
SCALABLE FRAMES

GITTA KUTYNIOK, KASSO A. OKOUDJOU, FRIEDRICH PHILIPP,
AND ELIZABETH K. TULEY

Abstract. Tight frames can be characterized as those frames
which possess optimal numerical stability properties. In this paper,
we consider the question of modifying a general frame to generate a
tight frame by rescaling its frame vectors; a process which can also
be regarded as perfect preconditioning of a frame by a diagonal
operator. A frame is called scalable, if such a diagonal opera-
tor exists. We derive various characterizations of scalable frames,
thereby including the infinite-dimensional situation. Finally, we
provide a geometric interpretation of scalability in terms of conical
surfaces.

1. Introduction

Frames have established themselves by now as a standard notion in
applied mathematics, computer science, and engineering, see [9, 7]. In
contrast to orthonormal bases, typically frames form redundant sys-
tems, thereby allowing non-unique, but stable decompositions and ex-
pansions. The wide range of applications of frames can be divided into
two categories. One type of applications utilize frames for decomposing
data. Here typical goals are erasure-resilient transmission, data anal-
ysis or processing, and compression – the advantage of frames being
their robustness as well as their flexibility in design. A second type
of applications requires frames for expanding data. This approach is
extensively used in sparsity methodologies such as Compressed Sensing
(see [11]), but also, for instance, as systems generating trial spaces for
PDE solvers. Again, it relies on non-uniqueness of the expansion which
promotes sparse expansions and on the flexibility in design.
All such applications require the associated algorithms to be nu-

merically stable, which the subclass of tight frames satisfies optimally.
Thus, a prominent question raised in several publications so far is the
following: When can a given frame be modified to become a tight
frame? The simplest operation to imagine is to rescale each frame
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vector. Therefore this question is typically phrased in the following
more precise form: When can the vectors of a given frame be rescaled
to obtain a tight frame? This is the problem we shall address in this
paper.

1.1. Tight Frames. Let us first state the precise definition of a frame
and, in particular, of tight and Parseval frames to stand on solid ground
for the subsequent discussion. Letting H be a real or complex separable
Hilbert space and letting J be a subset of N, a set of vectors Φ =
{ϕj}j∈J ⊂ H is called a frame for H, if there exist positive constants
A,B > 0 (the lower and upper frame bound) such that

(1) A‖x‖2 ≤
∑

j∈J

|〈x, ϕj〉|2 ≤ B‖x‖2 for all x ∈ H.

A frame Φ is called A-tight or just tight, if A = B is possible in (1),
and Parseval, if A = B = 1 is possible. Moreover, if |J | < ∞ (which
implies that H = KN with K = R or K = C), the frame Φ is called
finite.
To justify the claim of numerical superiority of tight frames, let Φ =

{ϕj}j∈J ⊂ H be a frame for H and let TΦ : H → ℓ2(J) with TΦx :=(
〈x, ϕj〉

)
j∈J

denote the associated analysis operator. Its adjoint T ∗
Φ,

the synthesis operator of Φ, maps ℓ2(J) surjectively onto H. From the
properties of TΦ, it follows that the frame operator SΦ := T ∗

ΦTΦ of Φ,
given by

SΦx =
∑

j∈J

〈x, ϕj〉ϕj, x ∈ H,

is a bounded and strictly positive selfadjoint operator in H. These
properties imply that Φ admits the reconstruction formula

x =
∑

j∈J

〈x, ϕj〉S−1
Φ ϕj for all x ∈ H.

Inversion requires particular numerical attention, which implies that
SΦ = const·IH is desirable (IH denoting the identity on H, forH = KN

we will use IN). And in fact, tight frames can be characterized as
precisely those frames satisfying this condition. Thus an A-tight frame
admits the numerically optimally stable reconstruction given by

x = A−1 ·
∑

j∈J

〈x, ϕj〉ϕj for all x ∈ H.
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1.2. Generating Parseval Frames. This observation raises the ques-
tion on how to carefully modify a given frame – which might be suitable
for a particular application – in order to generate a tight frame. It is
immediate that this question is equivalent to generating a Parseval
frame provided we allow multiplication of each frame vector by the
same value. Thus typically one seeks to generate Parseval frames.

A very common approach is to apply S
−1/2
Φ to each frame vector of

a frame Φ, which can be easily shown to yield a Parseval frame. This
approach is though of more theoretical interest due to the repetition of
the problem to invert the frame operator. Hence, this construction is
often not reasonable in practice.
The simplest imaginable variation of a frame is just scaling its frame

vectors. We thus coin a frame scalable, if such a scaling leads to a
Parseval frame. It should also be pointed out that the scaling of frames
is related to the notion of signed frames, weighted frames as well as
controlled frames (see, e.g., [15, 1, 16]).
It is evident that not every frame is scalable. For example, a basis

in R2 which is not an orthogonal basis is not scalable, since a frame
with two elements in R2 is a Parseval frame if and only if it is an or-
thonormal basis. As a first classification, the finite-dimensional version
of Proposition 2.4 shows that a frame Φ in KN with analysis operator
TΦ (the rows of which are the frame vectors) is scalable if and only if
there exists a diagonal matrix D such that DTΦ is isometric. Since the
condition number of such a matrix equals one, the scaling question is
a particular instance of the problem of preconditioning of matrices.

1.3. An Excursion to Numerical Linear Algebra. In the numer-
ical linear algebra community, the problem of preconditioning is well-
known and extensively studied, see, e.g., [8, 13]. The problem to design
preconditioners involving scaling appears in various forms in the nu-
merical linear algebra literature. The common approach to this prob-
lem is to minimize the condition number of the matrix multiplied by
a preconditioning matrix – in our case of DTΦ, where D runs through
the set of diagonal matrices. As shown for instance in [4], this mini-
mization problem can be reformulated as a convex problem. However,
as also mentioned in [4], algorithms solving this convex problem per-
form slowly, and, even worse, there exist situations in which the in-
fimum is not attained. As additional references, we wish to mention
[6, 2, 8, 14, 18] for preconditioning by multiplying diagonal matrices
from the left and/or the right, [19, 10, 12] for block diagonal scaling and
[17, 5, 20] for scaling in order to obtain equal-norm rows or columns.
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1.4. Our Contribution. Our contribution to the scaling problem of
frames is three-fold. First, these are the leadoff results on this prob-
lem. Second, with Theorem 2.7 we provide various characterizations of
(strict) scalability of a frame for a general separable Hilbert space. In
this respect, a particular interesting characterization derived in Theo-
rem 2.7 states that a frame Φ in a Hilbert space H is strictly scalable
if and only if there exists a frame Ψ in a presumably different Hilbert
space K such that the coupling of the frame vectors of Φ and Ψ in
H⊕K constitutes an orthogonal basis. And, third, Theorems 3.2 and
3.6 provide a geometric characterization of scalability of finite frames.
More precisely, we prove that a finite frame in RN is not scalable if and
only if all its frame vectors are contained in certain cones.

1.5. Outline. This paper is organized as follows. In Section 2 we focus
on the situation of general separable Hilbert spaces. We first analyze
when a scaling preserves the frame property (Subsection 2.1), followed
by a general equivalent condition in terms of diagonal operators (Sub-
section 2.2). Subsection 2.3 is devoted to the main characterization of
strict scalability of frames. In Section 3 we then restrict to the situa-
tion of finite frames. First, in Subsection 3.1, we derive a yet different
characterization tailored specifically to the finite-dimensional case. Fi-
nally, this result is shown to give rise to a geometric interpretation of
scalable frames in terms of quadrics (Subsection 3.2).

2. Strict Scalability of General Frames

In this section, we derive our first main theorem which provides
a characterization of (strictly) scalable frames. We wish to mention
that this result does not only hold for finite frames, but in the general
separable Hilbert space setting.

2.1. Scalability and Frame Properties. We start by making the
notion of scalability mathematically precise. We further introduce the
notions of positive and strict scalability. Positive scalability ensures
that no frame vectors are suppressed by the preconditioning. The same
is true for strict scalability, which in addition prevents numerical insta-
bilities caused by arbitrarily small entries in the matrix representation
of the diagonal operator serving as preconditioner.

Definition 2.1. A frame Φ = {ϕj}j∈J for H is called scalable if there
exist scalars cj ≥ 0, j ∈ J , such that {cjϕj}j∈J is a Parseval frame. If,
in addition, cj > 0 for all j ∈ J , then Φ is called positively scalable.
If there exists δ > 0, such that cj ≥ δ for all j ∈ J , then Φ is called
strictly scalable.
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Clearly, positive and strict scalability coincide for finite frames, and
each scaling {cjϕj}j∈J of a finite frame {ϕj}j∈J with positive scalars cj
is again a frame. In the infinite-dimensional situation this might not be
the case. However, if there exist K1, K2 > 0 such that K1 ≤ cj ≤ K2

holds for all j ∈ J , then also {cjϕj}j∈J is a frame, see [1, Lemma 4.3].
A characterization of when a scaling preserves the frame property can
be found in Proposition 2.2 below. This requires particular attention
to the diagonal operator Dc in ℓ2(J) corresponding to a sequence c =
(cj)j∈J ⊂ K, which is defined by

Dc(vj)j∈J :=
(
cjvj

)
j∈J

, (vj)j∈J ∈ domDc,

where

domDc :=
{
(vj)j∈J ∈ ℓ2(J) : (cjvj)j∈J ∈ ℓ2(J)

}
.

It is well-known that Dc is a (possibly unbounded) selfadjoint operator
in ℓ2(J) if and only if cj ∈ R for all j ∈ J . If even cj ≥ 0 (cj > 0,
cj ≥ δ > 0) for each j ∈ J , then the selfadjoint operator Dc is non-
negative (positive, strictly positive, respectively).
Before we present the announced characterization, we require some

notation. As usual, we denote the domain, the kernel and the range of
a linear operator T by domT , ker T and ranT , respectively. Also, a
closed linear operator T between two Hilbert spaces H and K will be
called ICR (or an ICR-operator), if it is injective and has a closed range,
i.e., if there exists δ > 0 such that ‖Tx‖ ≥ δ‖x‖ for all x ∈ domT .
We mention that the analysis operator of a frame is always an ICR-
operator.
The following result now provides a characterization of when a scal-

ing preserves the frame property.

Proposition 2.2. Let Φ = {ϕj}j∈J be a frame for H with analysis

operator TΦ and let c = (cj)j∈J be a sequence of non-negative scalars.

Then the following conditions are equivalent.

(i) The scaled sequence of vectors Ψ := {cjϕj}j∈J is a frame for H.

(ii) We have ranTΦ ⊂ domDc and Dc| ranTΦ is ICR.

Moreover, in this case, the frame operator of the frame Ψ is given by

SΨ = (DcTΦ)
∗(DcTΦ) = T ∗

ΦDcDcTΦ,

where T ∗
ΦDc denotes the closure of the operator T ∗

ΦDc.

Proof. (i)⇒(ii). Assume that Ψ is a frame and denote its analysis
operator by TΨ. Then, for x ∈ H, the j-th component of TΨx is given
by

(TΨx)j = 〈x, cjϕj〉 = cj〈x, ϕj〉 = (DcTΦx)j .
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Hence, TΨ = DcTΦ. As domTΨ = H, this implies ranTΦ ⊂ domDc.
Since Φ is a frame, ranTΦ is a closed subspace. And since Ψ is a frame,
there exist A′, B′ > 0 such that A′‖x‖2 ≤ ‖DcTΦx‖22 ≤ B′‖x‖2 for all
x ∈ H. In particular, for v = TΦx ∈ ranTΦ we have

‖Dcv‖22 = ‖DcTΦx‖22 ≥ A′‖x‖2 ≥ A′‖TΦ‖−2‖v‖22,
which shows that Dc| ranTΦ is an ICR-operator.
(ii)⇒(i). Conversely, assume that ranTΦ ⊂ domDc and thatDc| ranTΦ

is ICR. By the closed graph theorem and ranTΦ ⊂ domDc, the oper-
ator Dc| ranTΦ is bounded, which implies the existence of A′, B′ > 0
such that

A′‖v‖22 ≤ ‖Dcv‖22 ≤ B′‖v‖22
holds for all v ∈ ranTΦ. Setting v = TΦx and noting that TΦ is bounded
and ICR, we obtain constants A′′, B′′ > 0 such that

A′′‖x‖2 ≤ ‖DcTΦx‖22 ≤ B′′‖x‖2

holds for all x ∈ H. Consequently, Ψ is a frame.
It remains to prove the moreover-part, i.e., that (DcTΦ)

∗ = T ∗
ΦDc.

Since DcTΦ is bounded, so is its adjoint (DcTΦ)
∗. In addition, it is easy

to see that T ∗
ΦDcv = (DcTΦ)

∗v holds for all v in the dense subspace
domDc. Hence, T ∗

ΦDc is bounded and densely defined. Its bounded
closure thus coincides with (DcTΦ)

∗. �

It is evident that the operator Dc in Proposition 2.2 is in gen-
eral unbounded. The following corollary provides a condition on the
frame Φ which leads to necessarily bounded diagonal operators Dc in
Proposition 2.2. We remark that lim infj∈J shall be interpreted as
lim infj∈J, j→∞, which is a proper definition, since J ⊂ N was assumed.
As it is custom, we set lim infj∈J to ∞ if J is finite.

Corollary 2.3. Let Φ, Ψ and c be as in Proposition 2.2 and assume

that lim infj∈J ‖ϕj‖ > 0. Then Ψ is a frame if and only if Dc is bounded

and Dc| ranTΦ is ICR. In this case, we have

SΨ = (DcTΦ)
∗(DcTΦ) = T ∗

ΦD
2
cTΦ.

Proof. If Dc has the above-mentioned properties, then Ψ is a frame by
Proposition 2.2. If Ψ is a frame, then there exists B > 0 such that for
each x ∈ H we have

∑

j∈J

c2j |〈x, ϕj〉|2 ≤ B‖x‖2.

In particular, for k ∈ J , c2k‖ϕk‖4 ≤ B‖ϕk‖2. Since there exist δ > 0
and j0 ∈ J such that ‖ϕj‖ ≥ δ for all j ∈ J , j ≥ j0, this implies
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ck ≤ B1/2δ−1 for all k ∈ J , k ≥ j0. Thus Dc is bounded as ‖Dc‖ =
supj∈J ck. �

2.2. General Equivalent Condition. We now state a seemingly ob-
vious equivalent condition to scalability, which is however not straight-
forward to state and prove in the general setting of an arbitrary sepa-
rable Hilbert space.

Proposition 2.4. Let Φ = {ϕj}j∈J be a frame for H. Then the fol-

lowing conditions are equivalent.

(i) Φ is (positively, strictly) scalable.
(ii) There exists a non-negative (positive, strictly positive, respec-

tively) diagonal operator D in ℓ2(J) such that

(2) T ∗
ΦDDTΦ = IH.

Proof. (i)⇒(ii). If Φ is scalable with a sequence of non-negative scalars
(cj)j∈J , then Ψ := {cjϕj}j∈J is a Parseval frame. In particular, Ψ is
a frame, which, by Proposition 2.2, implies that ranTΦ ⊂ domDc and
that SΨ = T ∗

ΦDcDcTΦ is the frame operator of Ψ. Since the frame
operator of a Parseval frame coincides with the identity operator, it
follows that T ∗

ΦDcDcTΦ = IH.
(ii)⇒(i). Conversely, assume that there exists a non-negative di-

agonal operator D in ℓ2(J) such that T ∗
ΦDDTΦ = IH. Then DTΦ is

everywhere defined. In particular, this implies that ranTΦ ⊂ domD.
Since TΦ is bounded andD is closed, the operatorDTΦ is closed. Hence,
by the closed graph theorem, DTΦ is a bounded operator from H into
ℓ2(J). In fact, (DTΦ)

∗(DTΦ) = IH implies that DTΦ is even isomet-
ric. Thus, from the boundedness of TΦ we conclude that D| ranTΦ is
ICR. Let c = (cj)j∈J be the sequence of non-negative scalars such that
D = Dc. As a consequence of Proposition 2.2, Ψ := {cjϕj}j∈J is a
frame with frame operator SΨ = IH, which implies that Ψ is a Parseval
frame.
The proofs for positive and strict scalability of Φ follow analogous

lines. �

Under certain assumptions, the relation (2) can be simplified as
stated in the following remark which directly follows from Corollary
2.3.

Remark 2.5. If δ := lim infj∈J ‖ϕj‖ > 0, then a diagonal operator D
as in Proposition 2.4 is necessarily bounded, and (2) reads

T ∗
ΦD

2TΦ = IH.
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Before stating our main theorem in this section, we first provide a
highly useful implication of Proposition 2.4, showing that scalability is
invariant under unitary transformations.

Corollary 2.6. Let U be a unitary operator in H. Then a frame

Φ = {ϕj}j∈J for H is scalable if and only if the frame UΦ = {Uϕj}j∈J
is scalable.

Proof. Let Φ be a scalable frame forH with diagonal operator D. Since
the analysis operator of UΦ is given by TUΦ = TΦU

∗,

T ∗
UΦDDTUΦ = UT ∗

ΦDDTΦU
∗ = UT ∗

ΦDDTΦU
∗ = UU∗ = IH,

which implies scalability of UΦ.
The converse direction can be proved similarly. �

2.3. Main Result. To state the main result of this section, we require
the notion of an orthogonal basis, which we recall for the convenience
of the reader. A sequence {vk}k of non-zero vectors in a Hilbert space
K is called an orthogonal basis of K, if infk ‖vk‖ > 0 and (vk/‖vk‖)k is
an orthonormal basis of K.
The following result provides several equivalent conditions for a frame

Φ to be strictly scalable. We are already familiar with condition (ii).
Condition (iii) can be interpreted as a ‘diagonalization’ of the Gram-
mian of Φ, and condition (iv) shows that Φ can be orthogonally ex-
panded to an orthogonal basis.

Theorem 2.7. Let Φ = {ϕj}j∈J be a frame forH such that lim infj∈J ‖ϕj‖ >
0, and let T = TΦ denote its analysis operator. Then the following

statements are equivalent.

(i) The frame Φ is strictly scalable.

(ii) There exists a strictly positive bounded diagonal operator D in

ℓ2(J) such that DT is isometric (that is, T ∗D2T = IH).
(iii) There exist a Hilbert space K and a bounded ICR operator L :

K → ℓ2(J) such that TT ∗ + LL∗ is a strictly positive bounded

diagonal operator.

(iv) There exist a Hilbert space K and a frame Ψ = {ψj}j∈J for K
such that the vectors

ϕj ⊕ ψj ∈ H ⊕K, j ∈ J,

form an orthogonal basis of H⊕K.

If one of the above conditions holds, then the frame Ψ from (iv) is

strictly scalable, its analysis operator is given by an operator L from

(iii), and with a diagonal operator D from (ii) we have

(3) L∗D2L = IK, and L∗D2T = 0.
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Proof. (i)⇔(ii). This equivalence follows from Proposition 2.4 (see also
Remark 2.5).
(ii)⇔(iii). For the proof of (ii)⇒(iii) let D be a strictly positive

bounded diagonal operator in ℓ2(J) such that T ∗D2T = IH. For the
Hilbert space K in (iii) we choose K := (ranDT )⊥ = ker T ∗D ⊂ ℓ2(J).
On K we define the operator L : K → ℓ2(J) by L := D−1|K, which
clearly is a bounded ICR operator. Then L∗ = PKD

−1, where PK

denotes the orthogonal projection in ℓ2(J) onto K. Let us show that
DTT ∗D + PK coincides with the identity operator on ℓ2(J). Then

TT ∗ + LL∗ = D−1DTT ∗DD−1 +D−1PKD
−1

= D−1
(
DTT ∗D + PK

)
D−1

= D−2,

which is a strictly positive bounded diagonal operator in ℓ2(J), and
(iii) is proved. Since DT is isometric, we have

(
DTT ∗D

)2
= DT (DT )∗(DT )T ∗D = DTT ∗D,

which shows that DTT ∗D is a projection. Moreover, DTT ∗D is self-
adjoint and thus an orthogonal projection. Since its kernel coincides
with ker T ∗D = K, it is the orthogonal projection onto K⊥. This shows
that DTT ∗D + PK = Iℓ2(J).
To prove the converse implication, suppose that (iii) holds with a

Hilbert space K and a bounded ICR operator L : K → ℓ(J), such that
TT ∗ + LL∗ = D−2 with a strictly positive bounded diagonal operator
D. Note that also D−1 is strictly positive and bounded. Define the
operator

(4) G : H⊕K → ℓ2(J), G

(
x
y

)
:= Tx+ Ly,

(
x
y

)
∈ H ⊕K.

Then G∗v = (T ∗v, L∗v)T , v ∈ ℓ2(J), and hence GG∗ = TT ∗ + LL∗ =
D−2. In particular, G is an isomorphism between H ⊕ K and ℓ2(J).
Moreover, we have

G∗D2G = G∗D2D−2G−∗ = IH⊕K.

This implies that
(
IH 0
0 IK

)
=

(
T ∗

L∗

)
(D2T,D2L) =

(
T ∗D2T T ∗D2L
L∗D2T L∗D2L

)
,

or, equivalently,

T ∗D2T = IH, L∗D2L = IK, and L∗D2T = 0,

which, in particular, yields (ii) (and (3)).
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(iii)⇔(iv). For the implication (iii)⇒(iv), let D, L and G be as above
and define ψj := L∗ej, j ∈ J , where ej denotes the j-th vector of the
standard orthonormal basis {ej}j∈J of ℓ2(J). As L is a bounded ICR
operator and

∑

j∈J

|〈x, ψj〉|2 =
∑

j∈J

|〈x, L∗ej〉|2 =
∑

j∈J

|〈Lx, ej〉|2 = ‖Lx‖2

for all x ∈ K, it follows that Ψ = {ψj}j∈J is a frame. Note that
T ∗ej = ϕj, j ∈ J . Hence, ϕj ⊕ ψj = T ∗ej ⊕ L∗ej = G∗ej , j ∈ J , and
therefore

〈ϕj⊕ψj , ϕk⊕ψk〉 = 〈G∗ej, G
∗ek〉 = 〈GG∗ej , ek〉 = 〈D−2ej , ek〉 = c−2

j δjk.

As the cj ’s are bounded and G∗ is an isomorphism, this shows that the
sequence {ϕj ⊕ ψj}j∈ J is an orthogonal basis of ℓ2(J).
Finally, to prove the converse implication, suppose that (iv) holds

true and denote by L the analysis operator of the frame Ψ. Since
{ϕj ⊕ ψj}j∈J is an orthogonal basis of H⊕K, for all j, k ∈ J we have
〈ϕj, ϕk〉+ 〈ψj , ψk〉 = djδjk, where dj = ‖ϕj‖2+‖ψj‖2, j ∈ J . Note that
the sequence (dj)j∈J is bounded and bounded from below by a positive
constant. Hence, for all j, k ∈ J ,

〈(TT ∗ + LL∗)ej , ek〉 = 〈T ∗ej, T
∗ek〉+ 〈L∗ej, L

∗ek〉 = 〈ϕj, ϕk〉+ 〈ψj , ψk〉
= djδjk = 〈djej , ek〉.

This implies TT ∗ +LL∗ = Dd, where d := (dj)j∈J . The operator Dd is
a strictly positive bounded diagonal operator, which proves (iii). �

The restriction of conditions (iii) and (iv) in Theorem 2.7 to the
situation of finite frames is not immediate and requires some thought.
This is the focus of the next result.

Corollary 2.8. Let Φ = {ϕj}Mj=1 be a frame for KN and let T = TΦ ∈
KM×N denote the matrix representation of its analysis operator. Then

the following statements are equivalent.

(i) The frame Φ is strictly scalable.

(ii) There exists a positive definite diagonal matrix D ∈ KM×M such

that DT is isometric.

(iii) There exists L ∈ KM×(M−N) such that TT ∗ + LL∗ is a positive

definite diagonal matrix.

(iv) There exists a frame Ψ = {ψj}Mj=1 for KM−N such that {ϕj ⊕
ψj}Mj=1 ∈ KM forms an orthogonal basis of KM .

Proof. We prove this result by using the equivalent conditions from
Theorem 2.7. First of all, we observe that H = K

N and ℓ2(J) = K
M .
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Moreover, condition (ii) obviously coincides with Theorem 2.7(ii), so
that (i)⇔(ii) holds. The equivalence (iii)⇔(iv) can be shown in a
similar way as the equivalence (iii)⇔(iv) in Theorem 2.7.
Hence, it remains to show that (iii) and the condition (iii) in Theorem

2.7 are equivalent. For this, assume that (iii) holds, set K := KM−N

and G := [T |L] ∈ KM×M . Then, since GG∗ = TT ∗ + LL∗ is a positive
definite diagonal matrix, it follows that G is non-singular and therefore
kerL = {0}. Thus, L is ICR, and (iii) in Theorem 2.7 holds. For
the converse, recall that the operator G : KN ⊕ K → KM in (4) was
shown to be an isomorphism in the proof of Theorem 2.7. Hence,
dimK =M−N . Thus, with some (bijective) isometry V : KM−N → K
and L̃ := LV ∈ KM×(M−N) we have TT ∗ + L̃L̃∗ = TT ∗ + LL∗. �

Finally, we apply Theorem 2.7 to the special case of finite frames
with N+1 frame vectors in KN , which leads to a quite easily checkable
condition for scalability. For this, we again require some prerequisites.
Letting Φ = {ϕi}Mj=1 be a frame for the Hilbert space KN , by OΦ we
denote the set of indices k ∈ {1, . . . ,M} for which 〈ϕk, ϕj〉 = 0 holds
for all j ∈ {1, . . . ,M} \ {k}. Note that OΦ = {1, . . . ,M} holds if
and only if Φ is an orthogonal basis of KN . In particular, this implies
M = N .

Corollary 2.9. Let Φ = {ϕj}N+1
j=1 be a frame for K

N such that ϕj 6= 0
for all j = 1, . . . , N + 1. Then OΦ 6= {1, . . . , N + 1}, and the following

statements are equivalent.

(i) Φ is strictly scalable.

(ii) There exist k ∈ {1, . . . , N + 1} \ OΦ and c > 0 such that

〈ϕi, ϕk〉〈ϕk, ϕj〉 = −c〈ϕi, ϕj〉
holds for all i, j ∈ {1, . . . , N + 1} \ {k}, i 6= j.

(iii) For all k ∈ {1, . . . , N + 1} \ OΦ there exists ck > 0 such that

〈ϕi, ϕk〉〈ϕk, ϕj〉 = −ck〈ϕi, ϕj〉
holds for all i, j ∈ {1, . . . , N + 1} \ {k}, i 6= j.

Proof. As remarked before, OΦ = {1, . . . , N + 1} implies that Φ is an
orthogonal basis of KN , which is impossible.
(i)⇒(iii). For this, let k ∈ {1, . . . , N + 1} \ OΦ be arbitrary. By

Theorem 2.7 (see also Corollary 2.8) there exists v = (v1, . . . , vN+1)
T ∈

KN+1 such that TΦT
∗
Φ + vv∗ is a diagonal matrix. Hence, 〈ϕi, ϕj〉 +

vivj = 0 holds for all i, j ∈ {1, . . . , N + 1}, i 6= j. Therefore, for
i, j ∈ {1, . . . , N + 1} \ {k}, i 6= j, we have

〈ϕi, ϕk〉〈ϕk, ϕj〉 = vivj |vk|2 = −|vk|2〈ϕi, ϕj〉.
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If vk = 0, then 〈ϕk, ϕj〉 = 0 for all j ∈ {1, . . . , N + 1} \ {k}. But since
k /∈ OΦ was assumed, it follows that |vk|2 > 0, and (iii) holds.
(iii)⇒(ii). This is obvious.
(ii)⇒(i). Assume now that (ii) is satisfied, and set

vk :=
√
c and vj := −v−1

k 〈ϕj, ϕk〉 (j ∈ {1, . . . , N + 1} \ {k}).
Then vivk = −〈ϕi, ϕk〉 for i ∈ {1, . . . , N + 1} \ {k} and

vivj = |vk|−2〈ϕi, ϕk〉〈ϕk, ϕj〉 = −〈ϕi, ϕj〉
for i, j ∈ {1, . . . , N + 1} \ {k}, i 6= j. This implies that TΦT

∗
Φ + vv∗ is

a diagonal matrix whose diagonal entries are positive (since otherwise
0 = ‖ϕj‖2 + |vj |2 and thus ϕj = 0 for some j ∈ {1, . . . , N + 1}). Now,
(i) follows from Theorem 2.7. �

As mentioned above, Corollary 2.9 might be utilized to test whether
a frame for KN with N + 1 frame vectors is strictly scalable or not.
Such a test would consist of finding an index k /∈ OΦ and checking
whether there exists a c > 0 such that 〈ϕi, ϕk〉〈ϕk, ϕj〉 = −c〈ϕi, ϕj〉
holds for all i, j ∈ {1, . . . , N + 1} \ {k}, i 6= j.

3. Scalability of Real Finite Frames

We next aim for a more geometric characterization of scalability.
For this, we now focus on frames for RN . The reason why we restrict
ourselves to real frames is that in the proof of the main theorem in this
section we make use of the following variant of Farkas’ Lemma which
only exists for real vector spaces.

Lemma 3.1. Let A : V → W be a linear mapping between finite-

dimensional real Hilbert spaces (V, 〈· , ·〉V ) and (W, 〈· , ·〉W ), let {ei}Ni=1

be an orthonormal basis of V and let b ∈ W . Then exactly one of the

following statements holds:

(i) There exists x ∈ V such that Ax = b and 〈x, ei〉V ≥ 0 for all

i = 1, . . . , N .

(ii) There exists y ∈ W such that 〈b, y〉W < 0 and 〈Aei, y〉W ≥ 0
for all i = 1, . . . , N .

Lemma 3.1 can be proved in complete analogy to the classical Farkas’
Lemma, where V = Rn and W = Rm, n,m ∈ N. A proof of this
statement can, for instance, be found in [3, Thm 5.1].

3.1. Characterization Result. The following theorem provides a char-
acterization of non-scalability of a finite frame specifically tailored to
the finite-dimensional case. In Subsection 3.2, condition (iii) will then
be utilized to derive an illuminating geometric interpretation.
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Theorem 3.2. Let Φ = {ϕj}Mj=1 ⊂ RN \ {0} be a frame for RN . Then

the following statements are equivalent.

(i) Φ is not scalable.

(ii) There exists a symmetric matrix Y ∈ RN×N with tr(Y ) < 0
such that ϕT

j Y ϕj ≥ 0 for all j = 1, . . . ,M .

(iii) There exists a symmetric matrix Y ∈ RN×N with tr(Y ) = 0
such that ϕT

j Y ϕj > 0 for all j = 1, . . . ,M .

Proof. (i)⇔(ii). Let W denote the vector space of all symmetric matri-
ces X ∈ RN×N , and let 〈· , ·〉W denote the scalar product on W defined
by 〈X, Y 〉W := tr(XY ), X, Y ∈ W . Furthermore, define the linear
mapping A : RM →W by

Ax := T T
Φ diag(x)TΦ, x ∈ R

M .

By Proposition 2.4 the frame Φ is not scalable if and only if there exists
no x ∈ RM , x ≥ 0, with Ax = IN . Hence, due to Lemma 3.1, Φ is not
scalable if and only if there exists Y ∈ W with tr(Y ) = 〈IN , Y 〉W < 0
such that

0 ≤ 〈Aej, Y 〉W = tr((Aej)Y ) = tr(ϕjϕ
T
j Y ) = ϕT

j Y ϕj

holds for all j = 1, . . . ,M , where {ej}Mj=1 denotes the standard basis of

RM . This proves the equivalence of (i) and (ii).
(ii)⇒(iii). For this, let Y1 ∈ W with α := − tr(Y1) > 0 such that

ϕT
j Y1ϕj ≥ 0 for all j = 1, . . . ,M , and set Y := Y1 +

α
N
IN . Then

tr(Y ) = 0 and ϕT
j Y ϕj > 0 for all j = 1, . . . ,M , as desired.

(iii)⇒(i). Assume now, that there exists Y ∈ W as in (iii), that is,
〈IN , Y 〉W = 0 and 〈Aej , Y 〉W > 0 for all j. Suppose that Φ is scalable.
Then there exists x ∈ RM , x ≥ 0, such that Ax = IN . This implies

0 = 〈IN , Y 〉W = 〈Ax, Y 〉W =

M∑

j=1

xj〈Aej, Y 〉W ,

which yields x = 0, contrary to the assumption Ax = IN . The theorem
is proved. �

This theorem can be used to derive a result on the topological struc-
ture of the set of non-scalable frames for RN . In fact, the corollary we
will draw shows that this set is open in the following sense.

Corollary 3.3. Let Φ = {ϕj}Mj=1 ⊂ RN \ {0} be a frame for RN which

is not scalable. Then there exists ε > 0 such that each set of vectors

{ψj}Mj=1 ⊂ RN with

(5) ‖ϕj − ψj‖ < ε for all j = 1, . . . ,M
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is a frame for RN which is not scalable.

Proof. Choosing a subset J of {1, . . . ,M} such that {ϕj}j∈J is a basis
of RN , it follows from the continuity of the determinant that there
exists ε1 > 0 such that all sets of vectors {ψj}Mj=1 ⊂ RN with (5) (ε
replaced by ε1) are frames. By Theorem 3.2, there exists a symmetric
matrix Y ∈ RN×N with tr(Y ) < 0 such that ϕT

i Y ϕi ≥ 0 for all i.
By adding δIN to Y with some δ > 0 we may assume without loss
of generality that tr(Y ) < 0 and ϕT

j Y ϕj > 0 for all j (note that the
frame vectors of Φ are assumed to be non-zero). Since the function
x 7→ xTY x is continuous, it follows that there exists ε ∈ (0, ε1) such
that for each frame {ψj}Mj=1 ⊂ RN with (5) we have ψT

j Y ψj > 0 for all

j. By Theorem 3.2, the frame {ψj}Mj=1 is not scalable, which finishes
the proof. �

3.2. Geometric Interpretation. We now aim to analyze the geome-
try of the vectors of a non-scalable frame. To derive a precise geometric
characterization of non-scalability, we will in particular exploit Theo-
rem 3.2. As a first step, notice that each of the sets

C±(Y ) := {x ∈ R
N : ±xTY x > 0}, Y ∈ R

N×N symmetric,

considered in Theorem 3.2 (iii) is in fact an open cone with the addi-
tional property that x ∈ C±(Y ) implies −x ∈ C±(Y ). Thus, in the
sequel we need to focus our attention on the impact of the condition
tr(Y ) = 0 on the shape of these cones.
We start by introducing a particular class of conical surfaces, which

due to their relation to quadrics – the exact relation being revealed
below – are coined ‘conical zero-trace quadrics’.

Definition 3.4. Let the class of conical zero-trace quadrics CN be de-
fined as the family of sets

(6)

{
x ∈ R

N :
N−1∑

k=1

ak〈x, ek〉2 = 〈x, eN〉2
}
,

where {ek}Nk=1 runs through all orthonormal bases of RN and (ak)
N−1
k=1

runs through all tuples of elements in R \ {0} with
∑N−1

k=1 ak = 1.

The next example provides some intuition on the geometry of the
elements in this class in dimension N = 2, 3.
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Example 3.5.

• N = 2. In this case, by setting e± := (1/
√
2)(e1±e2), a straight-

forward computation shows that C2 is the family of sets

{x ∈ R
2 : 〈x, e−〉〈x, e+〉 = 0},

where {e−, e+} runs through all orthonormal bases of R2. Thus,
each set in C2 is the boundary surface of a quadrant cone in R2,
i.e., the union of two orthogonal one-dimensional subspaces in
R2.

• N = 3. In this case, it is not difficult to prove that C2 is the
family of sets

{
x ∈ R

3 : a〈x, e1〉2 + (1− a)〈x, e2〉2 = 〈x, e3〉2
}
,

where {ei}3i=1 runs through all orthonormal bases of R3 and
a runs through all elements in (0, 1). The sets in C3 are the
boundary surfaces of a particular class of elliptical cones in R3.

To analyze the structure of these conical surfaces we let {e1, e2, e3}
be the standard unit basis and a ∈ (0, 1). Then the quadric

{
x ∈ R

3 : a〈x, e1〉2 + (1− a)〈x, e2〉2 = 〈x, e3〉2
}

intersects the planes {x3 = ±1} in
{
(x1, x2,±1) : ax21 + (1− a)x22 = 1

}
.

These two sets are ellipses whose union contains the corner
points (±1,±1,±1) of the unit cube. Thus, the considered
quadrics are elliptical conical surfaces with their vertex in the
origin, characterized by the fact that they intersect the corners
of a rotated unit cube in R3, see also Figure 3.2(b) and (c).

Note that (6) is by rotation unitarily equivalent to the set

(7)

{
x ∈ R

N : x2N −
N−1∑

k=1

akx
2
k = 0

}
.

Such surfaces uniquely determine cones by considering their interior or
exterior. Similarly, we call the sets

{
x ∈ R

N :
N−1∑

k=1

ak〈x, ek〉2 < 〈x, eN〉2
}

and

{
x ∈ R

N :
N−1∑

k=1

ak〈x, ek〉2 > 〈x, eN 〉2
}

the interior and the exterior of the conical zero-trace quadric in (6),
respectively.
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Armed with this notion, we can now state the result on the geometric
characterization of non-scalability.

Theorem 3.6. Let Φ ⊂ RN\{0} be a frame for RN . Then the following

conditions are equivalent.

(i) Φ is not scalable.

(ii) All frame vectors of Φ are contained in the interior of a conical

zero-trace quadric of CN .
(iii) All frame vectors of Φ are contained in the exterior of a conical

zero-trace quadric of CN .
Proof. We only prove (i)⇔(ii). The equivalence (i)⇔(iii) can be proved
similarly. By Theorem 3.2, a frame Φ = {ϕj}Mj=1 ⊂ R

N \ {0} for RN is
not scalable if and only if there exists a real symmetric N×N -matrix Y
with tr(Y ) = 0 such that ϕT

j Y ϕj > 0 for all j = 1, . . . ,M . Equivalently,

there exist an orthogonal matrix U ∈ RN×N and a diagonal matrix
D ∈ RN×N with tr(D) = 0 such that (Uϕj)

TD(Uϕj) > 0 for all j =
1, . . . ,M . Note that, due to continuity reasons, the matrix D can be
chosen non-singular, i.e., without zero-entries on the diagonal. Hence,
(i) is equivalent to the existence of an orthonormal basis {ek}Nk=1 of R

N

and values d1, . . . , dN ∈ R \ {0} satisfying
∑N

k=1 dk = 0 and

N∑

k=1

dk〈ϕj, ek〉2 > 0 for all j = 1, . . . ,M.

By a permutation of {1, . . . , N} we can achieve that dN > 0. Hence,
by setting ak := −dk/dN for k = 1, . . . , N − 1, we see that (i) holds
if and only if there exist an orthonormal basis {ek}Nk=1 of R

N and

a1, . . . , aN−1 ∈ R \ {0} such that
∑N−1

k=1 ak = 1 and

N−1∑

k=1

ak〈ϕj, ek〉2 < 〈ϕj, eN〉2 for all j = 1, . . . ,M.

But this is equivalent to (ii). �

By C∗
N we denote the subclass of CN consisting of all zero-trace conical

quadrics in which the orthonormal basis is the standard basis of RN .
That is, the elements of C∗

N are quadrics of the form (7) with non-

zero ak’s satisfying
∑N−1

k=1 ak = 1. The next corollary is an immediate
consequence of Theorem 3.6 and Corollary 2.6.

Corollary 3.7. Let Φ ⊂ R
N \ {0} be a frame for R

N . Then the fol-

lowing conditions are equivalent.

(i) Φ is not scalable.
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(ii) There exists an orthogonal matrix U ∈ RN×N such that all vec-

tors of UΦ are contained in the interior of a conical zero-trace

quadric of C∗
N .

(iii) There exists an orthogonal matrix U ∈ RN×N such that all vec-

tors of UΦ are contained in the exterior of a conical zero-trace

quadric of C∗
N .

Utilizing Example 3.5, we can draw the following conclusion from
Theorem 3.6 for the cases N = 2, 3.

Corollary 3.8. (i) A frame Φ ⊂ R
2 \ {0} for R

2 is not scalable if

and only if there exists an open quadrant cone which contains

all frame vectors of Φ.
(ii) A frame Φ ⊂ R3 \ {0} for R3 is not scalable if and only if all

frame vectors of Φ are contained in the interior of an elliptical

conical surface with vertex 0 and intersecting the corners of a

rotated unit cube.

To illustrate the geometric characterization, Figure 3.2 shows sample
regions of vectors of a non-scalable frame in R2 and R3.

(a) (b) (c)

Figure 1. (a) shows a sample region of vectors of a non-
scalable frame in R2. (b) and (c) show examples of C−

3

and C+
3 which determine sample regions in R3.
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