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Problem Formulation
The phase retrieval problem

Let H = Cn and V ⊂ H a real subspace. The quotient space
Ĥ = Cn/T 1, with classes induced by x ∼ y if there is real ϕ with
x = eiϕy . Set V̂ = {x̂ , x ∈ V }.

Frame F = {f1, · · · , fm} ⊂ Cn and
α : Ĥ → Rm , α(x) = (|〈x , fk〉|)1≤k≤m .

β : Ĥ → Rm , β(x) =
(
|〈x , fk〉|2

)
1≤k≤m

.

The frame is said phase retrievable with respect to V (or that it gives
phase retrieval for V ) if α (or β) restricted to V is injective.
The general phase retrieval problem a.k.a. phaseless reconstruction:
Decide when a given frame is phase retrievable, and, if so, find an
algorithm to recover x from y = α(x) (or from y = β(x)) up to a
global phase factor. Additionally find universal bounds on
performance of any inversion algorithm.
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Problem Formulation
Injectivity Results

Our Problems Today: When is F phase retrievable.
Want a general framework that covers both the real and complex
case.

1 Obtain conditions when V = Rn (real case);

2 Obtain conditions when V = Cn (complex case)

3 Finda minimal cardinals of phase retrievable frames.
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Topology of V̂
Topological Structures

Let H = Cn and V ⊂ H a real subspace. The quotient space Ĥ = Cn/T 1,
with classes induced by x ∼ y if there is real ϕ with x = eiϕy .
Set V̂ = {x̂ , x ∈ V }.

Topologically:
V̂ = {0} ∪ ((0,∞)]× P(V ))

where P(V ) denotes the projective space associated to V .
The interior subset

˚̂V = V̂ \ {0} = ((0,∞)]× P(V ))

is a real analytic manifold of real dimension 1 + dimRP(V ).
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Topology of V̂
Topological Structures

Complex case V = Cn.

Ĉn = {0} ∪
(

(0,∞)× CPn−1
)

with
˚̂Cn = Ĉn \ {0} = (0,∞)× CPn−1

a real analytic manifold of real dimension 2n − 1.

Real case V = Rn.

R̂n = {0} ∪
(

(0,∞)× RPn−1
)

with
˚̂Rn = R̂n \ {0} = (0,∞)× RPn−1

a real analytic manifold of real dimension n.
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Topology of V̂
Topological Structures

Another embedding is into the real vector space of symmetric
(self-adjoint) matrices Sym(V ).

Specifically let

Sp,q(V ) = {T ∈ Sym(V ) , T has at most p pos.eigs. and q neg.eigs}

Then:
κβ : V̂ → S1,0 , x̂ 7→= xx∗ , is an embedding.

Sym(H) is a real Hilbert space with scalar product 〈T , S〉HS = trace{TS}.
V̂ is isomorphic (one-to-one and onto) to S1,0(V ).
Key Identity:

β(x)k = |〈x , fk〉|2 = 〈κβ(x̂),Fk〉HS

where Fk = fk f ∗k .
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Metric Space Structures
The matrix-norm induced metric and the natural metric structures

Fix 1 ≤ p ≤ ∞. The matrix-norm induced distance

dp : Ĥ × Ĥ → R , dp(x̂ , ŷ) = ‖xx∗ − yy∗‖p

with the p-norm of the singular values. In the case p = 2 we obtain

d2(x , y) =
√
‖x‖4 + ‖y‖4 − 2|〈x , y〉|2

Fix 1 ≤ p ≤ ∞. The natural metric

Dp : Ĥ × Ĥ → R , Dp(x̂ , ŷ) = min
ϕ
‖x − eiϕy‖p

with the usual p-norm on Cn. In the case p = 2 we obtain

D2(x̂ , ŷ) =
√
‖x‖2 + ‖y‖2 − 2|〈x , y〉|
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Metric Space Structures
Distinct Structures

Two different structures: topologically equivalent, BUT the metrics are
NOT equivalent:

Lemma (BZ15)
The identity map i : (Ĥ,Dp)→ (Ĥ, dp), i(x) = x is continuous but it is
not Lipschitz continuous. Likewise, the identity map
i : (Ĥ, dp)→ (Ĥ,Dp), i(x) = x is continuous but it is not Lipschitz
continuous. Hence the induced topologies on (Ĥ,Dp) and (Ĥ, dp) are the
same, but the corresponding metrics are not Lipschitz equivalent.
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Classes Sp,q
General properties; Witt’s decomposition

The following lemma summarizes basic properties of Sp,q.

Lemma (Bal13)
1 For any p1 ≤ p2 and q1 ≤ q2, Sp1,q1 ⊂ Sp2,q2 ;
2 For any nonnegative integers p, q the following disjoint decomposition

holds true
Sp,q = ∪p

r=0 ∪
q
s=0 S̊

r ,s (3.1)

where by convention S̊p,q = ∅ for p + q > n.
3 For any p, q ≥ 0,

−Sp,q = Sq,p (3.2)
4 For any linear operator T : H → H (symmetric or not, invertible or

not) and nonnegative integers p, q,

T ∗Sp,qT ⊂ Sp,q (3.3)
Radu Balan (UMD) Phase Retrieval July 28-30, 2015
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Classes Sp,q
General properties; Witt’s decomposition

Lemma (cont’d)
5 (Witt’s decomposition) For any nonnegative integers p, q, r , s,

Sp,q + Sr ,s = Sp,q − Ss,r = Sp+r ,q+s (3.4)

S̊p,q = {T ∈ Sp,q have exactly p positive eigs and q negative eigs}
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Classes Sp,q
Class S1,0

Lemma (Space S1,0)
The following hold true:

1 S̊1,0 = {xx∗ , x ∈ H, x 6= 0};
2 S1,0 = {xx∗ , x ∈ H} = {0} ∪ {xx∗ , x ∈ H, x 6= 0};
3 The set S̊1,0 is a real analytic manifold in Sym(n) of real dimension

2n − 1. As a real manifold, its tangent space at X = xx∗ is given by

TX S̊1,0 =
{

Jx , yK := 1
2(xy∗ + yx∗) , y ∈ Cn

}
. (3.5)

The R-linear embedding Cn 7→ TX S̊1,0 given by y 7→ Jx , yK has null
space {iax , a ∈ R}.
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Classes Sp,q
Class S1,1

Lemma (Space S1,1)

The following hold true:
1 S1,1 = S1,0 − S1,0 = S1,0 + S0,1 = {Jx , yK , x , y ∈ H};
2 For any vectors x , y , u, v ∈ H,

xx∗ − yy∗ = Jx + y , x − yK = Jx − y , x + yK (3.6)

Ju, vK = 1
4(u + v)(u + v)∗ − 1

4(u − v)(u − v)∗ (3.7)

Additionally, for any T ∈ S1,1 let T = a1 e1e∗1 − a2e2e∗2 be its
spectral factorization with a1, a2 ≥ 0 and 〈ei , ej〉 = δi ,j . Then

T = J
√

a1e1 +
√

a2e2,
√

a1e1 −
√

a2e2K.
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Classes Sp,q
Class S1,1

Lemma (Space S1,1-cont’d)
3 The set S̊1,1 is a real analytic manifold in Sym(n) of real dimension

4n − 4. Its tangent space at X = Jx , yK is given by

TX S̊1,1 = {Jx , uK + Jy , vK = 1
2(xu∗ + ux∗ + yv∗ + vy∗) , u, v ∈ Cn}.

The R-linear embedding Cn × Cn 7→ TX S̊1,1 given by
(u, v) 7→ Jx , uK + Jy , vK has null space
{a(ix , 0) + b(0, iy) + c(y ,−x) + d(iy , ix) , a, b, c, d ∈ R}.
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Classes Sp,q
Class S1,1

Lemma (Space S1,1-cont’d)
4 Let T = Ju, vK ∈ S1,1. Then its eigenvalues and p-norms are:

a+ = 1
2

(
real(〈u, v〉) +

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≥ 0

a− = 1
2

(
real(〈u, v〉)−

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
≤ 0

‖T‖1 =
√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

‖T‖2 =

√
1
2
(
‖u‖2‖v‖2 + (real(〈u, v〉))2 − (imag(〈u, v〉))2

)
‖T‖∞ = 1

2

(
|real(〈u, v〉)|+

√
‖u‖2‖v‖2 − (imag(〈u, v〉))2

)
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Classes Sp,q
Class S1,1

Lemma (Space S1,1-cont’d)
5 Let T = xx∗ − yy∗ ∈ S1,1. Then its eigenvalues and p-norms are:

a+ = 1
2

(
‖x‖2 − ‖y‖2 +

√
(‖x‖2 + ‖y‖2)2 − 4|〈x , y〉|2

)
≥ 0

a− = 1
2

(
‖x‖2 − ‖y‖2 −

√
(‖x‖2 + ‖y‖2)2 − 4|〈x , y〉|2

)
≤ 0

‖T‖1 =
√

(‖x‖2 + ‖y‖2)2 − 4|〈x , y〉|2

‖T‖2 =
√
‖x‖4 + ‖y‖4 − 2|〈x , y〉|2

‖T‖∞ = 1
2

(
|‖x‖2 − ‖y‖2|+

√
(‖x‖2 + ‖y‖2)2 − 4|〈x , y〉|2

)
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Realification
Realification of H

First we describe the realification of H and V . Consider the R-linear map
j : Cn → R2n defined by

j(x) =
[

real(x)
imag(x)

]

Let V = j(V ) be the embedding of V into R2n, and let Π denote the
orthogonal projection (with respect to the real scalar product on R2n) onto
V.
Let J denote the folowing orthogonal antisymmetric 2n × 2n matrix

J =
[

0 −In
In 0

]
(4.8)

where In denotes the identity matrix of order n × n. Note the transpose
JT = −J , the square J2 = −I2n and the inverse J−1 = −J .
Note: j(ix) = J j(x) for every x ∈ H.
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Realification
Realification of frame vectors

Each vector fk of the frame set F = {f1, · · · , fm} gets mapped into a
vector in R2n denoted by ϕk , and a symmetric operator in S2,0(R2n)
denoted by Φk :

ϕk = j(fk) =
[

real(fk)
imag(fk)

]
, Φk = ϕkϕ

T
k + Jϕkϕ

T
k JT (4.9)

Note that when fk 6= 0:
The symmetric form Φk has rank 2 and belongs to S̊2,0.
Its spectrum has two distinct eigenvalues: ‖ϕk‖2 = ‖fk‖2 with
multiplicity 2, and 0 with multiplicity 2n − 2.
Furthermore, 1

‖ϕk‖2 Φk is a rank 2 projection.
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Realification
Relationships

Let ξ = j(x) and η = j(y) denote the realifications of vectors x , y ∈ Cn.
Then a bit of algebra shows that

〈x , fk〉 = 〈ξ, ϕk〉+ i〈ξ, Jϕk〉
〈Fk , xx∗〉HS = trace (Fkxx∗) = |〈x , fk〉|2 = 〈Φkξ, ξ〉 = trace

(
ΦξξT

)
= 〈Φk , ξξ

T 〉HS
〈Fk , Jx , yK〉HS = trace (FkJx , yK) = real(〈x , fk〉〈fk , y〉) = 〈Φkξ, η〉

= (trace(ΦkJξ, ηK) = 〈Φk , Jξ, ηK〉HS

where Fk = Jfk , fkK = fk f ∗k ∈ S1,0(H).
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Injectivity Results
Notations

The following objects play an important role in subsequent theory:

R : Cn → Sym(Cn) , R(x) =
m∑

k=1
|〈x , fk〉|2fk f ∗k , x ∈ Cn (5.10)

R : R2n → Sym(R2n) , R(ξ) =
m∑

k=1
Φkξξ

T Φk , ξ ∈ R2n (5.11)

S : R2n → Sym(R2n) , S(ξ) =
∑

k:Φkξ 6=0

1
〈Φkξ, ξ〉

Φkξξ
T Φk , ξ ∈ R2n(5.12)

Z : R2n → R2n×m , Z(ξ) =
[

Φ1ξ | · · · | Φmξ
]
, ξ ∈ R2n(5.13)

Note R = ZZT .
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Injectivity Results
Induced Linear operator

Recall the key identity:

|〈x , fk〉|2 = trace (FkX ) = 〈Fk ,X 〉HS

where X = xx∗.

Thus the nonlinear map β induces a linear map on the real vector space
Sym(Cn) of symmetric forms over Cn:

A : Sym(Cn)→ Rm , A(T ) = (〈T ,Fk〉HS)1≤k≤m = (〈Tfk , fk〉)1≤k≤m

Similarly it induces a linear map on Sym(R2n) the space of symmetric
forms over R2n = j(Cn) that is denoted by A:

A : Sym(R2n)→ Rm , A(T ) = (〈T ,Φk〉HS)1≤k≤m

= (〈Tϕk , ϕk〉+ 〈TJϕk , Jϕk〉)1≤k≤m
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Injectivity Results
General Form

Necessary and sufficient condition for injectivity that works in both the
real and the complex case:

Theorem (HMW11,BCMN13a,Bal13a)
Let H = Cn and let V be a real vector space that is also a subset of H,
V ⊂ H. Denote V = j(V ) the realification of V . Assume F is a frame for
V . The following are equivalent:

1 The frame F is phase retrievable with respect to V ;
2 kerA ∩

(
S1,0(V )− S1,0(V )

)
= {0};

3 kerA ∩ S1,1(V ) = {0};
4 kerA ∩ (S2,0(V ) ∪ S1,1(V ) ∪ S0,2) = {0};
5 There do not exist vectors u, v ∈ V with Ju, vK 6= 0 so that

real (〈u, fk〉〈fk , v〉) = 0 , ∀ 1 ≤ k ≤ m
Radu Balan (UMD) Phase Retrieval July 28-30, 2015



Problem Formulation Topology of V̂ Classes Sp,q Realification of H Injectivity Results

Injectivity Results
General Form - cont’d

Theorem (cont’d)
6 kerA ∩

(
S1,0(V)− S1,0(V)

)
= {0};

7 kerA ∩ S1,1(V) = {0};
8 There do not exist vectors ξ, η ∈ V, with Jξ, ηK 6= 0 so that

〈Φkξ, η〉 = 0 , ∀ 1 ≤ k ≤ m
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Injectivity Results
Real Case

Theorem (BCE06,Bal12a)
(The real case) Assume F ⊂ Rn. The following are equivalent:

1 F is phase retrievable for V = Rn;
2 R(x) =

∑m
k=1 |〈x , fk〉|2fk f T

k is invertible for every x ∈ Rn, x 6= 0;
3 There do not exist vectors u, v ∈ Rn with u 6= 0 and v 6= 0 so that

〈u, fk〉〈fk , v〉 = 0 , ∀ 1 ≤ k ≤ m

4 For any disjoint partition of the frame set F = F1 ∪ F2, either F1
spans Rn or F2 spans Rn.
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Injectivity Results
Real Case-cont’d

Recall a set F ⊂ Cn is called full spark if any subset of n vectors is linearly
independent.

Corollary (BCE06)
Assume F ⊂ Rn. Then

1 If F is phase retrievable for Rn then m ≥ 2n − 1;
2 If m = 2n− 1, then F is phase retrievable if and only if F is full spark;
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Injectivity Results
Complex Case

Theorem (BCMN13a,Bal13a)
(The complex case) The following are equivalent:

1 F is phase retrievable for H = Cn;
2 rank(Z(ξ)) = 2n − 1 for all ξ ∈ R2n, ξ 6= 0;
3 dim kerR(ξ) = 1 for all ξ ∈ R2n, ξ 6= 0;
4 There do not exist ξ, η ∈ R2n, ξ 6= 0 and η 6= 0 so that 〈Jξ, η〉 = 0

and
〈Φkξ, η〉 = 0 , ∀1 ≤ k ≤ m
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Injectivity Results
Cardinality

In terms of cardinality, here is what we know:

Theorem (Mil67,HMW11,BH13,Bal13b,MV13,CEHV13,KE14,Viz15)
HMW11 If F is a phase retrievable frame for Cn then

m ≥ 4n − 2− 2b +


2 if n odd and b = 3 mod 4
1 if n odd and b = 2 mod 4
0 otherwise

where b = b(n) denotes the number of 1’s in the binary expansion of
n − 1.

BH13 For any positive integer n there is a frame with m = 4n− 4 vectors so
that F is phase retrievable for Cn;
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Injectivity Results
Cardinality-cont’d

Theorem
CEHV13 If m ≥ 4n − 4 then a (Zariski) generic frame is phase retrievable on

Cn;
Bal13b The set of phase retrievable frames is open in Cn × · · · × Cn. In

particular phase retrievable property is stable under small
perturbations.

CEHV13 If n = 2k + 1 and m ≤ 4m− 5 then F cannot be phase retrievable for
Cn.

Viz15 For n = 4 there is a frame with m = 11 < 4n − 4 = 12 vectors that is
phase retrievable.
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