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Abstract—A (unit norm) frame is scalable if its vectors can be
rescaled so as to result into a tight frame. Tight frames can be
considered optimally conditioned because the condition number
of their frame operators is unity. In this paper we reformulate
the scalability problem as a convex optimization question. In
particular, we present examples of various formulations of the
problem along with numerical results obtained by using our
methods on randomly generated frames.

I. FRAMES AND SCALABLE FRAMES

A. Introduction

A finite frame for RN is a set Φ = {ϕk}Mk=1 ⊂ RN such
that there exist positive constants 0 < A ≤ B < ∞ (referred
to as the frame bounds) for which

A‖x‖22 ≤
M∑
k=1

|〈x, ϕk〉|2 ≤ B‖x‖22

for all x ∈ RN . Given a frame Φ = {ϕk}Mk=1 ⊂ RN , we
denote again by Φ the N×M matrix whose kth column is the
vector ϕk. The matrix Φ is the synthesis operator associated
to the frame Φ, and its transpose ΦT is the analysis operator
of Φ. The frame operator is then defined as S = ΦΦT . When
A = B the frame is called tight, in which case the frame
operator is S = AI where I denotes the identity matrix of the
necessary size.

B. Scalable Frames

Scalable frames were introduced in [12], [11] as a method
to convert a non tight frame into a tight one. More precisely:

Definition 1. Let M ≥ N be given. A frame Φ = {ϕk}Mk=1 ⊂
RN is called scalable if there exist a subset ΦJ = {ϕk}k∈J
with J ⊆ {1, 2, . . . ,M}, and non-negative scalars {xk}k∈J
such that the system Φ̃J = {xkϕk}k∈J is a tight frame for
RN .

This definition slightly differs from the one presented in [11,
Definition 2.1] as we shall not distinguish between the scaling
of frame elements, and their removal from the frame (strictly
and m-scalable). Let Φ = {ϕk}Mk=1 ⊂ RN be a frame. Then
the analysis operator of the scaled frame {xkϕk}Mk=1 is given
by XΦT , where X is the diagonal matrix with the values xk
on its diagonal. Hence, the frame Φ is scalable if and only

if there exists a diagonal matrix X = diag(xk), with xk ≥ 0
such that

S̃ = ΦXTXΦT = ΦX2ΦT = AI. (I.1)

for some constant A > 0.
One can covert (I.1) into a linear system of equations in M

unknowns: x2k. To write out this linear system we need the
following function: F : RN → Rd given by

F (x) = [F0(x), F1(x), . . . , FN−1(x)]T ,

F0(x) =


x21 − x22
x21 − x23

...
x21 − x2N

 , Fk(x) =


xkxk+1

xkxk+2

...
xkxN


and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1,
where d := (N−1)(N+2)

2 . Let F (Φ) be the d × M matrix
given by

F (Φ) = (F (ϕ1) F (ϕ2) . . . F (ϕM )).

In this setting we have the following solution to the scala-
bility problem:

Proposition 2. [11, Proposition 3.7] A frame Φ = {ϕk}Mk=1 ⊂
RN is scalable if and only if there exists a non-negative u ∈
kerF (Φ)\{0}.

C. Mathematical Programming and Duality

Our main goal is to find a non-negative nontrivial vector
in the null space of F (Φ) using some optimization methods.
For this reason we recall some notions from duality theory
in mathematical programming. For a more robust treatment
of duality theory applied to linear programs, we refer to the
standard texts by Boyd, Vandenberghe [3] and Bertsimas, Tsit-
siklis [2]. Recall that the Primal and Dual linear mathematical
programming problems are defined, respectively, as follows:

minimize: cTx
subject to: Ax = b

x ≥ 0.

maximize: bT y

subject to: AT y ≤ c
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Theorem 3 (Strong Duality). If either the primal or dual
problem has a finite optimal value, then so does the other.
The optimal values coincide, and optimal solutions to both
the primal and dual problems exist.

Theorem 4 (Complimentary Slackness). Let x∗ and y∗ be
feasible solutions to the primal and dual problems respectively.
Let A be an N by M matrix, where Aj denotes the jth column
and ai denotes the ith row of A. Then x∗ and y∗ are optimal
solutions to their respective problems if and only if

yi(ai · x− bi) = 0 for all i = 1, . . . , N,

and
xi(cj − yTAj) = 0 for all j = 1, . . . ,M.

II. REFORMULATION OF THE SCALABILITY PROBLEM AS
AN OPTIMIZATION PROBLEM

This section establishes the equivalence of generating a
scaling matrix X and solving an optimization problem of
a generic convex objective function. More specifically, we
shall phrase the scalability problem as a linear and convex
programming problem.

First consider the sets S1 and S2 given by

S1 := {u ∈ RM |F (Φ)u = 0 , u ≥ 0 , u 6= 0},

and

S2 := {v ∈ RM |F (Φ)v = 0 , v ≥ 0 , ‖v‖1 = 1}.

S1 is a subset of the null space of F (Φ), and each u ∈ S1 is
associated a scaling matrix Xu, defined as

Xu := (Xij)u =

{√
ui if i = j
0 otherwise.

S2 ⊂ S1 ∩B`1 where B`1 is the unit ball under the `1 norm.
We observe that a frame Φ = {ϕk}Mk=1 ⊂ RN is scalable

if and only if there exists a scaling matrix Xu with u ∈ S1.
Consequently, one can associate to Xu a scaling matrix Xv

with v ∈ S2. The normalized set S2 ensures that the constraints
in the optimization problems to be presented are convex.

Theorem 5. Let Φ = {ϕk}Mk=1 ⊂ RN be a frame, and let
f : RM → R be a convex function. Then the program

(P) minimize: f(u) (II.1)
subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0

has a solution if and only if the frame Φ is scalable.

Proof. Any feasible solution u∗ of P is contained in the set
S2, which itself is contained in S1, and thus corresponds to a
scaling matrix Xu.

Conversely, any u ∈ S1 can be mapped to a v ∈ S2 by
appropriate scaling factor. This provides an initial feasible
solution to P , and as f is convex and the constraints are convex
and bounded, there must exist a minimizer of P .

Theorem 5 is very general in that the convex objective
function f can be chosen so as the resulting frame has
some desirable properties. We now consider certain interesting
examples of objective functions f . These examples can be
related to the sparsity (or lack thereof) of the desired solution.
Using a linear objective function promotes sparsity, while
barrier objectives promote dense solutions (small number of
zero elements in u).

A. Linear Program Formulation

Assume that the objective function in (II.1) is given by
f(u) := aTu for some coefficient vector a ∈ RM\{0}. Our
program P now becomes

(P1) minimize: aTu (II.2)
subject to: F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

Choosing the coefficients a independently of the variables u,
results in a linear program. For example, the choice ai = 1 for
all i result in a program to minimize the `1 norm of u. Another,
more useful choice of coefficients is ai = 1

‖F (ϕi)‖2 . Under this
regime, a higher weight is given to the frame elements with
smaller norm (which further encourages sparsity).

One of the advantages of linear programs is that they
admit a strong dual formulation. To the primal problem P1

corresponds the following dual problem P2.

Proposition 6. Let Φ = {ϕk}Mk=1 ⊂ RN be a frame. The
program

(P2) maximize: w

subject to: [F (Φ)T 1]

[
v
w

]
≤ a

w ∈ R , v ∈ Rd

is the strong dual of P1.

Proof. This result follows exactly from the construction of
dual formulations for linear programs. The primal problem
can be formulated as follows:

minimize:
M∑
i=1

aiui

subject to: F (Φ)u = 0
M∑
i=1

ui = 1

u ≥ 0.

The strong dual of this problem is:

maximize: w

subject to: [F (Φ)T 1]

[
v
w

]
≤ a.



Numerical optimization schemes, in many cases, consist of
a search for an initial feasible solution, and then a search for an
optimal solution. In analyzing the linear program formulation
P1, we notice that we either have an optimal solution or the
problem is infeasible, but there is no case when the problem
is unbounded (due to the bounding constraint ‖u‖1 = 1).

The dual problem has the property that it either has an op-
timal solution, or is unbounded (from duality). Consequently,
for any frame Φ, w = min{a} and v = 0 is always a feasible
solution to the dual problem. This removes the requirement
that an initial solution be found [2].

B. Barrier Formulations

A sparse solution to the linear program produces a frame
in which the frame elements corresponding to the zero coef-
ficients are removed. In contrast, one may wish to have a full
solution, that is, one may want to retain all of, or most of, the
frame vectors. To enforce this property, we use two types of
barrier objective functions.

Proposition 7. Let Φ = {ϕk}Mk=1 ⊂ RN be a frame, and
define 0 ≤ ε� 1. If the problem

(P3) maximize:
M∑
i=1

ln(ui + ε) (II.3)

subject to: F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

has a feasible solution u∗ with a finite objective function value,
then the frame Φ is scalable, and the scaling matrix X is a
diagonal operator where the elements are the square-roots of
the feasible solution u∗. Moreover, for ε = 0, if a solution u∗

exists, all elements of u∗ are strictly positive.

Proof. Assume u∗ is a feasible solution to (II.3) with 0 <
ε � 1 and the objective function finite. Then from Theorem
5, we have that the frame Φ is scalable. Now assume ε = 0. If
one of the variables ui were zero, then the objective function
would have a value of −∞. Since we assume the function is
finite, this cannot be the case. A negative value for ui would
result in the objective function value being undefined, this also
cannot be the case due to the finite objective. Therefore, ui
must be positive for all i.

Proposition 8. Let Φ = {ϕk}Mk=1 ⊂ RN be a frame. If the
problem

(P4) maximize: min
i=1,...,M

{ui} (II.4)

subject to: F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

has a feasible solution u∗ with a finite objective function
value, then the frame Φ is scalable, and the scaling matrix
X is a diagonal operator where the elements are the square-
roots of the feasible solution u∗. Moreover, a solution exists

with positive elements if and only if the solution produced by
solving this problem has positive elements.

Proof. To show this, we shall rewrite this problem as a linear
program.

maximize: t (II.5)
subject to: F (Φ)u = 0

M∑
i=1

ui = 1

t ≤ ui
t > 0 , u ≥ 0.

Here, t is an auxiliary variable, taken to be the minimum
element of u. This linear program can be solved to optimality.
Moreover, as this problem is convex, the optimum achieved
is global. If the objective function at optimality has a value
of 0, then there can exist no solution with all positive coeffi-
cients.

III. AUGMENTED LAGRANGIAN METHODS

To efficiently solve these convex formulations, we employ
the method of augmented Lagrangians. Utilizing this method
is more a personal choice, as a multitude of first-order methods
exist. The augmented Lagrangian is chosen due to its flexibil-
ity. Sparse solutions can be induced through thresholding, and
dense solutions can be induced through choice of objective
function. As an example, consider the problem (P), with
the objective function f(u) := ‖u‖2`2 , Rewriting norms as
matrix/vector products we are interested in

minimize: uT Iu
subject to: F (Φ)u = 0

1
Tu = 1

u ≥ 0.

Here, I is the M ×M identity matrix. For notational conve-
nience, we denote L and b to be[

F (Φ)
1
T

]
and

[
0
1

]
respectively. The `2 problem is now

minimize: uT Iu
subject to: Lu = b

u ≥ 0.

To solve this problem, the augmented Lagrangian L is formed,

L =uT Iu+ 〈µ,Lu− b〉+
λ

2
‖Lu− b‖22

=uT Iu+ µTLu− µT b+
λ

2
(uTLTLu− 2uTLT b+ bT b).

This function is minimized through satisfying the first-order
condition, ∇L = 0.

The gradient of the Lagrangian with respect to u is solved
through standard calculus-based methods. The Lagrangian



with respect to the dual variables µ and λ is linear, which
we optimize through gradient descent. The tuning parameter
η denotes the scaling of the descent direction.

∇uL = 2Iu+ LTµ+ λLTLu− λLT b.
0 = (2I + λLTL)u+ LTµ− λLT b.

(2I + λLTL)u =λLT b− LTµ.

Dividing the equation by λ, we have(
2

λ
I + LTL

)
u =LT b− LT µ

λ
.(

2

λ
I + LTL

)
u =LT

(
b− µ

λ

)
.

u =

(
2

λ
I + LTL

)−1
LT
(
b− µ

λ

)
.

The dual variables have the following gradients,

∇µL =Lu− b.

∇λL =
1

2
〈Lu− b, Lu− b〉.

And forming the gradient descent algorithm with η, results in

Algorithm 1 Gradient Descent w.r.t. µ
while not converged do
µk+1 ← µk − η · (Lu− b)

end while

Algorithm 2 Gradient Descent w.r.t. λ
while not converged do
λk+1 ← λk −

η

2
· 〈Lu− b, Lu− b〉

end while

Lastly, to retain the non-negativity of the solution, we
project the current solution onto R+. This is accomplished by
setting any negative values in the solution to 0 (thresholding).
We shall denote this P+(·). Forming the full augmented
Lagrangian scheme, we now have the complete `2 derivation.

Algorithm 3 Full Augmented Lagrangian Scheme (`2)
while not converged do

vk+1 ←
(

2

λk
I + LTL

)−1
LT
(
b− µk

λk

)
uk+1 ← P+(vk+1)
µk+1 ← µk − η · (Luk+1 − b)

λk+1 ← λk −
η

2
· 〈Luk+1 − b, Luk+1 − b〉

end while

IV. NUMERICAL EXAMPLES

The following numerical tests are intended to illustrate our
methods by scaling frames generated from Gaussian distribu-
tions. In particular, throughout this section, we identify random
frames Φ with full-rank random N × M matrices whose
elements are i.i.d., drawn from a Gaussian distribution with
zero mean and unit variance. These random frames are not
tight, but they are not badly conditioned. This follows from the
incoherence between Gaussian frame elements [8] and results
on singular/eigen-values by Edelman [9]. Future work will
involve specific subclasses of frames to better characterize the
space.

The first set of figures are intended to give a representation
of how the scaling affects frames in R2. A number of Gaussian
random frames are generated in MatLab, and a scaling process
is performed by solving one of the optimization problems
above (the specific program used is noted under the figures).
The Gaussian frame is first normalized to be on the unit circle.
The (blue\circle) vectors correspond to the original frame
vectors, and the (red\triangle) vectors represent the resulting
scaled frame.

Fig. IV.1. These examples display the effect of scaling frames in R2. The
frames are sized M = 7 (Left) and M = 30 (Right), and were scaled using
the Augmented Lagrangian Scheme. The left figure shows that scalings favor
isolated frame elements. The right figure shows that as the frame elements
fill the space, the scalings become more normalized.

Fig. IV.2. These examples illustrate scalable frames with a small number of
positive weights. The frames are sized M = 7 (Left) and M = 30 (Right),
and were scaled using linear programming formulation P1 (more specifically,
the Simplex algorithm). These two example show that for frames of low (Left)
and high (Right) redundancy, sparse solutions are possible and seemingly
unrelated to the number of frame elements.



Fig. IV.3. These frames show full scaling results from the log-barrier method.
The frames are sized M = 15 (Left) and M = 20 (Right), and as was
mentioned in figure IV.1, the scalings favor isolated frame elements.

The next tables illustrate the sparsity that is achieved in
scaling a frame. That is, using the linear program, we present
the average number of non-zero frame elements retained
over 100 trials. Our data seem to suggest the existence of
a minimum number of frame elements required to perform
a scaling, and this number seems to depend only on the
dimension of the underlying space. This phenomenon should
be compared to the estimates on the probability that a frame of
M vectors in RN is scalable that were obtained in [7, Theorem
4.9].

Sparsity Test Results [Gaussian Frames]
N\M 3 4 5 10 20 30 40 50

2 3 3 3 3 3 3 3 3
3 - - - 6.01 6 6 6 6
4 - - - 10.1 10.12 10.1 10 10
5 - - - - 15.08 15.12 15.11 15.05

TABLE IV.1
THE AVERAGE NUMBER OF FRAME ELEMENTS RETAINED AFTER SCALING
USING THE LINEAR PROGRAM FORMULATION. ENTRIES WITH A “-” IMPLY

THAT THE PROPORTION OF SCALABLE FRAMES IN THE SPACE IS TOO
SMALL FOR PRACTICAL TESTING.

Sparsity Test Results [Gaussian Frames]
N\M 150 200 250 500 750 1000

10 56.06 56.02 55.72 55.57 55.66 55.6
15 - - 123.76 123.98 123.37 123.1
20 - - - 217.6 218.6 219.45
25 - - - - - 338.67

TABLE IV.2
THE AVERAGE NUMBER OF FRAME ELEMENTS RETAINED AFTER SCALING
USING THE LINEAR PROGRAM FORMULATION. ENTRIES WITH A “-” IMPLY

THAT THE PROPORTION OF SCALABLE FRAMES IN THE SPACE IS TOO
SMALL FOR PRACTICAL TESTING.

Observe that the results presented in tables IV.1 and IV.2
show an interesting trend. The average number of elements
required to scale a frame appears to be d+ 1 = N(N+1)

2 . The
linear system being solved during the Simplex method has
dimensions (d+ 1)×M , and attempts to find a non-negative
solution in RM . It seems unlikely that this solution can be
found using less than d+ 1 frame elements.

The final test presents the proportion of scalable Gaussian
frames of a given size over 100 trials. For testing, the number
of frame vectors is determined by the dimension of the
underlying space. For a frame in RN , the number of frame
elements used ranges from N +1 to 4N2 (e.g. for N = 2, the
number of frame elements range from M = 3 to M = 16).

A Gaussian frame is generated of the required sizes and a
scaling is attempted. This is performed over a hundred trials,
and the proportion of frames that were scalable was retained.
For each N , a plot of the proportions across frame size M
is presented. To display these plots in a single figure, the
independent variable M is scaled to lie in the range (0,1).
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Fig. IV.4. Each graph in this figure gives the proportion of scalable frames
generated after 100 trials. The sizes of the frames range from N +1 to 4N2.
To fit the graphs in a single figure, the range of each figure is scaled to be from
0 to 1. The frame dimensions are N = 2 (Blue\Circle), N = 3 (Red\Star),
N = 4 (Green\Triangle), N = 5 (Cyan\Box), and N = 10 (Magenta\x).
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