric space (X , d) and p ∈ X

1. LET K be the largest value such that C−∞ = CK

2. LET L be the smallest value such that CL = X

3. IF K <∞, FOR k = K to L− 1

3.1 Set Q ← {q ∈ Ck+1 : d(q,Qk) ≤ 2−k}
3.2 Form the cover set Qk+1 = {q ∈ Q : d(p, q) ≤ d(p,Q) + 2−k}

and return arg minq∈QL
d(p, q)

4. ELSE return the single member of X
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nearest neighbor proof

Let q∗ ∈ X denote the nearest neighbor to p in X . For any q ∈ Ck+1,

the distance between q and any descendant q′ is bounded by

d(q, q′) ≤
∞∑

j=k+1

2−j = 2−k .

Consequently, Step 2.2 can never remove an ancestor of the nearest

neighbor because

d(p, q) ≤ d(p, q∗) + d(q, q∗) ≤ d(p,Q) + 2−k

for all ancestors q ∈ Q of q∗. Thus, QL must contain q∗. �
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expansion constant

Given a finite subset X ⊂ X , define

BX (p, r) = {q ∈ X : d(p, q) ≤ r}

The expansion constant of X is the smallest value c ≥ 2 such that

|BX (p, 2r)| ≤ c |BX (p, r)|

for all p ∈ X and r > 0, where |A| is the number of elements in a finite

set A.
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expansion constant

Example: The expansion constant of the integer lattice in RD is 2D with

the metric

‖x‖∞ = max
i∈[D]
|xi |.
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algorithmic properties

• Space Complexity: O(n)

• Time Complexity of Insertion: O(c6n log n)

• Time Complexity of Construction: O(c6n log n)

• Time Complexity of Nearest Neighbor: O(c12 log n)
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partitions

For a cover tree C and any scale k , the cover set Ck = {xj}Jj=1 induces a

partition {Qj}Jj=1 of X (Qi ∩ Qj = ∅ if i 6= j and
⋃J

j=1 Qj = X ):

Qj = {x ∈ X : j = min{i : d(x , xi ) = d(x ,Ck)}}.

These Qj are called Voronoi regions.
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principal component analysis



projections

An orthogonal projection from RD to Rd is a linear map P such that

the adjoint P∗ satisfies P ◦ P∗ = IdRd . When viewed as a matrix,

P =


p1

p2

...

pd


where the pi are orthonormal row vectors. If D = d , then P is an

orthogonal matrix.
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singular value decomposition

For a d by N matrix X with rank r , a singular value decomposition of

X has the form

X = UΣV ∗

where UT is an r by d orthogonal projection, V T is a r by N orthogonal

projection, and Σ is a diagonal matrix with non-negative, non-increasing

entries along the diagonal. The nonzero entries of X are the singular

values of X
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principal components

The rank d matrix of Principal Components of a D by N dataset

matrix X is the matrix P consisting of the first d columns of U where

X = UΣV T . The d by N matrix PTX is the projection onto these

components.
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affine approximations

Let µ be the mean vector of the columns of the D by N matrix X , and

let X̃ denote the matrix obtained by subtracting µ from each column of

X̃ . Let P be the rank d matrix of Principal Components of X̃ . Then the

rank d affine projection of X is the map

P(x) = PPT (x − µ) + µ.
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choosing the rank

How do you choose the rank for the Principal Component Projection?

• Fix a level α > 0 and let d be the first d such that∑d
i=1 σi∑D
i=1 σi

≥ 1− α

• Find d which maximizes the sphericity:(∑D
i=d+1 σi

)2

∑D
i=d+1 σ

2
i

• In high dimensions, consider the Sparse PCA procedure of Vu, Cho,

Rohe, and Jing Lei
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gmra

Given a dataset X ⊂ RD , a sequence of multiscale partitions

Qk(X ) = {Q(k)
j }

mk

j=1, and affine approximations Pj,k to X ∩ Q
(k)
j , the

GMRA projections are the sequence of functions

Pk(x) =

mk∑
j=1

1
Q

(k)
j

(x)Pj,k(x).
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good partitions

For “good” partitions of RD which are compatible with an underlying

probability distribution Π on RD , we can prove good approximations

properties for the GMRA construction.
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good partitions

Concentration

Π(Qk) ≥ c12−jd
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good partitions

Centrality

‖X − µk‖ ≤ c22−j , Πk a.s.
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good partitions

Complexity

λ
(k)
d ≥ c3

−2j
d∑

l>d λ
(k)
l ≤ c4(σ2 + 2−4j) ≤ 1

2λ
(k)
d
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mean square error

Theorem (Maggioni, Minsker, Strawn, 2014)

Suppose the partition {Qk}Kk=1 is “good” for Π at a scale j , which is above

the “noise level” σ. If the i.i.d. samples X1, . . . ,XN are drawn according

to Π and P̂ is the associated empirical GMRA, then with high probability

we have

E‖X − P̂(X )‖2 ≤ C1

(
σ2 + 2−4j

)
+ C22−2j log(d)

N2−jd
.
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mse proof: bias variance decomposition

E‖X − P̂(X )‖2 ≤ 2E‖X − P(X )‖2 + 2E‖P(X )− P̂(X )‖2
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mse proof

See [5].

Theorem (Minsker, 2013)

Let Z1, . . . ,ZN ∈ RD×D be an independent sequence of symmetric random

matrices such that EZi = 0 and ‖Zi‖ ≤ U almost surely for all 1 ≤ i ≤ N.

If

σ2 =

∥∥∥∥∥
N∑
i=1

EZ 2
i

∥∥∥∥∥ and ρ = 4
trace

(∑N
i=1 EZ 2

i

)
σ2

,

then for any t ≥ 1 we have∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥ ≤ 2 max
(
σ
√
t + log ρ,U(t + log ρ)

)
with probability exceeding 1− e−t .
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mse proof

• Bound ‖µk − µ̂k‖ and ‖Σk − Σ̂k‖ with high probability using this

last theorem.

• Infer a bound on ‖Pk − P̂k‖ using Davis-Kahan:

Theorem (Davis and Kahan, 1970)
Let δ = 1

2 (λ
(k)
d −λ

(k)
d+1). If ‖Σk−Σ̂k‖ ≤ δ/2, then ‖Pk−P̂k‖ ≤ 1

δ‖Σk−Σ̂k‖.

• Infer individual bounds on ‖Pk(x)− P̂k(x)‖2, and accumulate. �
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good partitions for good models

It remains to demonstrate that there is a partition strategy for some class

of models such that good partitions are achievable. Our partition strategy

will be from the Cover Tree algorithm. We’ll need a few definitions

before we can define a class of models that yield “good” partitions.
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manifolds

Definition

A C k manifold of dimension d is a topological space M along with an

atlas of coordinate charts of the form u : U → Rd where

1. Each domain U is an open subset of M
2. Each coordinate map u is a homeomorphism

3. For any two coordinate maps u : U →M and v : V →M, the

coordinate transition map u ◦ v−1 : v(U ∩ V )→ u(U ∩ V ) is

k-times differentiable

4. The union over the domains of the coordinate charts is all of M
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embeddings

Definition

A Euclidean embedding of a C k manifold M is a map ι : M ↪→ RD

such that ι ◦ u−1 is a C k map for any chart u on M, and the Jacobians

Du(x)(ι ◦ u−1) have full rank for each chart u and each point x in the

domain of u. If a subset X ⊂ RD is the image of such an ι, we say that

X is an embedded manifold and we write X ↪→ RD .
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normal bundles

If ι :M ↪→ RD is an embedding and u and v are charts around x ∈M
then it can be shown that the Jacobians

Du(x)(ι ◦ u−1) and Dv (x)(ι ◦ v−1)

share the same column space, which we call the tangent space of M at

x (denoted TxM). The orthogonal complement of TxM is call the

normal space at x , and is denoted NxM.

The set of points (x , v) ∈ ι(M)× RD such that v ∈ NxM and ‖v‖ < r

for r > 0 constitutes the radius-r normal bundle of ι(M), which we

denote N(ι(M), r). It can be shown that N(ι(M), r) is a C k−1 manifold

of dimension D embedded in RD × RD .
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tubular neighborhoods

Definition

A tubular neighborhood of a manifold M ↪→ RD is the set

Tr (M) =

{
x ∈ RD : min

y∈M
‖x − y‖ < r

}
.

It can be shown that Tr (M) is the image of N(M, r) under the map

(x , v) 7→ x + v .
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reach of a manifold

Definition

The reach of a manifoldM ↪→ R is the supremum over the values τ such

that N(M, r) ↪→ RD .
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noisy manifold

Definition

A noisy manifold is a probability distribution Π is supported on a radius

σ tubular neighborhood of a closed C 2 manifold M with reach τ > 0.
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good partition theorem

Theorem (Maggioni, Minsker, Strawn, 2014)

Suppose

• M ↪→ RD is a closed C 2, d-dimensional manifold with reach τ > 0

• Π is mutually absolutely continuous with respect to the uniform

distribution on the radius σ < τ tubular neighborhood of M
• Y1, Y2,..., YN is an i.i.d. sample from Π with N ≥ Cσ−d(t − log σ)

Then for appropriate scales j , we have that the cover tree partition at scale

j , {Qk}Kk=1 is “good” with probability exceeding 1− e−t .
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prerequisite theory

Apart from Centrality condition, all of our conditions are integral

conditions. Thus, we need to be able to estimate probabilities on tubular

neighborhoods, which ultimately means that we need to estimate

volumes on the tubular neighborhoods.

First, it is important to note that all closed manifolds embedded in RD

inherit a volume or Hausdorff measure: Let ProjM denote projection onto

the manifold, then

VolM(U) = lim
r→0

Vol(Proj−1
M(U) ∩Mr )

rD−dVol(BD−d(0, 1))
.

For this closed manifoldM, we define the uniform distribution onM by

UM(U) =
VolM(U)

VolM(M)
.
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volumes of tubular neighborhoods

For 1-dimensional manifolds, volumes of tubular neighborhoods admit a

simple formula. If U ⊂M ↪→ RD is open and Ũ = Proj−1
M(U), then

Vol(Ũ) = σD−1Vol(BD−1(0, 1)) · VolM(U).

In higher dimensions, there is a Weyl tube formula which expresses

volumes in terms of Lipschitz-Killing curvatures:

Vol(Mσ) =
d∑

n=0

µd−n(M)Vol(Bn(0, 1))σn

Now, this only holds for the full manifold and it involves some unwieldy

computation. Instead, we want estimates saying that the 1-dimensional

formula approximately holds.
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volume bounds

Theorem (Maggioni, Minsker, Strawn, 2014)

Let M ↪→ RD be a d-dimensional submanifold with reach τ > 0, suppose

σ < τ and that the measurable subset U ⊂M satisfies VolM(U) > 0 for

the volume measure on M, and finally let ProjM :Mσ →M denote the

map that assigns a point in the tubular neighborhood of M to the closest

point on M. Then(
1− σ

τ

)d
≤ VolRD (Proj−1

M(U))

VolM(U)VolRD−d (BD−d(0, σ))
≤
(

1 +
σ

τ

)d
where VolRD−d (BD−d(0, σ)) is the volume of the ball of radius σ in RD−d .
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uniform probability bounds

Corollary

Let UM, UMσ , and ŨMσ denote the uniform measure on M, the uniform

measure onMσ, and the push forward of UMσ
under ProjM, respectively.

Then the Radon-Nikodym derivative satisfies(
τ − σ
τ + σ

)d

≤ d ŨMσ

d UM
≤
(
τ + σ

τ − σ

)d

.
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idea of the proof

• Locally, we may approximate the manifold by a multivariable

function of the tangent space, v 7→ (v , f (v)). A local embedding of

the normal bundle is then given by(
v

β

)
7−→

(
v

f (v)

)
+

(
Df (v)∗

−I(D−d)×(D−d)

)
β

• The Jacobian of this map is(
Id×d +

∑D
i=d+1 βiD

2fi (v) Df (v)∗

Df (v)∗ −I(D−d)×(D−d)

)
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idea of the proof

• The necessary invertibility of this Jacobian can be used to derive the

conditions (for ε < τ/8)

sup
v∈Bd (0,ε)

‖Df (v)‖ ≤ 2ε

τ − 2ε

and

sup
v∈Bd (0,ε)

sup
u∈SD−d−1

∥∥∥∥∥
D∑

i=d+1

uiD
2fi (v)

∥∥∥∥∥ ≤ τ 2

(τ − 2ε)3
.

• These bounds imply upper and lower comparison bounds for the

determinant of the Jacobian of the embedding, from which we

gather the volume bounds. �
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volume lemma

Lemma

Suppose Y = [y1| · · · |yd ] is symmetric d by d matrix such that ‖Y ‖ ≤
q < 1. Then

Vol

(
I + Y

X

)
≤ (1 + q)d Vol

(
I

X

)

Vol

(
I + Y XT

X −I

)
≥ (1− q)d Vol

(
I XT

X −I

)
.
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volume lemma proof

For the first inequality, let

A =

(
I

X

)
and B =

(
Y

0

)
,

and for every T ⊂ [d ], we let VT denote the volume of

{ai}i∈T c ∪ {bi}i∈T , where ai and bi denote the ith columns of A and B

respectively.
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volume lemma proof

By submultilinearity of the volume we have

Vol(A + B) ≤
∑

T∈2[d ]

VT ,

where 2[d ] = {S : S ⊂ {1, . . . , d}}. We now show that VT ≤ q|T |Vol(A)

for every T ∈ 2[d ]. The bound ‖Y ‖ ≤ q implies ‖yi‖ ≤ q for all

i = 1, . . . , d , and so the fact that the volume is a submultiplicative

function implies that

VT ≤ q|T |Vol(AT c ).
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volume lemma proof

On the other hand, letting a⊥1 be the orthogonal projection of a1 onto

span⊥{ai}di=2, we note that ‖a⊥1 ‖ ≥ 1, and thus

Vol(A{1}c ) ≤ ‖a⊥1 ‖Vol(A{1}c ) = Vol(A).

By induction and invariance of the volume under permutations, we see

that Vol(AT c ) ≤ Vol(A) for all T ∈ 2[d ]. Thus,

Vol(A + B) ≤
∑

T∈2[d ]

q|T |Vol(A) = (1 + q)dVol(A).
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volume lemma proof

For the second inequality, since Y is symmetric, we can represent it as

Y = F − G where F and G are symmetric positive semidefinite,

FG = GF = 0, and ‖F‖, ‖G‖ ≤ ‖Y ‖. Indeed, if Y = QΛQT is the

eigenvalue decomposition of Y with Λ = diag(λ), set

λ+ := (max(0, λ1), . . . ,max(0, λd))T , λ− := λ+ − λ, and define

F := Qdiag(λ+)QT , G = Qdiag(λ−)QT .
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volume lemma proof

Recall the matrix determinant lemma: let T ∈ Rk×k be invertible, and

let U,V ∈ Rk×l . Then

Vol(T + UV T ) = Vol(I + V TT−1U)Vol(T ).

Applying it in our case with U =

(√
F −
√
G

0

)
, V =

(√
F +
√
G

0

)
, and

T =

(
I XT

X −I

)
, we have that

Vol

(
I + Y XT

X −I

)
= Vol

(
I +

(√
F +
√

G

0

)T (
I XT

X −I

)−1 (√
F −
√

G

0

))
Vol

(
I XT

X −I

)
.
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volume lemma proof

By orthogonality of the columns in(
I

X

)

with the columns in (
XT

−I

)
,

we have that ∥∥∥∥∥
(
I XT

X −I

)(
u

v

)∥∥∥∥∥ ≥
∥∥∥∥∥
(
u

v

)∥∥∥∥∥ ,
and hence∥∥∥∥∥∥

(√
F +
√
G

0

)T (
I XT

X −I

)−1(√
F −
√
G

0

)∥∥∥∥∥∥ ≤ √q · 1 · √q = q.
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volume lemma proof

Therefore, we conclude that

Vol

I +

(√
F +
√
G

0

)T (
I XT

X −I

)−1(√
F −
√
G

0

) ≥ (1− q)d ,

and combining this with the expression from the matrix determinant

lemma completes the proof. �
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covariance bounds

Theorem (Maggioni, Minsker, Strawn, 2014)

Suppose Π is a distribution supported on Mσ, and let r < τ/2. Further

assume that Z is the random variable drawn from Π conditioned on the

event Z ∈ Q where Mσ ∩ Q ⊂ B(y , r) for some y ∈ M. If Σ is the

covariance matrix of Z , then

D∑
i=d+1

λi (Σ) ≤ 2σ2 +
8r4

τ 2
,

where λi (Σ) are the eigenvalues of Σ arranged in the decreasing order.
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covariance bounds

Theorem (Maggioni, Minsker, Strawn, 2014)

Suppose that Q ⊆ RD is such that

B(y , r1) ⊂ Q and Mσ ∩ Q ⊂ B(y , r2)

for some y ∈ M and σ < r1 < r2 < τ/8− σ. Let Z be drawn from UMσ

conditioned on the event Z ∈ Q, and suppose Σ is the covariance matrix

of Z . Then

λd(Σ) ≥ 1

4
(
1 + σ

τ

)d ( r1 − σ
r2 + σ

)d

 1−
(
r1−σ

2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2


d/2

(r1 − σ)2

d
.
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sampling nets

This is a slight modification from the corresponding result in [6]

Theorem (Niyogi, Smale, Weinberger, 2008)

Suppose 0 < ε < τ
2 , and also that n and t satisfy

n ≥ ε−d 1

φ1

(
τ + σ

τ − σ

)d

β1

(
log(ε−dβ2) + t

)
,

where β1 = VolM(M)
cosd (δ1)Vol(Bd (0,1/4))

, β2 = VolM(M)
cosd (δ2)Vol(Bd (0,1/8))

, δ1 = sin−1(ε/8τ),

and δ2 = sin−1(ε/16τ). Let Eε/2,n be the event that

Y = {Yj = ProjM(Xj)}nj=1

is ε/2-dense in M (that is, M ⊂
n⋃

i=1

B(Yi , ε/2)). Then, Πn(Eε,n) ≥

1− e−t , where Πn is the n-fold product measure of Π with φ1 ≤ dΠ
dUMσ

.
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conclusion

• Building a cover tree on this net and invoking the separation

property implies that each Voronoi region contains a small ball, and

our probability bounds then supply the Concentration property

• The Voronoi regions from the cover trees are also bounded by balls,

which implies the Centrality property

• The above eigenvalue bounds yield the Complexity property

• All the constants are explicit in terms of the reach, noise level, and

volume of the noisy manifold
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applications



application

Sloan Digital Sky Survey:

• Estimate redshift as a function of galactic spectra

• 62k data points in 3841 dimensional space

• Measure prediction risk using 10-fold cross validation

• Comparison of techniques:

• GMRA using Uniform partitions

• GMRA using Adaptive partitions

• Diffusion Maps [3]

• k-Nearest Neighbor regression

• Principal Components
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execution times
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complexity versus risk
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Questions?
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