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Abstract

High-dimensional data sets often exhibit inherently low-dimensional structure. Over the
past decade, this empirical fact has motivated researchers to study the detection, measure-
ment, and exploitation of such low-dimensional structure, as well as numerous implications
for high-dimensional statistics, machine learning, and signal processing. Manifold learning
(where the low-dimensional structure is a manifold) and dictionary learning (where the
low-dimensional structure is the set of sparse linear combinations of vectors from a finite
dictionary) are two prominent theoretical and computational frameworks in this area and,
despite their ostensible distinction, the recently-introduced Geometric Multi-Resolution
Analysis (GMRA) provides a robust, computationally efficient, multiscale procedure for si-
multaneously learning a manifold and a dictionary. In this work, we prove non-asymptotic
probabilistic bounds on the approximation error of GMRA for a rich class of underlying
models that includes “noisy” manifolds, thus theoretically establishing the robustness of
the procedure and confirming empirical observations. In particular, if the data aggregates
near a low-dimensional manifold, our results show that the approximation error primarily
depends on the intrinsic dimension of the manifold, and is independent of the ambient
dimension. Our work thus establishes GMRA as a provably fast algorithm for dictionary
learning with approximation and sparsity guarantees. We perform numerical experiments
that further confirm our theoretical results.

Keywords: Dictionary learning, Multi-Resolution Analysis, Manifold Learning, Robust-
ness, Sparsity
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1. Introduction

In many high-dimensional data analysis problems, existence of efficient data representa-
tions can dramatically boost the statistical performance and the computational efficiency
of learning algorithms. Inversely, in the absence of efficient representations, the curse of
dimensionality implies that the required sample size must grow exponentially in the ambient
dimension, which renders many statistical learning tasks completely untenable. Parametric
statistical modeling seeks to resolve this difficulty by restricting the family of candidate dis-
tributions for the data to a collection of probability measures indexed by a finite-dimensional
parameter. By contrast, nonparametric statistical models are more flexible and oftentimes
more precise, but usually require data samples of large sizes unless the data exhibits some
simple latent structure (e.g., some form of sparsity). Such structural considerations are
essential for establishing convergence rates, and oftentimes these structural considerations
are geometric in nature.

One classical geometric assumption asserts that the data, modeled as a set of points in
R
D, in fact lies on (or perhaps very close to) a single d-dimensional affine subspace V ∈ R

D

where d ≪ D. Tools such as PCA (see Hotelling, 1933, 1936; Pearson, 1901) estimate V in a
stable fashion under suitable assumptions. Generalizing this model, one may assert that the
data lies on a union of several low-dimensional affine subspaces instead of just one, and in
this case the estimation of the multiple affine subspaces from data samples already inspired
intensive research due to its subtle complexity (e.g., see Chen and Maggioni, 2011; Chen
and Lerman, 2009; Elhamifar and Vidal, 2009; Fischler and Bolles, 1981; Ho et al., 2003; Liu
et al., 2010; Ma et al., 2007, 2008; Sugaya and Kanatani, 2004; Tipping and Bishop, 1999;
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Vidal et al., 2005; Yan and Pollefeys, 2006; Zhang et al., 2010). A widely used form of this
model is that of k-sparse data, where there exists a dictionary (i.e., a collection of vectors)
Φ = {ϕi}mi=1 ⊂ R

D such that each observed data point x ∈ R
d may be expressed as a linear

combination of at most k ≪ D elements of Φ. These sparse representations offer great
convenience and expressivity for signal processing tasks (such as in Peyré, 2009; Protter
and Elad, 2007), compressive sensing, statistical estimation ,and learning (e.g., see Aharon
et al., 2005; Candes and Tao, 2007; Chen et al., 1998; Donoho, 2006; Kreutz-Delgado et al.,
2003; Lewicki et al., 1998; Maurer and Pontil, 2010a, among others), and even exhibits
connections with representations in the visual cortex (see Olshausen and Field, 1997). In
geometric terminology, such sparse representations are generally attainable when the local
intrinsic dimension of the observations is small. For these applications, the dictionary is
usually assumed to be known a priori, instead of being learned from the data, but it has been
recognized in the past decade that data-dependent dictionaries may perform significantly
better than generic dictionaries even in classical signal processing tasks.

The k-sparse data model motivates a large amount of research in dictionary learning,
where Φ is learned from data rather than being fixed in advance: given n samplesX1, . . . ,Xn

from a probability distribution µ in R
D representing the training data, an algorithm “learns”

a dictionary Φ̂ which provides sparse representations for the observations sampled from µ.
This problem and its optimal algorithmic solutions are far from being well-understood, at
least compared to the understanding that we have for classical dictionaries such as Fourier,
wavelets, curvelets, and shearlets. These dictionaries arise in computational harmonic anal-
ysis approaches to image processing, and Donoho (1999) (for example) provides rigorous,
optimal approximation results for simple classes of images. The work of Gribonval et al.
(2013) presents rather general bounds for the complexity of learning the dictionaries (see
also Maurer and Pontil, 2010b; Vainsencher et al., 2011, and references therein). The al-
gorithms used in dictionary learning are often computationally demanding, and many of
them are based on high-dimensional non-convex optimization. The emphasis of existing
work is often made on the generality of the approach, where minimal assumptions are made
on geometry of the distribution from which the sample is generated. This “pessimistic”
approach incurs bounds dependent upon the ambient dimension D in general (even in the
standard case of data lying on one hyperplane).

A different type of geometric assumption on the data gives rise to manifold learning,
where the observations aggregate on a suitably regular manifold M of dimension d isomet-
rically embedded in R

D (notable works include Belkin and Niyogi, 2003; Coifman et al.,
2005a,b; Coifman and Maggioni, 2006; Donoho and Grimes, 2003, 2002; Genovese et al.,
2012b; Jones et al., 2008, 2010; Little et al., 2009; Little, 2012; Roweis and Saul, 2000;
Tenenbaum et al., 2000; Zhang and Zha, 2002, among others). This setting has been recog-
nized as useful in a variety of applications (e.g. Causevic et al., 2006; Coifman et al., 2006;
Rahman et al., 2005)), influencing work in the applied mathematics and machine learning
communities during the past several years. It has also been recognized that in many cases
the data does not naturally aggregate on a smooth manifold (as in Little et al., 2009; Little,
2012; Wakin et al., 2005), with examples arising in imaging that contradict the smoothness
conditions. While this phenomenon is not as widely recognized as it probably should be,
we believe that it is crucial to develop methods (both for dictionary and manifold learning)
that are robust not only to noise, but also to modeling error. Such concerns motivated
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the work on intrinsic dimension estimation of noisy data sets (see Little et al., 2009; Lit-
tle, 2012), where smoothness of the underlying distribution of the data is not assumed,
but only certain natural conditions (possibly varying with the scale of the data) are im-
posed. The central idea of the aforementioned works is to perform the multiscale singular
value decomposition (SVD) of the data, an approach inspired by the works of David and
Semmes (1993) and Jones (1990) in classical geometric measure theory. These techniques
were further extended in several directions in the papers by Chen and Maggioni (2011);
Chen et al. (2011a,b), while Allard et al. (2012); Chen and M.Maggioni (2010) built upon
this work to construct multiscale dictionaries for the data based on the idea of Geometric
Multi-Resolution Analysis (GMRA).

Until these recent works introduced the GMRA construction, connections between dic-
tionary learning and manifold learning had not garnered much attention in the literature.
These papers showed that, for intrinsically low-dimensional data, one may perform dictio-
nary learning very efficiently by exploiting the underlying geometry, thereby illuminating
the relationship between manifold learning and dictionary learning. In these papers, it was
demonstrated that, in the infinite sample limit and under a manifold model assumption for
the distribution of the data (with mild regularity conditions for the manifold), the GMRA
algorithm efficiently learns a dictionary in which the data admits sparse representations.
More interestingly, the examples in that paper show that the GMRA construction succeeds
on real-world data sets which do not admit a structure consistent with the smooth mani-
fold modeling assumption, suggesting that the GMRA construction exhibits robustness to
modeling error. This desirable behavior follows naturally from design decisions; GMRA
combines two elements that add stability: a multiscale decomposition and localized SVD.

In this paper, we analyze the finite sample behavior of (a slightly modified version of)
that construction, and prove strong finite-sample guarantees for its behavior under general
conditions on the geometry of a probability distribution generating the data. In particular,
we show that these conditions are satisfied when the probability distribution is concentrated
“near” a manifold, which robustly accounts for noise and modeling errors. In contrast to
the pessimistic bounds mentioned above, the bounds that we prove only depend on the
“intrinsic dimension” of the data. It should be noted that our method of proof produces
non-asymptotic bounds, and requires several explicit geometric arguments not previously
available in the literature (at least to the best of our knowledge). Some of our geometric
bounds could be of independent interest to the manifold learning community.

The GMRA construction is therefore proven to simultaneously learn manifolds (in sense
that it outputs a suitably close approximation to points on a manifold) and dictionaries
in which the data is represented sparsely. Moreover, the construction is guaranteed to be
robust with respect to noise and to perturbations of the manifold model. The GMRA
construction is fast, linear in the size of the data matrix, inherently online, does not require
nonlinear optimization, and is not iterative. Finally, our results may be combined with
the GMRA compressed sensing techniques and algorithms presented in Iwen and Maggioni
(2013), yielding both a method to learn a dictionary in a stable way on a finite set of training
data, and a way of performing compressive sensing and reconstruction (with guarantees)
from a small number of (suitable) linear projections (again without the need for expensive
convex optimization).
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This paper is organized as follows: Section 2 introduces the main definitions and notation
employed throughout the paper. Section 3 explains the main contributions, formally states
the results and provides comparison with existing literature. Finally, Sections 4 and 5 are
devoted to the proofs of our main results, Theorem 2 and Theorem 6.

2. Geometric Multi-Resolution Analysis (GMRA)

This section describes the mathematical framework and the main objects studied in the pa-
per. Our goal will be to prove the following claims which we explain informally at this point.
In the statement below, “&” and “.” denote inequalities up to multiplicative constants and
logarithmic factors. The results will be made formal in the course of exposition.

Statement of results. Let σ ≥ 0 be a fixed small constant, and let ε & σ be given.
Suppose that n & ε−(1+d/2), and let Xn = {X1, . . . ,Xn} be an i.i.d. sample from Π, a
probability distribution with density supported in a tube of radius σ around a smooth closed
d-dimensional manifold M →֒ R

D. There exists an algorithm that, given Xn, outputs the
following objects:

• a dictionary Φ̂ε = {ϕ̂i}i∈Jε ⊂ R
D;

• a nonlinear “encoding” operator D̂ε : R
D → R

Jε which takes x ∈ R
D and returns the

coefficients of its approximation by the elements of Φ̂ε;

• a “decoding” operator D̂−1
ε : RJε → R

D which maps a sequence of coefficients to an
element of RD.

Moreover, the following properties hold with high probability:

i. Card(Jε) . ε−d/2;

ii. the image of D̂ε is contained in the set Sd+1 ⊂ R
Jε of all (d+1) - sparse vectors (i.e.,

vectors with at most d+ 1 nonzero coordinates);

iii. the reconstruction error satisfies

sup
x∈support(Π)

‖x− D̂−1
ε D̂ε(x)‖ . ε;

iv. the time complexity for computing

• Φ̂ε is O(Cd(D + d2)ε−1− 2
d log(1/ε)), where C is a universal constant;

• D̂ε(x) is O(d(D + d log(1/ε))), and for D̂−1
ε (x) is O(d(D + log(1/ε))).

If a new observation Xn+1 from Π becomes available, Φ̂ε may be updated in time
O(Cd(D + d2) log(1/ε)).

In other words, we can construct a data-dependent dictionary Φ̂ε of cardinality O(ε−d/2)

by looking at n ≍ ε−1− 2
d data points drawn from Π, such that Φ̂ε provides both (d + 1)-

sparse approximations to data and has expected “reconstruction error” of order ε (with high
probability). Moreover, the algorithm producing this dictionary is fast and can be quickly
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updated if new points become available. We want to emphasize that the complexity of our
construction only depends on the desired accuracy ε, and is independent of the total number
of samples (more precisely, it is enough to use only the first ≃ ε−(1+d/2) data points). Many
existing techniques in dictionary learning cannot guarantee a requested accuracy, or a given
sparsity, and a certain computational cost as a function of the two. Our results above
completely characterize the tradeoffs between desired precision, dictionary size, sparsity,
and computational complexity for our dictionary learning procedure.

We also remark that a suitable version of compressed sensing applies to the dictionary
representations used in the theorem: we refer the reader to the works by Chen et al. (2012);
Iwen and Maggioni (2013).

2.1 Notation

For v ∈ R
D, ‖v‖ denotes the standard Euclidean norm in R

D. Bd(0, r) is the Euclidean
ball in R

d of radius r centered at the origin, and we let B(0, r) := BD(0, r). ProjV stands
for the orthogonal projection onto a linear subspace V ⊆ R

D, dim(V ) for its dimension and
V ⊥ for its orthogonal complement. For x ∈ R

D, let Projx+V be the affine projection onto
the affine subspace x+ V defined by Projx+V (y) = x+ ProjV (y − x), for y ∈ R

D.

Given a matrix A ∈ R
k×l, we write A = [a1| · · · |al], where ai stands for the ith column

of A. The operator norm is denoted by ‖A‖, the Frobenius norm by ‖A‖F and the matrix
transpose by AT . If k = l, tr (A) denotes the trace. For v ∈ R

k, let diag(v) be the k × k
diagonal matrix with (diag(v))ii = vi, i = 1, . . . , k. Finally, we use span{ai}li=1 to denote
the linear span of the columns of A.

Given a C2 function f : Rl → R
k, let fi denote the ith coordinate of the function f

for i = 1, . . . k, Df(v) the Jacobian of f at v ∈ R
l, and D2fi(v) the Hessian of the ith

coordinate at v.

We shall use dVol to denote Lebesgue measure on R
D, and if U ⊂ R

D is Lebesgue
measurable, Vol(U) stands for the Lebesgue measure of U . We will use VolM to denote the
volume measure on a d-manifold M in R

D (note that this coincides with the d-dimensional
Hausdorff measure for the subset M of RD), and dM(x, y) to denote the geodesic distance
between two points x, y ∈ M. For a probability measure Π on R

D,

supp(Π) :=
⋂

C closed,Π(C)=1

C

stands for its support. Finally, for x, y ∈ R, x ∨ y := max(x, y).

2.2 Definition of the geometric multi-resolution analysis (GMRA)

We assume that the data are identically, independently distributed samples from a Borel
probability measure Π on R

D. Let 1 ≤ d ≤ D be an integer. A GMRA with respect to the
probability measure Π consists of a collection of (nonlinear) operators {Pj : R

D → R
D}j≥0.

For each “resolution level” j ≥ 0, Pj is uniquely defined by a collection of pairs of subsets

and affine projections, {(Cj,k, Pj,k)}N(j)
k=1 , where the subsets {Cj,k}N(j)

k=1 form a measurable

partition of RD (that is, members of {Cj,k}N(j)
k=1 are pairwise disjoint and the union of all
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members is RD). Pj is constructed by piecing together local affine projections. Namely, let

Pj,k(x) := cj,k + Proj Vj,k
(x− cj,k),

where cj,k ∈ R
D and Vj,k are defined as follows. Let Ej,k stand for the expectation with

respect to the conditional distribution dΠj,k(x) = dΠ(x|x ∈ Cj,k). Then

cj,k = Ej,kx, (1)

Vj,k = argmin
dim(V )=d

Ej,k ‖x− cj,k − Proj V (x− cj,k)‖2 , (2)

where the minimum is taken over all linear spaces V of dimension d. In other words, cj,k is
the conditional mean and Vj,k is the subspace spanned by eigenvectors corresponding to d
largest eigenvalues of the conditional covariance matrix

Σj,k = Ej,k(x− cj,k)(x− cj,k)
T . (3)

Note that we have implicitly assumed that such a subspace Vj,k is unique, which will always

be the case throughout this paper. Given such a {(Cj,k, Pj,k)}N(j)
k=1 , we define

Pj(x) :=

N(j)∑

k=1

I{x ∈ Cj,k}Pj,k(x)

where I{x ∈ Cj,k} is the indicator function of the set Cj,k.
It was shown in the paper by Allard et al. (2012) that if Π is supported on a smooth,

closed d-dimensional submanifold M →֒ R
D, and if the partitions {Cj,k}N(j)

j=1 satisfy some

regularity conditions for each j, then, for any x ∈ M, ‖x − Pj(x)‖ ≤ C(M)2−2j for all
j ≥ j0(M). This means that the operators Pj provide an efficient “compression scheme”
x 7→ Pj(x) for x ∈ M, in the sense that every x can be well-approximated by a linear

combination of at most d+1 vectors from the dictionary Φ2−2j formed by {cj,k}N(j)
k=1 and the

union of the bases of Vj,k, k = 1 . . . N(j). Furthermore, operators efficiently encoding the
“difference” between Pj and Pj+1 were constructed, leading to a multiscale compressible
representation of M.

In practice, Π is unknown and we only have access to the training data Xn = {X1, . . . ,Xn},
which are assumed to be i.i.d. with distribution Π. In this case, operators Pj are replaced
by their estimators

P̂j(x) :=

N(j)∑

k=1

I{x ∈ Cj,k}P̂j,k(x)

where {Cj,k}N(j)
k=1 is a suitable partition of RD obtained from the data,

P̂j,k(x) := ĉj,k + Proj V̂j,k
(x− ĉj,k), (4)

ĉj,k :=
1

|Xj,k|
∑

x∈Xj,k

x,

V̂j,k := argmin
dim(V )=d

1

|Xj,k|
∑

x∈Xj,k

‖x− ĉj,k − Proj V (x− ĉj,k)‖2 ,

7
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Xj,k = Cj,k ∩ Xn, and |Xj,k| denotes the number of elements in Xj,k. We shall call these P̂j

the empirical GMRA.

Moreover, the dictionary Φ̂2−2j is formed by {ĉj,k}N(j)
k=1 and the union of bases of V̂j,k, k =

1 . . . N(j). The “encoding” and “decoding” operators D̂2−2j and D̂−1
2−2j mentioned above are

now defined in the obvious way, so that D̂−1
2−2j D̂2−2j (x) = P̂j,k(x) for any x ∈ Cj,k.

We remark that the “intrinsic dimension” d is assumed to be known throughout this
paper. In practice, it can estimated within the GMRA construction using the “multiscale
SVD” ideas of Little et al. (2009); Little (2012). The estimation technique is based on
inspecting (for a given point x ∈ Cj,k) the behavior of the singular values of the covariance
matrix Σj,k as j varies. For alternative methods, see Camastra and Vinciarelli (2001);
Levina and Bickel (2004) and references therein.

3. Main results

Our main goal is to obtain the non-asymptotic probabilistic bounds on the performance of
the empirical GMRA under certain structural assumptions on the underlying distribution
of the data. In practice, the data rarely belongs precisely to a smooth low-dimensional
submanifold. One way to relax this condition is to assume that it is “sufficiently close”
to a nice set. Here we assume that the underlying distribution is supported in a thin
tube around the manifold. We make no assumptions about the structure or distribution
of the noise, instead trying to understand how the error of sparse approximation depends
on the “thickness” of the tube, which quantifies stability and robustness properties of our
algorithm. Another way to model this situation is to allow additive noise, whence the
observations are assumed to be of the form X = Y + ξ, where Y belongs to a submanifold
of RD, ξ is independent of Y , and the distribution of ξ is known. This leads to a singular
deconvolution problem (see Genovese et al., 2012c; Koltchinskii, 2000).

We will measure performance of the empirical GMRA by the L2(Π)-error

E

∥∥∥X − P̂j(X)
∥∥∥
2
:=

∫

supp(Π)

∥∥∥x− P̂j(x)
∥∥∥
2
dΠ(x) (5)

or by the ‖ · ‖∞,Π-error defined as
∥∥∥Id−P̂j

∥∥∥
∞,Π

:= sup
x∈supp(Π)

∥∥∥x− P̂j(x)
∥∥∥ , (6)

where P̂j is defined by (4). As we mentioned before, our GMRA construction is entirely
data-dependent: it takes the point cloud of cardinality n as an input and for every j ∈ Z+

returns the partition {Cj,k}N(j)
k=1 and associated affine projectors P̂j,k.

The presentation is structured as follows: we start from the natural decomposition
∥∥∥x− P̂j(x)

∥∥∥ ≤ ‖x− Pj(x)‖︸ ︷︷ ︸
approximation error

+
∥∥∥Pj(x)− P̂j(x)

∥∥∥
︸ ︷︷ ︸

random error

and state the general conditions on the underlying distribution and partition scheme that
suffice to guarantee that

8
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1. the distribution-dependent operators Pj yield good approximation, as measured by
E ‖x− Pj(x)‖2;

2. the empirical version P̂j is with high probability close to Pj , so that E
∥∥∥P̂j(x)− Pj(x)

∥∥∥
2

is small.

This leads to our first result, Theorem 2, where the error E

∥∥∥x− P̂j(x)
∥∥∥
2
of the empirical

GMRA is bounded with high probability.

After developing this general result, we then consider the special but important case
where the distribution Π generating the data is supported in thin tube around a smooth
submanifold, and for a (concrete, efficiently computable, online) partition scheme we show
that the conditions of Theorem 2 are satisfied. This is summarized in the statement of
Theorem 6, that may be interpreted as proving finite-sample bounds for our GMRA-based
dictionary learning scheme for high-dimensional data that suitably concentrates around a
manifold. It is important to note that most of the constants in our results are explicit. The
only geometric parameters involved in the bounds are the dimension d of the manifold (but
not the ambient dimension D), its reach (see τ in (9)) and the “tube thickness” σ.

Among the existing literature, the papers Allard et al. (2012); Chen et al. (2012) in-
troduced the idea of using multiscale geometric decomposition of data to estimate the
distribution of points sampled in high-dimensions. However in the first paper no finite sam-
ple analysis was performed, and in the second the connection with geometric properties of
the distribution of the data is not made explicit, and the conditions are expressed in terms
of certain approximation spaces within the space of probability distributions in R

D, with
Wasserstein metrics used to measure distances and approximation errors.

The recent paper by Canas et al. (2012) is close in scope to our work: its authors present
probabilistic guarantees for approximating a manifold with a global solution of the so-called
k-flats (Bradley and Mangasarian, 2000) problem in the case of distributions supported on
manifolds. It is important to note, however, that our estimator is explicitly computable,
while exact global solution of k-flats is usually unavailable and certain approximations are
used in practice, and convergence to a global minimum is conditioned on suitable unknown
initializations. We also seamlessly tackle the case of noise and model error, which is beyond
what was studied previously. We consider this development extremely relevant in appli-
cations, both because real data is corrupted by noise and the assumption that data lies
exactly on a smooth manifold is often unrealistic. A more detailed comparison of theoret-
ical guarantees for k-flats and for our approach is given after we state the main results in
Subsection 3.2 below.

Another body of literature connected to this work studies the complexity of dictio-
nary learning. For example, Gribonval et al. (2013) present rather general bounds for the
complexity of learning the dictionaries (those results build on and generalize the works of
Maurer and Pontil (2010b); Vainsencher et al. (2011), among several others). The emphasis
of that work is on the generality of the approach, at the expense of obtaining bounds that
are rather pessimistic in general (even in the standard case of data lying on one hyperplane)
and depend on the ambient dimension D of the problem, while the bounds we present only
depend on the intrinsic dimension of the data.

9
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In the course of the proof, we obtain several results that might be of independent interest.
In particular, Lemma 16 gives upper and lower bounds for the volume of the tube around
a manifold in terms of the reach (7) and tube thickness. While the exact tubular volumes
are given by Weyl’s tube formula (see Gray, 2004), our bound are exceedingly easy to state
in terms of simple global geometric parameters.

For the details on numerical implementation of GMRA and its modifications, see the
works by Allard et al. (2012); Chen and M.Maggioni (2010).

3.1 Finite sample bounds for empirical GMRA

In this section, we shall present the finite sample bounds for the empirical GMRA described
above. For a fixed resolution level j, we first state sufficient conditions on the distribution

Π and the partition {Cj,k}N(j)
k=1 for which these L2(Π)-error bounds hold (see Theorem 2

below).
Suppose that for all integers jmin ≤ j ≤ jmax the following is true:

(A1) There exists an integer 1 ≤ d ≤ D and a positive constant θ1 = θ1(Π) such that for
all k = 1, . . . , N(j),

Π(Cj,k) ≥ θ12
−jd .

(A2) There is a positive constant θ2 = θ2(Π) such that for all k = 1, . . . , N(j), if X is
drawn from Πj,k then, Π - almost surely,

‖X − cj,k‖ ≤ θ22
−j .

(A3) Let λj,k
1 , . . . , λj,k

D denote the eigenvalues of the covariance matrix Σj,k (defined in 3)
arranged in the non-increasing order. Then there exist σ = σ(Π) ≥ 0, θ3 = θ3(Π),
θ4 = θ4(Π) > 0, and some α ∈ (0, 1] such that for all k = 1 . . . N(j),

λj,k
d ≥ θ3

2−2j

d
and

D∑

l=d+1

λj,k
l ≤ θ4(σ

2 + 2−2(1+α)j) ≤ 1

2
λj,k
d .

If in addition

(A4) There exists θ5 = θ5(Π) such that

‖Id−Pj‖∞,Π ≤ θ5

(
σ + 2−(1+α)j

)
,

then the bounds are also guaranteed to hold for the ‖ · ‖∞,Π-error (6).

Remark 1

i. Assumption (A1) entails that the distribution assigns a reasonable amount of proba-
bility to each partition element, assumption (A2) ensures that samples from partition
elements are always within a ball around the centroid, and assumption (A3) controls
the effective dimensionality of the samples within each partition element. Assumption
(A4) just assumes a bound on the error for the theoretical GMRA reconstruction.

10
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ii. Note that the constants θi, i = 1 . . . 4, are independent of the resolution level j.

iii. It is easy to see that Assumption (A3) implies a bound on the “local approximation
error”: since Pj acts on Cj,k as an affine projection on the first d “principal compo-
nents”, we have

Ej,k‖x− Pj(x)‖2 = tr
[
Ej,k

(
x− cj,k − Proj Vj,k

(x))(x− cj,k − Proj Vj,k
(x)
)T ]

=
D∑

l=d+1

λj,k
l ≤ θ4(σ

2 + 2−2(1+α)j).

iv. The parameter σ is introduced to cover “noisy” models, including the situations when
Π is supported in a thin tube of width σ around a low-dimensional manifold M.
Whenever Π is supported on a smooth d-dimensional manifold, σ can be taken to be
0.

v. The stipulation

θ4(σ
2 + 2−2(1+α)j) ≤ 1

2
λj,k
d

guarantees that the spectral gap λj,k
d − λj,k

d+1 is sufficiently large.

We are in position to state our main result.

Theorem 2 Suppose that (A1)-(A3) are satisfied, let X,X1, . . . ,Xn be an i.i.d. sample
from Π, and set d̄ := 4d2θ42/θ

2
3. Then for any jmin ≤ j ≤ jmax and any t ≥ 1 such that

t+ log(d̄ ∨ 8) ≤ 1
2θ1n2

−jd,

E‖X − P̂j(X)‖2 ≤ 2θ4

(
σ2 + 2−2j(1+α)

)
+ c12

−2j (t+ log(d̄ ∨ 8))d2

n2−jd
,

and if in addition (A4) is satisfied,

∥∥∥Id−P̂j

∥∥∥
∞,Π

≤ θ5

(
σ + 2−(1+α)j

)
+

√
c1
2
2−2j

(t+ log(d̄ ∨ 8))d2

n2−jd

with probability ≥ 1− 2jd+1

θ1

(
e−t + e−

θ1
16

n2−jd
)
, where c1 = 2

(
12
√
2

θ32
θ3

√
θ1

+ 4
√
2 θ2
d
√
θ1

)2
.

3.2 Distributions concentrated near smooth manifolds

Of course, the statement of Theorem 2 has little value unless assumptions (A1)-(A4) can
be verified for a rich class of underlying distributions. We now introduce an important class
of models and an algorithm to construct suitable partitions {Cj,k} which together satisfy
these assumptions. Let M be a smooth (or at least C2, so changes of coordinate charts
admit continuous second-order derivatives), closed d-dimensional submanifold of RD. We

11
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recall the definition of the reach (see Federer, 1959), an important global characteristic of
M. Let

D(M) = {y ∈ R
D : ∃!x ∈ M s.t. ‖x− y‖ = inf

z∈M
‖z − y‖}, (7)

Mr = {y ∈ R
D : inf

x∈M
‖x− y‖} < r}. (8)

Then

reach(M) := sup{r ≥ 0 : Mr ⊆ D(M)}, (9)

and we shall always use τ to denote the reach of the manifold M.

Definition 3 Assume that 0 ≤ σ < τ . We shall say that the distribution Π satisfies the
(τ ,σ)-model assumption if there exists a bounded smooth (or at least C2) submanifold
M →֒ R

D with reach τ such that supp(Π) = Mσ, Π is absolutely continuous with respect to
UMσ - the uniform distribution on Mσ - and the Radon-Nikodym derivative dΠ

dUMσ
satisfies

0 < φ1 ≤
dΠ

dUMσ

≤ φ2 < ∞ UMσ almost surely . (10)

Our partitioning scheme is based on the data structure known as the cover tree intro-
duced by Beygelzimer et al. (2006) (see also Ciaccia et al., 1997; Karger and Ruhl, 2002;
Yianilos, 1993). We briefly recall its definition and basic properties. Given a set of n dis-
tinct points Sn = {x1, . . . , xn} in some metric space (S, ρ), the cover tree T on Sn satisfies
the following: let Tj ⊂ Sn, j = 0, 1, 2, . . . be the set of nodes of T at level j. Then

1. Tj ⊂ Tj+1;

2. for all y ∈ Tj+1, there exists z ∈ Tj such that ρ(y, z) < 2−j ;

3. for all y, z ∈ Tj , ρ(y, z) > 2−j .

Remark 4 Note that these properties imply the following: for any y ∈ Sn, there exists
z ∈ Tj such that ρ(y, z) < 2−j+1.

Theorem 3 in (Beygelzimer et al., 2006) shows that the cover tree always exists; for more
details, see the aforementioned paper.

We will construct a cover tree for the collection X1, . . . ,Xn of i.i.d. samples from the
distribution Π with respect to the Euclidean distance ρ(x, y) := ‖x − y‖. Assume that

Tj := Tj(X1, . . . ,Xn) = {aj,k}N(j)
k=1 . Define the indexing map

k(x) := argmin
1≤k≤N(j)

‖x− aj,k‖

(ties are broken by choosing the smallest value of k), and partition R
D into the Voronoi

regions

Cj,k = {x ∈ R
D : kj(x) = k}. (11)

12
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Let ε(n, t) be the smallest ε > 0 which satisfies

n ≥ 1

φ1

(
τ + σ

τ − σ

)d

β1 (log β2 + t) , (12)

where β1 = VolM(M)
cosd(δ1)Vol(Bd(0,ε/4))

, β2 = VolM(M)
cosd(δ2)Vol(Bd(0,ε/8))

, δ1 = arcsin(ε/8τ), and δ2 =

arcsin(ε/16τ).

Remark 5 For large enough n, this requirement translates into n ≥ C(M, d, φ1)
(
1
ε

)d (
log 1

ε + t
)

for some constant C(M, d, φ1).

We are ready to state the main result of this section.

Theorem 6 Suppose that Π satisfies the (τ, σ)-model assumption. Let X1, . . . ,Xn be an
i.i.d. sample from Π, construct a cover tree T from {Xi}ni=1, and define Cj,k as in (11).
Assume that ε(n, t) < σ. Then, for all j ∈ Z+ such that 2−j > 8σ and 3 · 2−j + σ < τ/8,

partition {Cj,k}N(j)
k=1 and Π satisfy (A1), (A2), (A3), and (A4) with probability ≥ 1− e−t

for

θ1 =
φ1Vol(Bd(0, 1))

24d VolM(M)

(
τ − σ

τ + σ

)d

,

θ2 = 12,

θ3 =
φ1/φ2

24d+8
(
1 + σ

τ

)d ,

θ4 = 2 ∨ 2334

τ2
,

θ5 =

(
2 ∨ 2232

τ

)
1 + 3 · 25

√
2d
(
1 +

σ

τ

)d/2
(
1 +

(
25
71

)2

1− 1
9·212

)d/4

 ,

α = 1.

One may combine the results of Theorem 6 and Theorem 2 as follows: given an i.i.d.
sample X1, . . . ,Xn from Π, use the first ⌈n2 ⌉ points {X1, . . . ,X⌈n

2
⌉} to obtain the partition

{Cj,k}N(j)
k=1 , while the remaining {X⌈n

2
⌉+1, . . . ,Xn} are used to construct the operator P̂j

(see (4)). This makes our GMRA construction entirely (cover tree, partitions, affine linear
projections) data-dependent.

In the special case when σ = 0, the bounds resulting from Theorem 2 can be “optimized”
over j to get the following statement (we present only the bounds for the L2(Π) error, but
the results ‖ · ‖∞,Π are similar).

Corollary 7 Assume that conditions of Theorem 6 hold with σ = 0, and that n is suffi-
ciently large. Then for all A ≥ 1 such that A log n ≤ c4n, the following holds:

(a) if d ∈ {1, 2},

inf
j∈Z:2−j<τ/24

E‖x− P̂j(x)‖2 ≤ C1

(
log n

n

) 2
d

;

13
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(b) if d ≥ 3,

inf
j∈Z:2−j<τ/24

E‖x− P̂j(x)‖2 ≤ C2

(
log n

n

) 4
d+2

(13)

with probability ≥ 1 − c3n
−A, where C1 and C2 depend only on A, τ, d, φ1/φ2,VolM(M)

and c3, c4 depend only on τ, d, φ1/φ2,VolM(M).

Proof In case (a), it is enough to set t := (A + 1) log n, 2−j :=
(

16t
θ1n

)1/d
, and apply

Theorem 2. For case (b), set t := (A+ 1) log n and 2−j :=
(
A logn

n

) 1
d+2

.

Finally, we note that the claims ii. and iii. stated in the beginning of Section 2 easily follow

from our general results (it is enough to choose n such that ε ≃ n− 2
d+2 and 2−j =

√
ε).

Claim i. follows from assumption (A1) and Theorem 6. Computational complexity bounds
iv. follow from the associated computational cost estimates for the cover trees algorithm
and the randomized singular value decomposition, and are discussed in detail in Sections 3
and 8 of (Allard et al., 2012).

3.3 Connections to the previous work

It is useful to compare our rates with results of Theorem 4 in (Canas et al., 2012). In
particular, this theorem implies that, given a sample of size n from the Borel probability
measure Π on the smooth d-dimensional manifold M, the L2(Π)-error of approximation of
M by kn = C1(M,Π)nd/(2(d+4)) affine subspaces is bounded by C2(M,Π)n−2/(d+4). Here,
the dependence of kn on n is “optimal” in a sense that it minimizes the upper bound
for the risk obtained in (Canas et al., 2012). If we set σ = 0 in our results, then it easily
follows from Theorems 6 and 2 that the L2(Π)-error achieved by our GMRA construction for

2j ≃ n
1

2(d+4) (so that N(j) ≃ kn to make the results comparable) is of the same order n− 2
d+4 .

However, this choice of j is not optimal in this case - in particular, setting 2jn ≃ n
1

d+2 , we

obtain as in (13) a L2(Π)-error of order n− 2
d+2 , which is a faster rate. Moreover, we also

obtain results in the sup norm, and not only for mean square error. We should note that
technically our results require the stronger condition (10) on the underlying measure Π,
while theoretical guarantees in (Canas et al., 2012) are obtained assuming only the upper
bound dΠ

dUM
≤ φ2 < ∞, where UM := dVolM

VolM(M) is the uniform distribution over M.

The rate (13) is the same (up to log-factors) as the minimax rate obtained for the
problem considered in (Genovese et al., 2012a) of estimating a manifold from the samples
corrupted with the additive noise that is “normal to the manifold”. Our theorems are stated
under more general conditions, however, we only prove robustness-type results and do not
address the problem of denoising. At the same time, the estimator proposed in (Genovese
et al., 2012a) is (unlike our method) not suitable for applications. The paper (Genovese
et al., 2012b) considers (among other problems) the noiseless case of manifold estimation

under Hausdorff loss, and obtains the minimax rate of order n− 2
d . Performed numerical

simulation (see Section 6) suggest that our construction also appears to achieve this rate in
the noiseless case. However, we are interested in the much more realistic scenario of noisy
data.
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4. Preliminaries

This section contains the remaining definitions and preliminary technical facts that will be
used in the proofs of our main results.

Given a point y on the manifold M, let TyM be the associated tangent space, and let
T⊥
y M be the orthogonal complement of TyM in R

D. We define the projection from the
tube Mσ (see (8)) onto the manifold ProjM : Mσ → M by

ProjM(x) = argmin
y∈M

‖x− y‖

and note that σ < τ , together with (7), implies that ProjM is well-defined on Mσ, and

ProjM(y + ξ) = y

whenever y ∈ M and ξ ∈ T⊥
y M∩B(0, σ).

Next, we recall some facts about the volumes of parallelotopes that will prove useful in
Section 5. For a matrix A ∈ R

k×l with l ≤ k, we shall abuse our previous notation and let
Vol(A) also denote the volume of the parallelotope formed by the columns of A. Let A and
B be k × l1 and k × l2 matrices respectively with l1 + l2 ≤ k, and note that

Vol([A |B]) ≤ Vol(A)Vol(B)

where ([A |B]) denotes the concatenation of A and B into a k× (l1 + l2) matrix. Moreover,
if the columns of A and B are all mutually orthogonal, we clearly have that Vol([A |B]) =

Vol(A)Vol(B). Assuming that I is the l1×l1 identity matrix, we have the bound Vol

(
A
I

)
≥

1. The following proposition gives volume bounds for specific types of perturbations that
we shall encounter.

Proposition 8 Suppose Y = [y1| · · · |yd] is symmetric d by d matrix such that ‖Y ‖ ≤ q < 1.
Then

Vol

(
I + Y
X

)
≤ (1 + q)d Vol

(
I
X

)

Vol

(
I + Y XT

X −I

)
≥ (1− q)d Vol

(
I XT

X −I

)
.

The proof is given in Appendix 6.2. Finally, let us recall several important geometric
consequences involving the reach:

Proposition 9 The following holds:

i. For all x, y ∈ M such that ‖x− y‖ ≤ τ/2, we have

dM(x, y) ≤ τ − τ

√
1− 2

‖x− y‖
τ

≤ 2‖x− y‖.

ii. Let γ(t) : [0, 1] 7→ M be the arclength-parameterized geodesic. Then ‖γ′′(t)‖ ≤ 1
τ for

all t.
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iii. Let φ be the angle between TxM and TyM, in other words,

cos(φ) := min
u∈TxM,‖u‖=1

max
v∈TyM,‖v‖=1

|〈u, v〉| .

If ‖x− y‖ ≤ τ
2 , then cos(φ) ≥

√
1− 2‖x−y‖

τ .

iv. If x is such that ‖x− y‖ < τ/2, then x is a regular point of Proj y+TyM : B(y, τ/2) ∩
M → y + TyM (in other words, the Jacobian of Proj y+TyM at x is nonsingular).

v. Let y ∈ M, r < τ and A = M∩B(y, r). Then

Bd(y, r cos(θ)) ⊆ Proj y+TyM(A),

where θ = arcsin
(

r
2τ

)
.

Proof Part i. is the statement of Proposition 6.3 and part ii. - of Proposition 6.1 in
(Niyogi et al., 2008). Part iii. is demonstrated in Lemma 5.4 of the same paper, and this
lemma coincides with iv. Part v. is proven in Lemma 5.3 of (Niyogi et al., 2008).

5. Proofs of the main results

The rest of the paper is devoted to the proofs of our main results.

5.1 Proof of Theorem 2

Assumption (A3) above controls the L2(Π) approximation error of x ∈ M by Pj(x) (see

Remark 1, part iii.), hence we will concentrate on the stochastic error ‖P̂j(x)−Pj(x)‖. To
this end, we will need to estimate ‖cj,k − ĉj,k‖ and ‖Proj Vj,k

− Proj V̂j,k
‖, k = 1 . . . N(j).

One of the main tools required to obtain this bound is the noncommutative Bernstein’s
inequality.

Theorem 10 (Minsker, 2013, Theorem 2.1) Let Z1, . . . , Zn ∈ R
D×D be a sequence of in-

dependent symmetric random matrices such that EZi = 0 and ‖Zi‖ ≤ U a.s., 1 ≤ i ≤ n.
Let

σ2 :=

∥∥∥∥∥

n∑

i=1

EZ2
i

∥∥∥∥∥ .

Then for any t ≥ 1

∥∥∥∥∥

n∑

i=1

Zi

∥∥∥∥∥ ≤ 2max

(
σ
√

t+ log(D̄), U(t+ log(D̄))

)
(14)

with probability ≥ 1− e−t, where D̄ := 4
tr

(
n∑

i=1
EZ2

i

)

σ2 .
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Note that we always have D̄ ≤ 4D. We use this inequality to estimate ‖Σ̂j,k − Σj,k‖: let
Π(dx|A) be the conditional distribution of X given that X ∈ A, and set Πj,k(dx) :=

Π(dx|Cj,k). Let mj,k :=
n∑

i=1
I{Xi ∈ Cj,k} to be the number of samples in Cj,k, k =

1 . . . N(j). Let I ⊂ {1, . . . , n} be such that |I| = m. Conditionally on the event AI :=
{Xi ∈ Cj,k for i ∈ I , and Xi /∈ Cj,k for i /∈ I}, the random variables {Xi, i ∈ I} are
independent with distribution Πj,k. Then

Pr
(∥∥∥Σ̂j,k − Σj,k

∥∥∥ ≥ s |mj,k = m
)
=

∑

I⊂{1,...,n},|I|=m

Pr
(∥∥∥Σ̂j,k − Σj,k

∥∥∥ ≥ s |AI

) 1(
n
m

) (15)

= Pr
(∥∥∥Σ̂j,k − Σj,k

∥∥∥ ≥ s |A{1,...,m}
)
.

To estimate Pr
(∥∥∥Σ̂j,k − Σj,k

∥∥∥ ≥ s |A{1,...,m}
)
, we use the following inequality. Recall that

d̄ = 4d2
θ42
θ23

,

where θ2, θ3 are the constants in Assumptions (A2) and (A3).

Lemma 11 Let X,X1, . . . ,Xm be an i.i.d. sample from Πj,k. Set

ĉj,k =
1

m

m∑

i=1

Xi and Σ̂j,k :=
1

m

m∑

i=1

(Xi − ĉj,k)(Xi − ĉj,k)
T .

Assume that m ≥ t+ log(d̄ ∨ 8). Then with probability ≥ 1− 2e−t,

∥∥∥Σ̂j,k − Σj,k

∥∥∥ ≤ 6r2

√
t+ log(d̄ ∨ 8)

m
.

Proof We want to estimate

∥∥∥Σ̂j,k − Σj,k

∥∥∥ =

∥∥∥∥∥
1

m

m∑

i=1

(Xi − cj,k)(Xi − cj,k)
T − Σj,k + (cj,k − ĉj,k)(cj,k − ĉj,k)

T

∥∥∥∥∥

≤
∥∥∥∥∥
1

m

m∑

i=1

(Xi − cj,k)(Xi − cj,k)
T − Σj,k

∥∥∥∥∥+
∥∥(cj,k − ĉj,k)(cj,k − ĉj,k)

T
∥∥ . (16)

Set r := θ2 · 2−j . Recall that ‖x − cj,k‖ ≤ r for all x, y ∈ Ci,j by assumption (A2). It
implies that

1. for all 1 ≤ i ≤ m, ‖(Xi − cj,k)(Xi − cj,k)
T ‖ ≤ r2 almost surely,

2.
∥∥∥E
[
(Xi − cj,k)(Xi − cj,k)

T
]2∥∥∥ =

∥∥∥E‖Xi − cj,k‖2(Xi − cj,k)(Xi − cj,k)
T
∥∥∥ ≤ r2‖Σj,k‖.
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Therefore, by Theorem 10 applied to Zi :=
1
m(Xi − cj,k)(Xi − cj,k)

T , i = 1 . . . m,

∥∥∥∥∥
1

m

m∑

i=1

(Xi − cj,k)(Xi − cj,k)
T − Σj,k

∥∥∥∥∥ ≤ 2


r

√
(t+ log(d̄))‖Σj,k‖

m
∨ r2

t+ log(d̄)

m




= 2r2

√
(t+ log(d̄))

m

(√
t+ log(d̄)

m
∨
√∥∥∥∥

Σj,k

r2

∥∥∥∥

)

with probability ≥ 1− e−t. Note that ‖Σj,k‖ ≤ tr (Σj,k) ≤ r2. Moreover,

D̄ = 4
tr (EZ2

1 )

‖EZ2
1‖

≤ 4
E(trZ1)

2

(
λj,k
d

)2 ≤ 4d2
r4

θ232
−4j

= 4d2
θ42
θ23

= d̄

by assumption (A3) and the definition of r. Since t+log(d̄)
m ≤ 1 by assumption,

∥∥∥∥∥
1

m

m∑

i=1

(Xi − cj,k)(Xi − cj,k)− Σj,k

∥∥∥∥∥ ≤ 2r2

√
t+ log(d̄)

m
.

For the second term in (16), note that ‖(cj,k − ĉj,k)(cj,k − ĉj,k)‖ = ‖cj,k − ĉj,k‖2. We apply
Theorem 10 to the symmetric matrices

Gi :=

(
0 (Xi − cj,k)

T

Xi − cj,k 0

)
.

Noting that ‖Gi‖ = ‖Xi − cj,k‖ ≤ r almost surely,

‖EG2
i ‖ = E‖Xi − cj,k‖2 = tr (Σj,k) ≤ r2,

and
tr (EG2

i )

‖EG2
i ‖

= 2, we get that for all t such that t+ log 8 ≤ m, with probability ≥ 1− e−t

‖ĉj,k − cj,k‖ ≤ 2

[
r

√
(t+ log 8)

m
∨ r

t+ log 8

m

]
≤ 2r

√
t+ log 8

m
, (17)

hence with the same probability

∥∥(cj,k − ĉj,k)(cj,k − ĉj,k)
T
∥∥ ≤ 4r2

t+ log 8

m
,

and the claim follows.

Given the previous result, we can estimate the angle between the eigenspaces of Σ̂j,k and
Σj,k:

Theorem 12 (Davis and Kahan, 1970), or (Zwald and Blanchard, 2006, Theorem 3).

Let δd = δd(Σj,k) :=
1
2 (λ

j,k
d − λj,k

d+1). If ‖Σ̂j,k − Σj,k‖ < δd/2, then

∥∥∥Proj Vj,k
− Proj V̂j,k

∥∥∥ ≤ ‖Σ̂j,k −Σj,k‖
δd

,
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Since δd ≥ θ3
2θ22

r2

d by assumption (A3), the previous result implies that, conditionally on

the event {mj,k = m}, with probability ≥ 1− 2e−t,

∥∥∥Proj Vj,k
− Proj V̂j,k

∥∥∥ ≤ 12d
θ22
θ3

√
t+ log(d̄ ∨ 8)

m
.

It remains to obtain the unconditional bound. Set nj,k := nΠ(Cj,k) and note that nj,k ≥
θ1n2

−jd by assumption (A1). To this end, we have

Pr

(
max

k=1...N(j)

∥∥∥Proj Vj,k
− Proj V̂j,k

∥∥∥ ≥ 12
θ22
θ3

√
(t+ log(d̄ ∨ 8))d2

nj,k/2

)

≤ Pr

(
max

k=1...N(j)

∥∥∥Proj Vj,k
− Proj

V̂j,k

∥∥∥ ≥ 12
θ22
θ3

√
(t+ log(d̄ ∨ 8))d2

nj,k/2

∣∣∣∣mj,k ≥ nj,k/2, k = 1 . . . N(j)

)

+ Pr




N(j)⋃

k=1

{mj,k < nj,k/2}


 ≤ N(j)e−t +

N(j)∑

k=1

Pr (mj,k < nj,k/2) .

Recall that mj,k =
n∑

i=1
I{Xi ∈ Cj,k}, hence Emj,k = nj,k and Var(mj,k) ≤ nj,k. Bernstein’s

inequality (see Lemma 2.2.9 in van der Vaart and Wellner, 1996) implies that

|mj,k − nj,k| ≤
(
2
√
snj,k ∨

4

3
s

)

with probability ≥ 1 − e−s. Choosing s =
nj,k

16 , we deduce that Pr (mj,k < nj,k/2) ≤
e−

θ1
16

n2−jd

, and, since N(j) ≤ 1
θ1
2jd by assumption (A1),

N(j)∑

k=1

Pr (mj,k < nj,k/2) ≤
1

θ1
2jde−

θ1
16

n2−jd

and

Pr

(
max

k=1...N(j)

∥∥∥Proj Vj,k
− Proj V̂j,k

∥∥∥ ≥ 12
θ22
θ3

√
(t+ log(d̄ ∨ 8))d2

nj,k/2

)
≤ 2jd

θ1

(
e−t + e−

θ1
16

n2−jd
)

(18)

A similar argument implies that

Pr

(
max

k=1...N(j)
‖cj,k − ĉj,k‖ ≥ 2r

√
t+ log(d̄ ∨ 8)

nj,k/2

)
≤ 2jd

θ1

(
e−t + e−

θ1
16

n2−jd
)
. (19)

We are in position to conclude the proof of Theorem 2: given x ∈ Cj,k, note that

‖Pj(x)− P̂j(x)‖ = ‖cj,k − ĉj,k +Proj Vj,k
(x− cj,k)− Proj

V̂j,k
(x− cj,k + cj,k − ĉj,k)‖

≤ 2‖cj,k − ĉj,k‖+ ‖Proj Vj,k
− Proj

V̂j,k
‖ · ‖x− cj,k‖.
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Together with assumption (A2), (18) and (19), it implies that with high probability

‖Pj(x)− P̂j(x)‖ ≤ 4
√
2

θ2√
θ1

2−j

√
t+ log(d̄ ∨ 8)

n2−jd
+ 12

√
2

θ32
θ3
√
θ1

2−j

√
(t+ log(d̄ ∨ 8))d2

n2−jd
.

Combined with assumption (A3) (see Remark 1, part iii.), this yields the result.

5.2 Proof of Theorem 6

Recall that M →֒ R
D is a smooth (or at least C2) compact manifold without boundary,

with reach τ , and equipped with the volume measure dVolM. Our proof is divided into
several steps, and each of them is presented in a separate subsection to improve readability.

5.2.1 Local inversions of the projection

In this section, we show that, for r < τ/8, the projection map Proj y+TyM is injective on
B(y, r) ∩M, and hence invertible by part iv. of Proposition 9. We also demonstrate that
the derivatives of this inverse are bounded in a suitable sense. These estimates shall allow
us to develop bounds on volumes in Mσ.

We begin by proving a bound on the local deviation of the manifold from a tangent
plane.

Lemma 13 Suppose η ∈ T⊥
y M with ‖η‖ = 1 and z ∈ B(y, r) ∩M, where r ≤ τ/2. Then

|〈η, z − y〉| ≤ 2r2

τ

Proof Let γ : [0, dM(z, y)] → M denote the arclength-parameterized geodesic connecting
y to z in M. Since γ is a geodesic, there is a v ∈ TyM with ‖v‖ = 1 such that the Taylor
expansion

z = y + dM(z, y)v +

∫ dM(z,y)

0
γ′′(t) (dM(z, y)− t) dt.

By Proposition 9, ‖γ′′(t)‖2 ≤ 1/τ for all t and dM(z, y) ≤ 2r, so we have that

|〈η, z − y〉| =
∣∣∣∣∣

〈
η,

∫ dM(z,y)

0
γ′′(t) (dM(z, y) − t) dt

〉∣∣∣∣∣

≤
∫ dM(z,y)

0
|〈η, γ′′(t)〉| (dM(z, y)− t) dt

≤ 1

τ

∫ dM(z,y)

0
(dM(z, y)− t) dt

≤ dM(z, y)2

2τ

≤ 2r2

τ
.
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Our next lemma quantitatively establishes the local injectivity of the affine projections
onto tangent spaces. 1

Lemma 14 Suppose y ∈ M and r < τ/8. Then Proj y+TyM : B(y, r) ∩M → y + TyM is
injective.

Proof Suppose a and b are distinct in B(y, r) ∩M. Now, b− a = v + w where v ∈ TaM
and w ∈ T⊥

a M, and note that ‖w‖ ≤ 2‖b−a‖2
τ ≤ 4 r

τ by Lemma 13. This also implies that

‖v‖ =
√

‖a− b‖2 − ‖w‖2 ≥
√

‖a− b‖2 − 4
‖a− b‖4

τ2
≥ ‖a− b‖

√
1− 16

r2

τ2
≥ ‖a− b‖

√
1− 4

r

τ
.

By part iii. of Proposition 9, there is a u ∈ TyM such that 〈u, v〉 ≥ ‖v‖ cos(φ) where φ is
the angle between TyM and TaM. Then

|〈u, b− a〉| ≥ |〈u, v〉| − |〈u,w〉|
≥ ‖v‖ cos(φ)− ‖w‖

≥ ‖a− b‖
√

1− 4
r

τ

√
1− 2

r

τ
− 2

‖a− b‖2
τ

≥ ‖b− a‖
(√

1− 4
r

τ

√
1− 4

r

τ
− 4

r

τ

)

≥ ‖b− a‖
(
1− 8

r

τ

)
.

It then follows from r < τ/8 that Proj TyM(b − a) 6= 0, and hence Proj y+TyM(a) 6=
Proj y+TyM(b) and injectivity holds.

There are two important conclusions that Lemma 14 provides. First of all, it indicates
that, under a certain radius bound, the manifold does not “curve back” into particular
regions. This is helpful when we begin to examine upper bounds on local volumes. More
importantly, if we let Jy,r = Proj y+TyM(B(y, r) ∩M), then there is a well-defined inverse
map f of Proj y+TyM, f : Jy,r → B(y, r) ∩ M, when r < τ/8. Part iv of Proposition 9
implies that f is at least a C2 function, and part v of Proposition 9 implies that there is a
d-dimensional ball inside of Jy,r of radius cos(θ)r, where θ = arcsin(r/2τ).

Whenever we refer to such an f , we think of Jy,r as a subset in the span of the first d
canonical directions, and we identify f with the value f takes in the span of the remaining
D − d directions. Thus, we identify f with the function whose graph is a small part of the
manifold. Such an identification is obtained via an affine transformation, so we may do
this without any loss of generality. Using these assumptions, we may prove the following
bounds.

1. In an independent work, Eftekhari and Wakin (2013) prove a slightly stronger result that holds for
r < τ/4.
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Proposition 15 Let ε < τ/8, and assume f is defined above so that v 7−→
(

v
f(v)

)
is the

inverse of Proj y+TyM in B(y, ε) for some y ∈ M. Then

sup
v∈Bd(0,ε)

‖Df(v)‖ ≤ 2ε

τ − 2ε
(20)

and

sup
v∈Bd(0,ε)

sup
u∈SD−d−1

∥∥∥∥∥

D−d−1∑

i=1

uiD
2fi(v)

∥∥∥∥∥ ≤ τ2

(τ − 2ε)3
. (21)

Proof For ε < τ/8, we may define the embedding

(
v
β

)
7−→

(
v

f(v)

)
+

(
Df(v)T

−I

)
β

where we have assumed (without loss of generality) that y = 0 and TyM coincides with the
span of the first d canonical orthonormal basis members. The domain of this map is the set

Ω = {(v, β) ∈ R
d × R

D−d : v ∈ TyM∩B(0, ε), ‖β‖2 + ‖Df(v)Tβ‖2 < τ2}

and the Jacobian of this map is

(
I +

∑D−d
i=1 βiD

2fi(v) Df(v)T

Df(v) −I

)
.

It is clear that the inverse of the above map is given by

x 7−→ (Proj y+TyM(ProjM(x)),Proj T⊥
y M(x− ProjM(x))),

which is at least a C1 map. Thus, a necessary condition for the τ -radius normal bundle to
embed is that the Jacobian exhibited above is invertible, which in turn implies that

(
I +

∑D−d
i=1 βiD

2fi(v) Df(v)T

Df(v) −I

)(
ζ

Df(v)ζ

)
6= 0

for all ζ 6= 0 when (v, β) ∈ Ω. This reduces to (I+
∑

βiD
2fi(v)+Df(v)TDf(v))ζ 6= 0, and

so a necessary condition for embedding is then that the norm of
∑D−d

i=1 βiD
2fi(v) does not

exceed 1 + ‖Df(v)‖2 whenever

∥∥∥∥
(
Df(v)T

−I

)
β

∥∥∥∥
2

= ‖β‖2 + ‖Df(v)Tβ‖2 < τ2.

In particular, this must be true if ‖β‖ < τ/
√

1 + ‖Df(v)‖2. This reduces to the condition
that the operator norm

sup
u∈SD−d−1

∥∥∥∥∥

D−d∑

i=1

uiD
2fi(v)

∥∥∥∥∥ <
(1 + ‖Df(v)‖2)3/2

τ
<

1

τ
(1 + ‖Df(v)‖)3 . (22)
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By the fundamental theorem of calculus, we have that

Df(v)x = Df(0)x+

∫ ‖v‖

0
[uTv D

2fi(tuv)x]dt =

∫ ‖v‖

0
[uTv D

2fi(tuv)x]dt,

where uv = v/‖v‖ and [uTv D
2fi(tuv)x] indicates a vector with ith component uTv D

2fi(tuv)x.
Consequently, for any x ∈ R

d, we have that

‖Df(v)x‖ ≤
∫ ‖v‖

0

∥∥[uTv D2fi(tuv)x]
∥∥ dt ≤ ‖v‖ sup

t∈[0,‖v‖]

∥∥[uTv D2fi(tuv)x]
∥∥

≤ ε sup
t∈[0,ε]

∥∥[uTv D2fi(tuv)x]
∥∥ .

(23)

Now,

∥∥[uTv D2fi(tuv)x]
∥∥ = sup

u∈SD−d−1

〈u, [uTv D2fi(tuv)x]〉 = sup
u∈SD−d−1

D−d∑

i=1

ui(u
T
v D

2fi(tuv)x)

= sup
u∈SD−d−1

uTv

(
D−d∑

i=1

uiD
2fi(tuv)

)
x

≤ sup
u∈SD−d−1

‖uv‖
∥∥∥∥∥

D−d∑

i=1

uiD
2fi(tuv)

∥∥∥∥∥ ‖x‖

= ‖x‖ sup
u∈SD−d−1

∥∥∥∥∥

D−d∑

i=1

uiD
2fi(tuv)

∥∥∥∥∥ ,

which together with (23) and (22) yields the bound

‖Df(v)‖ <
ε

τ

(
1 + sup

t∈[0,ε]
‖Df(tuv)‖

)3

.

Since this inequality also holds for any v′ with ‖v‖ ≤ ε′, taking a supremum yields

sup
ε′∈[0,ε]

‖Df(tuv)‖ ≤ sup
ε′∈[0,ε]

ε′

τ

(
1 + sup

t∈[0,ε′]
‖Df(tuv)‖

)3

≤ ε

τ

(
1 + sup

ε′∈[0,ε]
‖Df(tuv)‖

)3

,

and hence

sup
v∈Bd(0,ε)

‖Df(v)‖ ≤ ε

τ

(
1 + sup

v∈Bd(0,ε)
‖Df(v)‖

)3

.

Setting a(ε′) = supv∈Bd(0,ε′)
‖Df(v)‖, we have that a(0) = 0,

a(ε′) ≤ ε′

τ

(
1 + a(ε′)

)3
,

for all ε′ ≥ 0, and a is continuous by continuity of ‖Df(v)‖. Setting b(ε′) = a(ε′)/(1+a(ε′)),
we get

b(ε′)(1 − b(ε′))2 ≤ ε′

τ
.
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Examining the polynomial x(1− x)2, we see that the sublevel set x(1− x)2 ≤ ω consists of
two components when ω < 4/27. Also note that if ω < 1/8, then

2(1 − 2ω)2 = 2− 8ω + 8ω2 > 2− 1 = 1,

and hence
2ω(1− 2ω)2 > ω.

Consequently, if x is such that x(1 − x)2 ≤ ω and is in the interval containing zero in the
sublevel set x(1− x)2 ≤ ω < 1/8, then x ≤ 2ω.

By these observations, continuity of b(ε′), and the fact that b(0) = 0, we have that

a(ε′) ≤ 2 ε′

τ

1−2 ε′

τ

, and thus

sup
v∈Bd(0,ε)

‖Df(v)‖ ≤ 2ε

τ − 2ε
.

From the bound in (22) we now acquire the bound

sup
v∈Bd(0,ε)

sup
u∈SD−d−1

∥∥∥∥∥

D−d−1∑

i=1

uiD
2fi(v)

∥∥∥∥∥ ≤ τ2

(τ − 2ε)3
.

5.2.2 Volume bounds

The main result of this section is Lemma 16, which allows us to compare volumes in Mσ

with volumes in M. It also establishes an upper bound on volumes, which is an essential
ingredient when we control the conditional distribution of Π subject to being in a particular
Cj,k.

Lemma 16 Suppose σ < τ , suppose U ⊆ M is measurable, and define P : Mσ → M so
that x 7→ ProjM(x) under P . Then

i.
(
1− σ

τ

)d
VolM(U)Vol(BD−d(0, σ)) ≤ Vol(P−1(U)) ≤

(
1 +

σ

τ

)d
VolM(U)Vol(BD−d(0, σ))

ii. If r + σ ≤ τ/8, then

Vol(Mσ∩B(y, r)) ≤
(
1 +

σ

τ

)d
(
1 +

(
2(r + σ)

τ − 2(r + σ)

)2
)d/2

Vol(Bd(0, r+σ))Vol(BD−d(0, σ)).

Proof We first prove part i. Let ε > 0 satisfy ε < τ/8. Because of (21) and the fact that
‖β‖ ≤ σ, we have that ∥∥∥∥∥

D−d∑

i=1

βiD
2fi(v)

∥∥∥∥∥ ≤ στ2

(τ − 2ε)3
.
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Since this is also a bound for the columns of
∑

βiD
2fi(v), Proposition 8 implies that

Vol

(
I +

∑
βiD

2fi(v) Df(v)T

Df(v) −I

)
≤
(
1 +

στ2

(τ − 2ε)3

)d

Vol

(
I Df(v)T

Df(v) −I

)

in T⊥(M∩B(y, ε)) ∩Mσ.

On the other hand, we have that

Vol

(
DfT (v)

−I

)
≤

D−d∏

i=1

√
1 + ‖∇fi(v)‖2 ≤

(
1 +

4ε2

(τ − 2ε)2

)(D−d)/2

since (20) implies the bounds ‖∂f(v)
∂vi

‖ ≤ 2ε
τ−2ε for each i = 1, . . . , d, and the above is the

largest this quantity may be subject to these bounds.

When these estimates are joined together, we have an inequality

Vol

(
I +

∑D−d
i=1 βiD

2fi(v) Df(v)T

Df(v) −I

)
≤
(
1 +

στ2

(τ − 2ε)3

)d

Vol

(
I Df(v)T

Df(v) −I

)

≤
(
1 +

στ2

(τ − 2ε)3

)d(
1 +

4ε2

(τ − 2ε)2

)(D−d)/2

Vol

(
I

Df(v)

)
.

For an arbitrarily small ε > 0, let {Uγ}γ∈Γ denote a finite partition of U into measurable
sets such that there for each γ ∈ Γ, there is a yγ satisfying Uγ ⊂ M ∩ B(yγ , ε). Let fγ
denote the inverse of Pγ = Proj yγ+TyγM in Uγ , and set

Eγ,v = {β ∈ R
D−d : ‖β‖2 + ‖Dfγ(v)β‖2 ≤ σ2}

for all v ∈ Pγ(Uγ). Thus,

∫

P−1
γ (Uγ)

dVol(x) =

∫

Pγ(Uγ)

∫

Eγ,v

Vol

(
I +

∑D−d
i=1 βiD

2fi(v) Df(x)T

Df(v) −I

)
dβdv

≤
∫

Pγ(Uγ)

∫

Eγ,v

(
1 +

στ2

(τ − 2ε)3

)d(
1 +

4ε2

(τ − 2ε)2

)d/2

Vol

(
I

Df(v)

)
dβdv

≤
(
1 +

στ2

(τ − 2ε)2

)d(
1 +

4ε2

(τ − 2ε)2

)d/2

VolM(Uγ)Vol(BD−d(0, σ))

since Eγ,v ⊂ BD−d(0, σ). Consequently, we have that

Vol(P−1(U)) =
∑

γ∈Γ
Vol(P−1

γ (Uγ))

≤
∑

γ∈Γ

(
1 +

στ2

(τ − 2ε)3

)d(
1 +

4ε2

(τ − 2ε)2

)d/2

VolM(Uγ)Vol(BD−d(0, σ))

=

(
1 +

στ2

(τ − 2ε)3

)d(
1 +

4ε2

(τ − 2ε)2

)d/2

VolM(U)Vol(BD−d(0, σ)).
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Since ε > 0 was arbitrary, we obtain

Vol(P−1(U)) ∩Mσ) ≤
(
1 +

σ

τ

)d
VolM(U)Vol(BD−d(0, σ)).

This completes the proof of upper bound in part i. Using a similar partition strategy, we
have that

∫

P−1
γ (Uγ)

dVol(x) =

∫

Pγ(Uγ)

∫

Eγ,v

Vol

(
I +

∑D−d
i=1 βiD

2fi(v) Df(x)T

Df(v) −I

)
dβdv

≥
∫

Pγ(Uγ)

∫

Eγ,v

(
1− στ2

(τ − 2ε)3

)d

Vol

(
I Df(v)T

Df(v) −I

)
dβdv

=

∫

Pγ(Uγ)

∫

Eγ,v

(
1− στ2

(τ − 2ε)3

)d

Vol

(
I

Df(v)

)
Vol

(
Df(v)T

−I

)
dβdv

≥
∫

Pγ(Uγ)

∫

Eγ,v

(
1− στ2

(τ − 2ε)3

)d

Vol

(
I

Df(v)

)
dβdv

≥
∫

Pγ(Uγ)

∫

BD−d

(
0, σ

1+ ε
τ−ε

)

(
1− στ2

(τ − 2ε)3

)d

Vol

(
I

Df(v)

)
dβdv

=

(
1− στ2

(τ − 2ε)3

)d

VolM(Uγ)Vol
(
BD−d

(
0,
(
1− ε

τ

)
σ
))

In the inequalities above, we have used the fact that there is a ball of radius
(
1− ε

τ

)
σ inside

of Eγ,v for each γ and each v. Aggregating all of the sums and letting ε → 0 yields the
lower bound in part i.

We now prove part ii. Note that

Vol(Mσ ∩B(y, r)) ≤ Vol(P−1(M∩B(y, r + σ)))

since ‖ProjM(x) − y‖ ≤ ‖x − y‖ + ‖ProjM(x) − x‖ ≤ r + σ. Part ii. now follows from
part i. and the fact that

VolM(M∩B(y, r + σ)) ≤
∫

P (M∩B(y,r+σ))

Vol

(
I

Df(v)

)
dv

≤
(
1 +

(
2(r + σ)

τ − 2(r + σ)

)2
)d/2

Vol(Bd(0, r + σ)).

5.2.3 Absolute continuity of the pushforward of UMσ and local moments

Recall that UMσ is the uniform distribution over Mσ, and let UM := dVolM
VolM(M) be the

uniform distribution over M. In this section, we exploit the volume bounds of the previous
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subsection to obtain control over probabilities and local moments of UMσ . Our first result
allows us to get the lower bounds for the “small ball” probabilities associated to UMσ that
are independent of the ambient dimension D.

Lemma 17 Suppose σ < τ , and let ŨMσ denote the pushforward of UMσ under ProjM.
Then ŨMσ and UM are mutually absolutely continuous with respect to each other, and

(
τ − σ

τ + σ

)d

≤ dŨMσ

dUM
≤
(
τ + σ

τ − σ

)d

.

Proof This is a straightforward consequence of part i. of Lemma 16.

Lemma 18 Suppose Π is a distribution supported on Mσ, and let r < τ/2. Further assume
that Z is the random variable drawn from Π conditioned on the event Z ∈ Q where Mσ∩Q ⊂
B(y, r) for some y ∈ M. If Σ is the covariance matrix of Z, then

D∑

i=d+1

λi(Σ) ≤ 2σ2 +
8r4

τ2
,

where λi(Σ) are the eigenvalues of Σ arranged in the decreasing order.

Proof By the variational characterization of eigenvalues, we have that

D∑

i=d+1

λi(Σ) = argmin
dim(V )=D−d

tr (Proj TV ΣProj V )

= argmin
dim(V )=D−d

E‖Proj V (Z − EZ)‖2

= argmin
dim(V )=d

E‖Z − EZ − Proj V (Z − EZ)‖2.

Thus, we have that
D∑

i=d+1

λi(Σ) ≤ E‖Z − EZ − Proj TyM(Z − EZ)‖2. Observe that

E‖Z − EZ − Proj TyM(Z − EZ)‖2 =E‖Z − y + (y − EZ)− Proj TyM((Z − y) + (y − EZ))‖2

=E‖Z − y − Proj TyM(Z − y)‖2

− ‖(y − EZ)− Proj TyM(y − EZ)‖2

≤ E‖Z − y − Proj TyM(Z − y)‖2.

Now for any z ∈ Mσ ∩ B(y, r), we have that z = β + x where x ∈ M, and β ∈ T⊥
x M

satisfies ‖β‖ ≤ σ. Moreover, there is a unique decomposition x = η+v+y where η ∈ T⊥
y M

and v ∈ TyM. Thus,

‖z − y − Proj TyM(z − y)‖ = ‖β + η − Proj TyMβ‖ ≤ ‖β − Proj TyM(β)‖+ ‖η‖ ≤ σ +
2r2

τ
,

(24)

27



Maggioni, Minsker and Strawn

by Lemma 13, and we obtain the bound

E‖Z − EZ − Proj TyM(Z − EZ)‖2 ≤ 2σ2 +
8r4

τ2
. (25)

This establishes the required estimate.

Finally, we derive a lower bound on the upper eigenvalues of the local covariance for the
uniform distribution (needed to satisfy assumption (A3)). This is done in the following
lemma.

Lemma 19 Suppose that Q ⊆ R
D is such that

B(y, r1) ⊆ Q and Mσ ∩Q ⊂ B(y, r2)

for some y ∈ M and σ < r1 < r2 < τ/8− σ. Let Z be drawn from UMσ conditioned on the
event Z ∈ Q, and suppose Σ is the covariance matrix of Z. Then

λd(Σ) ≥
1

4
(
1 + σ

τ

)d
(
r1 − σ

r2 + σ

)d




1−
(
r1−σ
2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2




d/2

(r1 − σ)2

d
.

Proof For any unit vector u ∈ TyM we have

E〈u,Z − EZ〉2 = 1

Vol(Q ∩Mσ)

∫

Q∩Mσ

〈u,Z − EZ〉2dVol(Z)

≥ 1

Vol(B(y, r2) ∩Mσ)

∫

B(y,r1)∩Mσ

〈u, (Z − y)− E(Z − y)〉2dVol(Z)

using the inclusion assumptions, and by adding and subtracting the constant vector y.
We now seek to reduce the domain of integration and perform a change of variables.

Since r1 ≤ τ/8, the inverse of the affine projection onto y+ TyM is injective. Without loss
of generality, we assume y = 0 and TyM is the span of the first d standard orthonormal
vectors. Letting f denote the inverse of the affine projection onto y+TyM, we see that the
map (

v
β

)
7−→

(
v

f(v) + β

)

is well-defined and injective on Proj TyM(M∩B(y, r1−σ))×(T⊥
y M∩B(0, σ)). Let g denote

this map, note that
‖x+ β‖ ≤ ‖x‖+ ‖β‖ ≤ (r − σ) + σ = r,

for x ∈ M ∩ B(y, r1 − σ), and hence the image of g is contained in Mσ ∩ B(y, r1). Since
the absolute value of the determinant of the Jacobian of g is always 1 (it is lower triangular
with ones on the diagonal), employing the change of coordinates in the reduced domain of
integration yields

E〈u,Z − EZ〉2 ≥ 1

Vol(B(y, r2) ∩Mσ)

∫

A

∫

B

〈(
u
0

)
,

(
v

f(v) + β

)
− E(Z − y)

〉2

dβdv,
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where
A = Proj TyM(B(y, r1 − σ) ∩M), B = T⊥

y M∩B(0, σ).

Note that B(y, cos(θ)(r1 − σ)) ∩ (y + TyM) ⊂ A. Setting Q = Proj TyM, this immediately
reduces to

E〈u,Z − EZ〉2 ≥ 1

Vol(B(y, r2) ∩Mσ)

∫

A

∫

B
〈u, v − EQ(Z − y)〉2dβdv

=
Vol(BD−d(0, σ))

Vol(B(y, r2) ∩Mσ)

∫

A
〈u, v − EQ(Z − y)〉2dv

≥ Vol(BD−d(0, σ))

Vol(B(y, r2) ∩Mσ)

∫

Bd(0,q)
〈u, v − EQ(Z − y)〉2dv,

where q = cos(δ)(r1 − σ) and δ = arcsin((r1 − σ)/2τ). Noting that
∫
Bd(0,q)

〈u, v〉dv = 0 by
symmetry, we now use linearity of the inner product to further reduce the integrand:

E〈u,Z − EZ〉2 ≥ Vol(BD−d(0, σ))

Vol(B(y, r2) ∩Mσ)

∫

Bd(0,q)

(
〈u, v〉2 − 2〈u, v〉〈u,EQ(Z − y)〉+ 〈u,EQ(Z − y)〉2

)
dv

=
Vol(BD−d(0, σ))

Vol(B(y, r2) ∩Mσ)

∫

Bd(0,q)

(
〈u, v〉2 + 〈u,EQ(Z − y)〉2

)
dv

≥ Vol(BD−d(0, σ))

Vol(B(y, r2) ∩Mσ)

∫

Bd(0,q)
〈u, v〉2dv

=
Vol(BD−d(0, σ))Vol(Bd(0, q))

Vol(B(y, r2) ∩Mσ)

q2

d
.

By Lemma 16, we then obtain

E〈u,Z − EZ〉2 ≥



(
1 +

σ

τ

)
√

1 +

(
2(r2 + σ)

τ − 2(r2 + σ)

)2



−d

Vol(Bd(0, q))

Vol(Bd(0, r2 + σ))

q2

d

≥ 1

4
(
1 + σ

τ

)d
(
r1 − σ

r2 + σ

)d




1−
(
r1−σ
2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2




d/2

(r1 − σ)2

d
. (26)

Let Vd−1(Σ) be a subspace corresponding to the first d− 1 principal components of Z:

Vd−1 = argmin
dim(V )=d−1

E‖Z − EZ − Proj V (Z − EZ)‖,

and note that λd(Σ) = max06=u∈V ⊥
d−1

E

〈
u

‖u‖ , Z − EZ
〉2

. Since dim(V ⊥
d−1) = D − d + 1 and

dim(TyM) = d, it is easy to see that V ⊥
d−1 ∩ TyM 6= ∅. For any u∗ ∈ V ⊥

d−1 ∩ TyM such that
‖u∗‖ = 1 it follows from Courant-Fischer characterization of λd(Σ) that

λd(Σ) ≥ E 〈u∗, Z − EZ〉2 ,

and (26) implies the desired bound.
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The following statement is key to establishing the error bounds for GMRA measured in
sup-norm.

Lemma 20 Assume that conditions of Lemma 19 hold, and let Vd := Vd(Σ) be the subspace
corresponding to the first d principal components of Z. Then

sup
x∈Q

‖x− EZ − Proj Vd
(x− EZ)‖ ≤ 2σ +

4r22
τ

+
r2

r1 − σ

√
4σ2 +

16r42
τ2

γ(σ, τ, d, r1, r2),

where γ(σ, τ, d, r1, r2) = 4
√
2d
(
1 + σ

τ

)d/2 ( r2+σ
r1−σ

)d/2
(

1+
(

2(r2+σ)
τ−2(r2+σ)

)2

1−
(

r1−σ

2τ

)2

)d/4

.

The proof is given in Appendix 6.2; notice that the term containing γ(σ, τ, d, r1, r2) is often
of smaller order, so that the approximation is essentially controlled by the maximum of σ

and
r22
τ .

5.2.4 Putting all the bounds together

In this final subsection, we prove Theorem 6. We begin by translating Proposition 3.2 in
(Niyogi et al., 2008) into our setting. As before, let Xn = {X1, . . . ,Xn} be an i.i.d. sample
from Π, and the φ1 be the constant defined by (10).

Proposition 21 (Niyogi et al., 2008, Proposition 3.2) Suppose 0 < ε < τ
2 , and also that n

and t satisfy

n ≥ ε−d 1

φ1

(
τ + σ

τ − σ

)d

β1

(
log(ε−dβ2) + t

)
, (27)

where β1 = VolM(M)
cosd(δ1)Vol(Bd(0,1/4))

, β2 = VolM(M)
cosd(δ2)Vol(Bd(0,1/8))

, δ1 = arcsin(ε/8τ), and δ2 =

arcsin(ε/16τ). Let Eε/2,n be the event that

Y = {Yj = ProjM(Xj)}nj=1

is ε/2-dense in M (that is, M ⊆
n⋃

i=1
B(Yi, ε/2)). Then, Πn(Eε,n) ≥ 1 − e−t, where Πn is

the n-fold product measure of Π.

Proof The proof closely follows the one given in (Niyogi et al., 2008). The only additional
observation to make is that, if Π̃ is the pushforward measure of Π under ProjM : Mσ → M,
then

Π̃ (M∩B(y, ε/8)) = Π(Proj−1
M(M∩B(y, ε/8)))

≥ φ1UMσ(Proj
−1
M(M∩B(y, ε/8)))

= φ1ŨMσ(M∩B(y, ε/8))

≥ φ1

(
τ − σ

τ + σ

)d

UM(M∩B(y, ε/8)).
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by Lemma 16.

If ε ≪ τ , previous proposition implies that we roughly need n ≥ Const(M, d)
(
1
ε

)d
log 1

ε
points to get an ε-net for M. For the remainder of this section, we identify ε := ε(n, t) with
the smallest ε > 0 satisfying (27) in the statement of Proposition 21, and we also assume
that ε < σ. Take j ∈ Z+ such that

σ < 2−j−2 < τ. (28)

Let Cj,k be the partition of R
D into Voronoi cells defined by (11). Recall that Tj =

{aj,k}N(j)
k=1 ⊂ Xn is the set of nodes of the cover tree at level j, and set zj,k = ProjM(aj,k).

Lemma 22 With probability ≥ 1− e−t, for all j satisfying (28) and k = 1, . . . , N(j),

B
(
zj,k, 2

−j−2
)
⊆ Cj,k and Cj,k ∩Mσ ⊆ B(aj,k, 3 · 2−j−2 + 2−j+1) ⊆ B(zj,k, 3 · 2−j). (29)

Proof Assume the event Eε/2,n = {{Y1, . . . , Yn} is an ε/2 - net in M} occurs. By Propo-
sition 21, Pr(Eε/2,n) ≥ 1− e−t.

Since the elements of Tj are 2
−j-separated, for any 1 ≤ k ≤ N(j), B(aj,k, 2

−j−1) ⊆ Cj,k.
Moreover, since σ ≤ 2−j−2 and ‖aj,k − zj,k‖ ≤ σ,

B(zj,k, 2
−j−1 − 2−j−2) ⊆ B(zj,k, 2

−j−1 − σ) ⊆ B(aj,k, 2
−j−1),

hence the inclusion B
(
zj,k, 2

−j−2
)
⊆ Cj,k follows.

To show that Cj,k ∩Mσ ⊆ B(aj,k, 3 · 2−j−2 + 2−j+1), pick an arbitrary z ∈ Mσ. Note
that on the event Eε/2,n, there exists y ∈ {Y1, . . . , Yn} satisfying ‖z − y‖ ≤ ε/2 + σ. Let
x(y) ∈ Xn be such that y = ProjM(x(y)). By properties of the cover trees (see Remark 4),
there exists x∗ ∈ Tj such that ‖x(y)− x∗‖ ≤ 2−j+1. Then

‖z − x∗‖ ≤‖z − y‖+ ‖y − x(y)‖+ ‖x(y)− x∗‖ ≤ ε/2 + 2σ + 2−j+1 ≤ 3 · 2−j−2 + 2−j+1.

Since z was arbitrary, the result follows. Finally, B(aj,k, 3 · 2−j−2 +2−j+1) ⊂ B(zj,k, 3 · 2−j)
holds since ‖aj,k − zj,k‖ ≤ 2−j−2.

We now use Lemma 22 to obtain bounds on the constants θi for i = 1, . . . , 4 and α. We
prove a lemma for each of the assumptions (A1), (A2), and (A3) and then collect them
as the proof of Theorem 6.
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Proof [Proof of Theorem 6] Since the hypotheses of Lemma 22 are satisfied with high
probability, we first obtain

Π(Cj,k) ≥ Π(B(zj,k, 2
−j−2))

≥ φ1UMσ(B(zj,k, 2
−j−2))

= φ1
Vol(Mσ ∩B(zj,k, 2

−j−2))

Vol(Mσ)

≥ φ1
Vol(Proj−1

M(M∩B(zj,k, 2
−j−2 − σ)))

Vol(Mσ)

≥ φ1

(
τ − σ

τ + σ

)d cos(δ)dVol(Bd(0, 2
−j−2 − σ))

VolM(M)

≥ φ1Vol(Bd(0, 1))

24d VolM(M)

(
τ − σ

τ + σ

)d

2−jd.

where δ = arcsin((2−j−2 − σ)/2τ)). Thus,

θ1 ≥
φ1Vol(Bd(0, 1))

24d VolM(M)

(
τ − σ

τ + σ

)d

Since the support is contained in a ball of radius 3 · 2−j , we easily obtain that θ2 ≤ 12.
Finally, it is not difficult to deduce from Lemmas 18 and 19 that

θ3 ≥
φ1/φ2

24d+8
(
1 + σ

τ

)d , θ4 ≤
(
2 ∨ 2334

τ2

)
, and α = 1.

Lemma 20 together with Lemma 22 imply that

θ5 ≤
(
2 ∨ 4 · 32

τ

)
1 + 3 · 25

√
2d
(
1 +

σ

τ

)d/2
(
1 +

(
25
71

)2

1− 1
9·212

)d/4

 .

6. Numerical experiments

In this section, we present some numerical experiments consistent with the results above.

6.1 d-dimensional sphere S
d in R

D.

We consider n points X1, . . . ,Xn sampled i.i.d. from the uniform distribution on the unit
sphere in R

d+1

S
d := {x ∈ R

d+1 : ‖x‖ = 1} .
We then embed S

d into R
D for D = 100, 1000 by applying a random orthogonal transfor-

mation R
d+1 → R

D. Of course, the actual realization of this projection is irrelevant since
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our construction is invariant under orthogonal transformations. After performing this em-
bedding, we add two types of noise. In the first case, we add Gaussian noise N (0, σ

2

D ID)

with mean 0 and covariance matrix σ2

D ID, where the scaling factor 1
D is chosen so that

E‖η‖2 = σ2, and in fact ‖η‖2 is highly concentrated around its mean σ2. In this way (up
to a small number of samples for which ||ηi||2 ≫ σ2), this data set almost satisfies the
(1, (1 + 1√

D
)σ)-model assumption. We consider the behavior of the L2(Π) error squared

(MSE) in these case in Figure 1, and the rate of approximation at the optimal scale, as
the number of samples varies in Figure 3, where it is compared to the rates obtained in
Corollary 7. From Figure 1, we see that the approximations obtained satisfy our bound,
and are typically better even for a modest number of samples in dimensions non-trivially
low (e.g. 8000 samples on S

8). In fact, the robustness with respect to sampling is such that
the plots barely change from row to row.
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d=4, D=100; y=   −4.4134 x − 0.88234
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d=1, D=100; y=   −192.5988 x − 0.63292
d=2, D=100; y=   −1.57 x − 1.2562
d=4, D=100; y=   −3.6286 x − 0.88496
d=6, D=100; y=   −4.2278 x − 0.91316
d=8, D=100; y=   −4.4833 x − 0.9136

Figure 1: Experiment with S
d, in the noiseless case (left column) and Gaussian noise case (right

column). The rows correspond to different values of n ∈ {8000, 128000}. In the plots the
dots represent the L2(Π) error squared (or MSE) of GMRA approximations (as in (5))
as a function of scale j; more precisely the abscissa is in terms of log10(1/rj), where rj is
the mean radius of Cj,k for a fixed j, and the ordinate is log10 MSEj , where MSEj is the
mean squared error of the GMRA approximation at scale j. Different colors correspond
to different intrinsic dimensions d. The two cases D = 100, 1000 use the same colors for
both the dots and the lines, all of which are essentially superimposed since our results are
independent of the ambient dimension D. For each dimension we fit a line to measure
the decay, which should be O(r−4) independently of d. On the right we have the noiseless
case. The horizontal dashed gray line represents the noise level σ2; the approximation
error flattens out at that level.
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The second type of noise is uniform in the radial direction, i.e. we let η ∼ Unif[1−σ, 1+σ]
and each noisy point is generated by X̃i = Xi+ ηi

Xi

||Xi|| . This is an example where the noise

is not independent of X, but yet our (1, σ)-model assumptions are satisfied. The results
are summarized in Figure 2, with the rate of approximation at the optimal scale again in
Figure 3.

We considered various settings of the parameters, namely all combinations of: d ∈
{1, 2, 4, 6, 8}, n ∈ {8000, 16000, 32000, 64000, 128000}, D ∈ {100, 1000}, σ ∈ {0, 0.05, 0.1}.
We only display some of the results for reasons of space2.
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Figure 2: MSE as a function of scale r for Sd, for different values of n =, d and σ, the width
of uniform noise in the radial direction. Note that the variance of the noise is
σ2/3, which accounts for the fact that the MSE, in the noisy case (see insets in
the right column), approaches a level slightly lower than σ2.

2. The code provided at www.math.duke.edu/~mauro/code.html can generate all the figures, re-create the
data sets, and is easily modified to do more experiments.
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Figure 3: For the three examples considered in this section (left: S
d; center: S

d; right:
Meyer’s staircase), in the noiseless case, we consider the MSE error, i.e. L2(Π)
squared error (as defined in (5)) at the optimal scale jn (as in the proof of Corol-
lary 7) as a function of the number of points n for S

d with Gaussian noise (let)
and “uniform radial” noise as described in the text. This is compared with the
rates predicted by Corollary 7. We attribute the slightly better performance of
GMRA in dimension d ≥ 2, as compared to the predicted rate, to concentration
phenomena on the sphere, as discussed in Little (2012). In the case of the Meyer
staircase, the predicted rates are far from the ones measured experimentally: we
believe this is due to small reach of the manifold that affects the constants in
front of the decay rate. Only a very large number of samples (even larger than
the 128, 000 used here) would be fine enough to reveal the optimal rate of decay.

6.2 Meyer staircase

We consider the (d-dimensional generalization of) Y. Meyer’s staircase. Consider the unit
cube Q = [−1

2 ,
1
2 ]

d and a Gaussian N (x0, δ
2ID) restricted to Q. As x0 varies in Q this

describes a smooth D-dimensional manifold in L2(Q). This example may be discretized,

in particular a grid ΓD of D points (obtained by subdividing in D− 1
d parts along each

dimension) in Qmay be generated. n points may be sampled from this manifold by sampling
x1, . . . , xn uniformly at random in Q, obtaining a set {N (xi, δ

2ID)|ΓD
}i=1,...,n of n points in

R
D. This is what we call a sample from the Meyer staircase. This example is not artificial:

for example a set of 2−D images obtained by taking a white shape on a black background
and translating the shape around has many similarities with the Meyer staircase.

The manifold associated with the Meyer staircase is poorly approximated by sub-
spaces of dimension smaller than O(D ∧ 1/δD), and besides spanning many dimensions
in R

D, it has a small reach, depending on d,D, δ. In our examples we considered n =
8000, 16000, 32000, 640000, 128000, d = 1, 2, 4, D = 29, and δ = 100

8000
1
d

. We consider the

noiseless case, as well as the case where Gaussian noise N (0, 1
D ID) is added to the data.
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Figure 4: MSE as a function of scale r for the d-dimensional Meyer staircase, for different
values of n =, d and σ, standard deviation of Gaussian noise N (0, σ

2

D ). The small
reach of Meyer’s staircase make it harder to approximate, and make it much more
susceptible to noise.
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Appendix A: proof of Proposition 8

For the first inequality, let

A =

(
I
X

)
and B =

(
Y
0

)
,

and for every T ⊂ [d], we let VT denote the volume of {ai}i∈T c ∪ {bi}i∈T , where ai and bi
denote the ith columns of A and B respectively. By submultilinearity of the volume we
have

Vol(A+B) ≤
∑

T∈2[d]
VT ,

where 2[d] = {S : S ⊂ {1, . . . , d}}. We now show that VT ≤ q|T |Vol(A) for every T ∈ 2[d].
The bound ‖Y ‖ ≤ q implies ‖yi‖ ≤ q for all i = 1, . . . , d, and so the fact that the volume is
a submultiplicative function implies that

VT ≤ q|T |Vol(AT c).

On the other hand, letting a⊥1 be the orthogonal projection of a1 onto span⊥{ai}di=2, we
note that ‖a⊥1 ‖ ≥ 1, and thus

Vol(A{1}c) ≤ ‖a⊥1 ‖Vol(A{1}c) = Vol(A).

By induction and invariance of the volume under permutations, we see that Vol(AT c) ≤
Vol(A) for all T ∈ 2[d]. Thus,

Vol(A+B) ≤
∑

T∈2[d]
q|T |Vol(A) = (1 + q)dVol(A).

For the second inequality, since Y is symmetric, we can represent it as Y = F − G
where F and G are symmetric positive semidefinite, FG = GF = 0, and ‖F‖, ‖G‖ ≤
‖Y ‖. Indeed, if Y = QΛQT is the eigenvalue decomposition of Y with Λ = diag(λ),
set λ+ := (max(0, λ1), . . . ,max(0, λd))

T , λ− := λ+ − λ, and define F := Q diag(λ+)Q
T ,

G = Q diag(λ−)QT .

Recall the matrix determinant lemma: let T ∈ R
k×k be invertible, and let U, V ∈ R

k×l.
Then

Vol(T + UV T ) = Vol(I + V TT−1U)Vol(T ).

Applying it in our case with U =

(√
F −

√
G

0

)
, V =

(√
F +

√
G

0

)
, and T =

(
I XT

X −I

)
,

we have that

Vol

(
I + Y XT

X −I

)
= Vol

(
I +

(√
F +

√
G

0

)T (
I XT

X −I

)−1(√
F −

√
G

0

))
Vol

(
I XT

X −I

)
.

By orthogonality of the columns in (
I
X

)
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with the columns in (
XT

−I

)
,

we have that ∥∥∥∥
(
I XT

X −I

)(
u
v

)∥∥∥∥ ≥
∥∥∥∥
(
u
v

)∥∥∥∥ ,

and hence
∥∥∥∥∥

(√
F +

√
G

0

)T (
I XT

X −I

)−1(√
F −

√
G

0

)∥∥∥∥∥ ≤ √
q · 1 · √q = q.

Therefore, we conclude that

Vol

(
I +

(√
F +

√
G

0

)T (
I XT

X −I

)−1(√
F −

√
G

0

))
≥ (1− q)d,

and combining this with the expression from the matrix determinant lemma completes the
proof.

Appendix B: angle between the tangent and principal component
subspaces

Let Q ⊂ R
D be such that B(y, r1) ⊂ Q and Mσ ∩ Q ⊂ B(y, r2) for some y ∈ M and

σ < r1 < r2 < τ/8 − σ. Assume that Z is drawn from UMσ∩Q, let Σ be the covariance
matrix of Z and Vd := Vd(Σ) - the subspace corresponding to the first d principal components
of Z.

Let α ∈ [0, 1] be such that cos(φ) := minu∈Vd,‖u‖=1maxv∈TyM,‖v‖=1 |〈u, v〉| =
√
1− α2 is

the cosine of the angle between TyM and Vd. Then there exists a unit vector u∗ ∈ (Vd)
⊥

such that

max
v∈TyM,‖v‖=1

| 〈u∗, v〉 | ≥ α.

Indeed, let u′ ∈ Vd, v
′ ∈ TyM be unit vectors such that cos(φ) = 〈u′, v′〉, Note that

√
1− α2

is equal to the smallest absolute value among the nonzero singular values of the operator
Proj TyM Proj Vd

. Since the spectra of the operators Proj TyM Proj Vd
and Proj Vd

Proj TyM
coincide by the well-known fact from linear algebra, we have that

min
u∈Vd,‖u‖=1

max
v∈TyM,‖v‖=1

|〈u, v〉| = min
v∈TyM,‖v‖=1

max
u∈Vd,‖u‖=1

|〈u, v〉| .

In other words, Proj TyM(u′) = 〈u′, v′〉 v′ and Proj Vd
(v′) = 〈u′, v′〉 u′. This implies that

there exists a unit vector u∗ ∈ (Vd)
⊥ such that v′ = 〈v′, u′〉u′ + 〈v′, u∗〉 u∗, hence 〈u∗, v′〉2 =

1− 〈v′, u′〉2 = α2, so u∗ satisfies the requirement.

To simplify the expressions, let

ζ =
1

Vol(Q ∩Mσ)
.
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We shall now construct upper and lower bounds for

ζ

∫

Q∩Mσ

〈u∗, x− EZ − Proj Vd
(x− EZ)〉2 dVol(x) = ζ

∫

Q∩Mσ

〈u∗, x− EZ〉2 dVol(x)

which together yield an estimate for α. Write u∗ = u
||
∗ + u⊥∗ , where u

||
∗ ∈ TyM and

u⊥∗ ∈ T⊥
y M. By our choice of u∗, we clearly have that ‖u||∗‖ = maxv∈TyM,‖v‖=1 〈u∗, v〉 ≥ α.

Using the elementary inequality (a+ b)2 ≥ a2

2 − b2, we further deduce that

ζ

∫

Q∩Mσ

〈u∗, x− EZ〉2 dVol(x) ≥ ζ

∫

Q∩Mσ

1

2

〈
u
||
∗ , x− EZ

〉2
dVol(x) (30)

− ζ

∫

Q∩Mσ

〈
u⊥∗ , x− EZ

〉2
dVol(x).

It follows from the proof of Lemma 19 that

ζ

∫

Q∩Mσ

1

2

〈
u
||
∗ , x− EZ

〉2
dVol(x) ≥ α2

8
(
1 + σ

τ

)d
(
r1 − σ

r2 + σ

)d




1−
(
r1−σ
2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2




d/2

(r1 − σ)2

d
.

For the last term in (30), Lemma 18 (see equation (25)) gives

ζ

∫

Q∩Mσ

〈
u⊥∗ , x− EZ

〉2
dVol(x) ≤ ζ

∫

Q∩Mσ

‖x− EZ − Proj TyM(x− EZ)‖2dVol(x)

≤ 2σ2 +
8r42
τ2

,

hence (30) yields

ζ

∫

Q∩Mσ

〈u∗, x− EZ〉2 dVol(x) ≥ α2

8
(
1 + σ

τ

)d
(
r1 − σ

r2 + σ

)d




1−
(
r1−σ
2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2




d/2

(r1 − σ)2

d

− 2σ2 − 8r42
τ2

. (31)

On the other hand, invoking (25) once again, we have

ζ

∫

Q∩Mσ

〈u∗, x− EZ〉2 dVol(x) ≤ 2σ2 +
8r42
τ2

.

Combined with (31), this gives

α2

8
(
1 + σ

τ

)d
(
r1 − σ

r2 + σ

)d




1−
(
r1−σ
2τ

)2

1 +
(

2(r2+σ)
τ−2(r2+σ)

)2




d/2

(r1 − σ)2

d
≤ 4σ2 +

16r42
τ2

, (32)

and the upper bound for α follows. We are ready to prove Lemma 20.
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Proof of Lemma 20

Notice that for any x ∈ Q ∩Mσ,

x− EZ − Proj Vd
(x− EZ) = x− y − Proj TyM(x− y) + y − EZ − Proj TyM(y − EZ)

︸ ︷︷ ︸
Proj

(TyM)⊥
(y−EZ)

(33)

+ (Proj TyM − Proj Vd
)(x− EZ).

It follows from (24) that

‖x− y − Proj TyM(x− y)‖ =
∥∥∥Proj T⊥

y M(x− y)
∥∥∥ ≤ σ +

2r22
τ

.

Next,

‖Proj (TyM)⊥(y − EZ)‖ =
1

Vol(Q ∩Mσ)

∥∥∥∥
∫

Q∩Mσ

Proj T⊥
y M(y − z)dVol(z)

∥∥∥∥

≤ 1

Vol(Q ∩Mσ)

∫

Q∩Mσ

∥∥∥Proj T⊥
y M(z − y)

∥∥∥ dVol(z)

≤ σ +
2r22
τ

.

Finally, it is easy to see that

‖(Proj TyM − Proj Vd
)(x− EZ)‖ ≤‖Proj TyM(x− EZ)− Proj Vd

Proj TyM(x− EZ)‖
+ ‖Proj T⊥

y M(x− y)‖+ ‖Proj T⊥
y M(EZ − y)‖.

Let ux :=
Proj TyM(x−EZ)

‖Proj TyM(x−EZ)‖ and note that for any x ∈ Q ∩Mσ, ‖Proj TyM(x− EZ)‖ ≤ 2r2,

hence

‖Proj TyM(x− EZ)− Proj Vd
Proj TyM(x− EZ)‖2 ≤ (2r2)

2
(
1− ‖Proj Vd

ux‖2
)

≤ 4r22

(
1− min

u∈TyM,‖u‖=1
max

v∈Vd,‖v‖=1
〈u, v〉2

)

= 4r22α
2.

Combining the previous bounds with (32) and (33), we obtain the result.
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Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Proceedings of CVPR
2009, pages 2790–2797. IEEE, 2009.

H. Federer. Curvature measures. Transactions of the American Mathematical Society, 93
(3):418–491, 1959.

M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman.
Minimax manifold estimation. J. Mach. Learn. Res., 13(1):1263–1291, May 2012a.

C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Manifold estimation
and singular deconvolution under hausdorff loss. The Annals of Statistics, 40(2):941–963,
2012b.

42



Multiscale Dictionary Learning

C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Manifold estimation
and singular deconvolution under Hausdorff loss. The Annals of Statistics, 40(2):941–963,
2012c.

A. Gray. Tubes, volume 221 of Progress in Mathematics. Birkhäuser Verlag, Basel, second
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