
Expected Performance ofDijkstra's Shortest Path AlgorithmAndrew V. GoldbergNEC Research Institute4 Independence WayPrinceton, NJ 08540avg@research.nj.nec.com Robert E. Tarjan�Computer Science DepartmentPrinceton UniversityPrinceton, NJ 08858andNEC Research Instituteret@cs.princeton.eduJune 1996AbstractWe show that the expected number of decrease-key operations in Dijkstra's shortestpath algorithm is O(n log(1+m=n)) for an n-vertex, m-arc graph. The bound holds for anygraph structure; the only assumption we make is that for every vertex, the lengths of itsincoming arcs are drawn independently from the same distribution. The same bound holdswith high probability. This result explains the small number of decrease-key operationsobserved in practice and helps to explain why Dijkstra codes based on binary heaps performbetter than ones based on Fibonacci heaps.
�Research at Princeton University partially supported by the National Science Foundation, Grant No. CCR-8920505. Research during a visit to M.I.T. partially supported by ARPA Contract N00013-95-1-1246.



1 IntroductionThe shortest path problem with nonnegative arc lengths is one of the most natural networkoptimization problems and occurs widely in practice. The problem is well-studied. Dijkstra'salgorithm [7] is the best known algorithm for the problem in theory and the most robustin practice. The best currently known bounds for the problem, based on a combination ofDijkstra's algorithm and priority queue data structures, appear in [1, 3, 4, 8, 9, 18].The running time of an implementation of Dijkstra's algorithm is dominated by arc scans(with each arc scanned at most once) and the priority queue operations insert, extract-min,and decrease-key. For a graph with n vertices and m arcs, the number of insert andextract-min operations is n for each operation. The number of decrease-key operations ism in the worst case. Many data structures, such as Fibonacci heaps [8], reduce the cost of thedecrease-key operation at the expense of added complexity and an increased constant factorfor the extract-min operation.In this paper we show that, for a wide class of input distributions, the expected numberof decrease-key operations is O(n log(1 +m=n)). This result holds in Bloniarz's endpoint-independent probabilty model [2]: for every vertex, the lengths of the incoming arcs are drawnindependently from the same probability distribution. We make no other assumptions aboutthe arc length distribution or the input graph structure. We also show that the same boundholds with high probability. Note that the probability model where all arc lengths are drawnindependently from the same distribution is a special case of the endpoint-independent model.We are not aware of any previous results on probabilistic analysis of Dijkstra's algorithm.For probabilistic analysis of other shortest path algorithms, including those for the all-pairsproblem, see [2, 10, 11, 12, 13, 15, 16].Our result is motivated by the empirical observation that the number of decrease-keyoperations is small. This observation can be used to explain why Fibonacci heaps usuallyperform worse than binary heaps (see e.g. [5]). More generally, the observation can be usedto predict how an implementation of priority queues will perform when applied to Dijkstra'salgorithm.This paper is organized as follows. In Section 2 we state the necessary de�nitions andprevious results. Section 3 is devoted to our main result. In Section 4 we show how to use theresult to explain the relative behavior of priority queue data structures when used in Dijkstra's1



algorithm.2 PreliminariesThe input to the shortest path problem is a directed graph G = (V;E), a source vertex s 2 V ,and a length function ` : E ! R. In this paper we consider only nonnegative length functions.The goal is to �nd shortest path distances from s to all vertices of the graph and a shortestpath tree. For more details about the problem and Dijkstra's algorithm, see e.g. [6, 17].We denote the number of vertices in G by n and the number of arcs by m. Without lossof generality, we assume that all vertices of G are reachable from s and 1 � n� 1 � m. Theseassumptions imply that log(1+m=n) > 0. We denote the in-degree of a vertex v by �(v). Notethat �(v) � 1.We say that a weighted graph is endpoint-independent if for every vertex, lengths of itsincomming arcs are drawn independently from the same probability distribution over nonneg-ative real numbers.We say that a bound expressed in terms of n holds with high probability (w.h.p.) if theprobability that the bound holds goes to one as n goes to in�nity.Let x1; : : : ; xk be chosen independently from the same probability distribution. For 1 �i � k, de�ne Xi = min1�j�i xj . Let M(k) be the number of distinct values of Xi.The following simple result is part of the folklore; see for example problem 6-2 on page 133of [6].Theorem 2.1 E(M(k)) = O(log k). M(k) = O(log k) w.h.p.Proof. For completeness, we include a proof that E(M(k)) = O(logk). Let �i = 1 if xi < xjfor all 1 � j � i, �i = 0 otherwise. Then M(k) =Pki=1 �i. Since the xi's are independent andidentically distributed, �(Xi) � 1=i. Thus E(M(k)) =Pki=1E(�i) �Pki=1 1=i = O(log k).3 Main ResultIn this section we prove the following result.Theorem 3.1 For an endpoint-independent graph, the expected number of decrease-key op-erations performed by Dijkstra's shortest path algorithm is O(n log(1+m=n)). The same boundholds w.h.p. 2



Proof. Recall that the algorithm maintains distance estimates d(v) for every vertex v. Thealgorithm scans every arc of the graph at most once. The decrease-key operation applies to vif during a scan of an arc (u; v), d(u) + `(u; v) < d(v) and this is not the �rst scan of an arcinto v.Consider the set of all arcs f(u1; v); : : : ; (u�(v); v)g into v. Suppose that all the arcs arescanned and, without loss of generality, assume that they are scanned in the order of thesubscripts of u. Also assume that when the arcs are scanned, the values of d(ui) are the same.(We shall deal with these two assumptions below.) A decrease-key operation is appliedduring a scan of an arc (ui; v) if and only if i > 1 and `(uj ; v) > `(ui; v) for all 1 � j < i. ByTheorem 2.1, the expected number of decrease-key operations on v is O(log �(v)) and thesame bound holds w.h.p.Since the logarithm function is convex and the average in-degree is m=n, we haveXv2V log(�(v)) � n log(m=n) < n log(1 +m=n):Thus the expected number of decrease-key operations is O(n log(1 + m=n)) and the samebound holds w.h.p.Next we deal with the assumptions we made above. In general, these assumptions do nothold. We show that the bound does not get worse when the assumptions do not hold. If the�rst assumption does not hold, i.e., not all arcs are scanned, the expected number of operationscan only decrease.To deal with the second assumption, note that the standard properties of Dijkstra's algo-rithm imply that d(u1) � d(u2) : : :� d(u�(v)). It follows thatfijd(ui) + `(ui; v) < d(v) when v is scannedg � fij`(uj; v) > `(ui; v) 8 1 � j � ig:The former set of indices corresponds to the insertion of v and the decrease-key operationson v during the running of Dijkstra's algorithm. Since the latter set has size O(log �(v)) w.h.p.,so does the former.4 ApplicationsConsider the binary heap data structure. For this data structure, all priority queue operationstake O(logn) time. This gives an O(m + n logn log(1 +m=n)) expected time bound for the3



binary heap implementation of Dijkstra's algorithm, compared with the O(m logn) worst-casebound. For Fibonacci heaps, the amortized time bounds for the insert, decrease-key, andextract-min operations are O(1), O(1), and O(logn), respectively. This gives an O(m +n logn) expected time bound on the Fibonacci heap implementation of the algorithm, thesame as the worst-case bound.The two expected-time bounds di�er only for !(n) = m = o(n logn log log n), and theratio between them is o(log logn). Given the current memory limitations, one can assume thatn < 232 and log logn < 5.On the other hand, the constant factors of implementations of the more complex Fibonacciheaps are greater than those for the binary heaps. If the constants are greater by a factor of5 or more, Fibonacci heaps are slower than binary heaps on sparse graphs. For dense graphs,the arc scans dominate the priority queue operations, and the two implementations performsimilarly. The same holds for k-ary heaps with small values of k. This is consistent with thedata in [5].More precisely, for any heap size, the cost of extract-min is signi�cantly higher in theFibonacci heap implementation than in the binary heap implementation. The costs of insertand decrease-key are somewhat less for the Fibonacci heap implementation, with the dif-ference increasing with the heap size. However, for practical heap sizes, many insert anddecrease-key operations are needed to make up the di�erence in the cost of the extract-minoperations. The number of decrease-key operations is not large enough to make Fibonacciheaps perform better than binary heaps.Theorem 3.1 can be used to explain the relative performance of other implementations ofDijkstra's algorithm. Given approximate heap operation times, we can also use the theoremto predict implementation performance.The above discussion suggests that Fibonacci heaps might outperform binary heaps in anapplication in which the number of decrease-key operations is much higher than the num-ber of extract-min operations. The minimum cut algorithm of Nagamochi and Ibaraki [14]provides such a candidate application. This algorithm works on an undirected graph and usesa max priority queue instead of a min priority queue (i.e., extract-max and increase-keyoperations replace extract-min and decrease-key operations, with no di�erence in perfor-mance). During an iteration for which the current graph has n vertices and m edges, thealgorithm performs n insert, n extract-max, and m increase-key operations. On large4



dense graphs, Fibonacci heaps performed better than binary heaps in a few tests we ran.References[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for theShortest Path Problem. J. Assoc. Comput. Mach., 37(2):213{223, April 1990.[2] P.A. Bloniarz. A Shortest Path Algorithm with Expected Time O(n2 logn log� n). SIAMJ. Comput., 12:588{600, 1983.[3] P. Van Emde Boas, R. Kaas, and E. Zijlstra. Design and Implementation of an E�cientPriority Queue. Math. Systems Theory, 10:99{127, 1977.[4] B. V. Cherkassky and A. V. Goldberg. Heap-on-Top Priority Queues. Technical Report96-042, NEC Research Institute, Princeton, NJ, 1996.[5] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory andExperimental Evaluation. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms,pages 516{525, 1994. To appear in Math. Prog.[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, MA, 1990.[7] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math.,1:269{271, 1959.[8] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved NetworkOptimization Algorithms. J. Assoc. Comput. Mach., 34:596{615, 1987.[9] M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum SpanningTrees and Shortest Paths. In Proc. 31st IEEE Annual Symposium on Foundations ofComputer Science, pages 719{725, 1990.[10] A.M. Frieze and G.R. Grimmet. The Shortest-Path Problem for Graphs with RandomArc-Lengths. Discrete Applied Mathematics, 10:57{77, 1985.[11] Q.P. Gu and T. Takaoka. On the Average Path Length of O(logN) in the Shortest PathProblem. Trans. IEICE, E70:1155{1158, 1987.[12] S.G. Kolliopoulos and C. Stein. Finding Real-Valued Single-Source Shortest Paths ino(n3) Expected Time. In Proc. 5th Int. Programming and Combinatorial OptimizationConf., 1996.[13] A. Mo�at and T. Takaoka. An All-Pairs Shortest Path Algorithm with Expected TimeO(n2 logn). SIAM J. Comput., 16:1023{1031, 1987.5



[14] H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and Capac-itated Graphs. SIAM J. Disc. Meth., 5:54{66, 1992.[15] P.M. Spira. A new algorithm for �nding all shortest paths in a graph of positive arcs inaverage time o(n2 log2 n). SIAM J. Comput., 2:28{32, 1973.[16] P. Spirakis and A. Tsakadidis. A Very Fast, Practical Algorithm for Finding a NegativeCycle in a Digraph. In Proc. 13th ICALP, Lecture Notes in Computer Science 226, pages59{67. Springer-Verlag, 1996.[17] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and AppliedMathematics, Philadelphia, PA, 1983.[18] M. Thorup. On RAM Priority Queues. In Proc. 7th ACM-SIAM Symposium on DiscreteAlgorithms, pages 59{67, 1996.

6


