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Definition

Definition

Φ = {ϕk}Mk=1 ⊆ RN is a frame for RN if ∃A,B > 0 such that ∀x ∈ RN ,

A‖x‖2 ≤
M∑
k=1

|〈x, ϕk〉|2 ≤ B‖x‖2.

If, in addition, ‖ϕk‖ = 1 for each k, we say that Φ is a unit-norm frame.
The set of frames for RN with M elements will be denoted by F . In
addition, we let Fu the the subset of unit-norm frames.
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Analysis and Synthesis with frame

Let Φ = {ϕk}Mk=1 ⊂ RN .

1 The analysis operator, is defined by

RN 3 x 7→ ΦTx = {〈x, ϕk〉}Mk=1 ∈ RM .

2 The synthesis operator is defined by

RM 3 c = (ck)Mk=1 7→ Φc =

M∑
k=1

ckϕk ∈ RN .

3 The frame operator S = ΦΦT is given by

RN 3 x 7→ Sx =

M∑
k=1

〈x, ϕk〉ϕk ∈ RN .

4 The Gramian (operator) G = ΦTΦ of the frame is the M ×M
matrix whose (i, j)th entry is 〈ϕj , ϕi〉.
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Resolution of the identity with frame

If Φ = {ϕk}Mk=1 ⊂ RN is a frame,

{ϕ̃k}Mk=1 = {S−1ϕk}Mk=1

is the canonical dual frame, and, for each x ∈ RN , we have

x = SS−1(x) = S−1S(x)

x =

M∑
k=1

〈x, ϕk〉ϕ̃k =

M∑
k=1

〈x, ϕ̃k〉ϕk. (1)
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Tight frames and FUNTFs

1 A frame Φ is a tight frame if we can choose A = B.
2 If Φ = {ϕk}Mk=1 ⊂ RM is a frame then

{ϕ†k}
M
k=1 = {S−1/2ϕk}Mk=1 ⊂ RN

is a tight frame, and for every x ∈ RN

x = SS−1x = SS−1/2S−1/2x =

M∑
k=1

〈x, ϕ†k〉ϕ
†
k. (2)

3 If Φ is a tight frame of unit-norm vectors, we say that Φ is a finite
unit-norm tight frame (FUNTF). In this case, the reconstruction
formula (1) reduces to

∀x ∈ RN , x = N
M

M∑
k=1

〈x, ϕk〉ϕk. (3)
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Example of FUNTFs

Example

Let ω = e2πi/M

1√
M


1 1 1 . . . 1
1 ω ω2 . . . ωM−1

1 ω2 ω4 . . . ω2(M−1)

...
...

... . . .
...

1 ωM−1 ω2(M−1) . . . ω(M−1)2


Any (normalized) N rows from the M ×M DFT matrix is a tight frame
for CN .
Every tight frame of M vectors in KN is obtained from an orthogonal
projection of an ONB in KM onto KN .
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Examples of frames

Figure : The MB-Frame

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Definition and elementary properties
Optimally conditioned frames: FUNTFs

The frame potential

Theorem (Benedetto and Fickus, 2003)

For each Φ = {ϕk}Mk=1 ⊂ RN , such that ‖ϕk‖ = 1 for each k, we have

FP(Φ) =

M∑
j=1

M∑
k=1

|〈ϕj , ϕk〉|2 ≥ M
N max(M,N). (4)

Furthermore,
• If M ≤ N , the minimum of FP is M and is achieved by orthonormal
systems for RN with M elements.

• If M ≥ N , the minimum of FP is M2

N and is achieved by FUNTFs.
FP(Φ) is the frame potential.
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Proof

Proof.

FP ({ϕk}Mk=1) = M +

M∑
k 6=`=1

|〈ϕk, ϕ`〉|2 ≥M.

• If M ≤ N the minimizers are exactly orthonormal systems and the
minimum is M .
• Now assume M ≥ N and let G = Φ∗Φ. Observe that

Tr(G2) =

M∑
k=1

〈G2ek, ek〉 =

M∑
k=1

〈Gek, Gek〉 =

M∑
k=1

‖Gek‖2.

But

‖Gek‖2 =

M∑
`=1

|G(`, k)|2 =

M∑
`=1

|〈ϕ`, ϕk〉|2.
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Proof (continued)

Proof.

Consequently,

FP ({ϕk}Mk=1) = Tr(G2) =

N∑
k=1

λ2
k

and, trace(G) =
∑N
k=1 λk = M .

Minimizing FP ({ϕk}Mk=1) is equivalent to minimizing

N∑
k=1

λ2
k such that

N∑
k=1

λk = M.
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Proof (continued)

Proof.

Solution: λk = M/N for all k.
Hence S = M

N IN where IN is the identity matrix. The corresponding
minimizers {ϕk}Mk=1 are FUNTFs

x =
N

M

M∑
k=1

〈x, ϕk〉ϕk ∀x ∈ KN .
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Construction of FUNTFs

Fact

Numerical schemes such as gradient descent can be used to find
minimizers of the frame potential and thus find FUNTFs.

The spectral tetris method was proposed by Casazza, Fickus, Mixon,
Wang, and Zhou (2011) to construct all FUNTFs. Further
contributions by Krahmer, Kutyniok, Lemvig, (2012); Lemvig,
Miller, Okoudjou (2012).

Other methods (algebraic geometry) have been proposed by Cahill,
Fickus, Mixon, Strawn.
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Optimally conditioned frames

Remark

1 FUNTFs can be considered “optimally conditioned” frames. In
particular the condition number of the frame operator is 1.

2 There are many preconditioning methods to improve the condition
number of a matrix, e.g., Matrix Scaling.

3 A matrix A is (row/column) scalable if there exit diagonal matrices
D1, D2 with positive diagonal entries such that D1A,AD2, or
D1AD2 have constant row/column sum.
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Main question

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one transform Φ into
a tight frame? If yes can this be done algorithmically and can the class of
all frames that allow such transformations be described?

Solution

1 If Φ denotes again the N ×M synthesis matrix, a solution to the
above problem is the associated canonical tight frame

{S−1/2ϕk}Mk=1.

Involves the inverse frame operator.

2 What“transformations” are allowed?
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Goals of this section

Remark

1 How to transform a (non) tight frame into a tight one?

2 What “transformations” are allowed?

3 Give theoretical guarantees and algorithms.

4 For a given “transformation”, what happens if a frame cannot be
transformed exactly?

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Choosing a transformation

Question

Given a (non-tight) frame Φ = {ϕk}Mk=1 ⊂ RN can one find nonnegative

numbers {ck}Mk=1 ⊂ [0,∞) such that Φ̃ = {ckϕk}Mk=1 becomes a tight
frame?

Remark

In matrix notation, one seeks a diagonal (M ×M) matrix C with
nonnegative entries such that ΦC is a tight frame.
More generally, one can ask when there exist (structured) matrices D
such that ΦD is a tight frame.
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Definition

Definition

A frame Φ = {ϕk}Mk=1 in RN is scalable, if ∃ {ck}Mk=1 ⊂ [0,∞) such that
{ckϕk}Mk=1 is a tight frame for RN .
The set of scalable frames is denoted by SC(M,N).
In addition, if {ck}Mk=1 ⊂ (0,∞), the frame is called strictly scalable and
the set of strictly scalable frames is denoted by SC+(M,N).

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

A more general definition

Definition

Given, N ≤ m ≤M , a frame Φ = {ϕk}Mk=1 is said to be m-scalable,
respectively, strictly m−scalable, if ∃ΦI = {ϕk}k∈I with
I ⊆ {1, 2, . . . ,M}, #I = m, such that ΦI = {ϕk}k∈I is scalable,
respectively, strictly scalable.
We denote the set of m-scalable frames, respectively, strictly m-scalable
frames in F(M,N) by SC(M,N,m), respectively, SC+(M,N,m).

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Some basic examples

Example

1 When M = N , a frame Φ = {ϕk}Nk=1 ⊂ RN is scalable if and only if
Φ is an orthogonal set.

2 When M ≥ N , if Φ contains an orthogonal basis, then it is clearly
N−scalable.

3 Thus, given M ≥ N , the set SC(M,N,N) consists exactly of
frames that contains an orthogonal basis for RN .
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Useful remarks

Remark

We note that a frame Φ = {ϕk}Mk=1 ⊂ RN with ϕk 6= 0 for each
k = 1, . . . ,M is scalable if and only if Φ′ = { ϕk

‖ϕk‖}
M
k=1 is scalable.
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Useful remarks

Remark

Given a frame Φ ⊂ RN , assume that Φ = Φ1 ∪ Φ2 where

Φ1 = {ϕ(1)
k ∈ Φ : ϕ

(1)
k (N) ≥ 0}

and
Φ2 = {ϕ(2)

k ∈ Φ : ϕ
(2)
k (N) < 0}.

Let
Φ′ = Φ1 ∪ (−Φ2).

Φ is scalable if and only if Φ′ is scalable.
We shall assume that all the frame vectors are in the upper-half space,
i.e., Φ ⊂ RN−1 × R+,0 where R+,0 = [0,∞).
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Elementary properties of scalable frames

Proposition

Let M ≥ N , and m ≥ 1 be integers.

(i) If Φ ∈ F is m-scalable then m ≥ N .

(ii) For any integers m,m′ such that N ≤ m ≤ m′ ≤M we have that

SC(M,N,m) ⊂ SC(M,N,m′),

and

SC(M,N) =

M⋃
m=N

SC(M,N,m).

(iii) Φ ∈ SC(M,N) if and only if T (Φ) ∈ SC(M,N) for one (and hence
for all) orthogonal transformation(s) T on RN .

(iv) Let Φ = {ϕk}N+1
k=1 ∈ F(N + 1, N) \ {0} with ϕk 6= ±ϕ` for k 6= `.

If Φ ∈ SC+(N + 1, N), then Φ /∈ SC+(N + 1, N + 1).
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Scalable frames: When and How?

Question

1 When is a frame Φ = {ϕk}Mk=1 ⊂ RN scalable?

2 If Φ = {ϕk}Mk=1 ⊂ RN is scalable, how to find the coefficients?

3 If Φ is not scalable, how close to scalable is it?

4 What are the topological properties of SC(M,N)?
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A reformulation

Fact

Φ is (m-) scalable ⇐⇒ ∃{xk}k∈I ⊂ [0,∞) with #I = m ≥ N such

that Φ̃ = ΦX satisfies

Φ̃Φ̃T = ΦX2ΦT = ÃIN =
∑

k∈I x
2
k‖ϕk‖2

N IN (5)

where X = diag(xk).
(5) is equivalent to solving

ΦY ΦT = IN (6)

for Y = 1
Ã
X2.
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Scalable frames in R2

Question

Let Φ = {ϕk}Mk=1 ⊂ R2 be a frame contained in the first quadrant:

Φ =

(
1 a1 a2 . . . aM−1

0 b1 b2 . . . bM−1

)
.

Is Φ scalable?

Solution

Φ is scalable ⇐⇒ ∃ : x = {xk}Mk=1 ⊂ [0,∞) with ‖x‖0 ≥ 2 : the rows
of the following matrix are orthogonal(

x1 x2a1 x3a2 . . . xMaM−1

0 x2b1 x3b2 . . . xMbM−1

)
This happens when

∑M−2
k=1 x2

k+1akbk = 0 has a nontrivial solution.
Which is not the case, so Φ is not scalable
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Scalable frames in R2

Question

Let Φ = {ϕk}Mk=1 ⊂ R2 be a frame with, ϕ1 = e1, ϕ2 =

(
a1

b1

)
with,

a1, b1 > 0, ϕ3 =

(
a2

b2

)
, with a2 < 0 < b2

Φ =

(
1 a1 a2 . . . aM−1

0 b1 b2 . . . bM−1

)
.

Is Φ scalable?

Solution

There exist x2, x3 > 0 such that {ϕ1, x2ϕ2, x3ϕ3} forms a tight frames,
since x2

1a1b1 + x2
2a2b2 = 0 has nontrivial nonnegative solutions.

Φ is scalable.
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Scalable frame in R2

Question

More generally, when is Φ = {ϕk}Mk=1 ⊂ S1 is a scalable frame in R2?

Solution

Assume that Φ = {ϕk}Mk=1 ⊂ R× R+,0, ‖ϕk‖ = 1, and ϕ` 6= ϕk for
` 6= k. Let 0 = θ1 < θ2 < θ3 < . . . < θM < π, then

ϕk =

(
cos θk
sin θk

)
∈ S1.

Let Y = (yk)Mk=1 ⊂ [0,∞), then (6) becomes

( ∑M
k=1 yk cos2 θk

∑M
k=1 yk sin θk cos θk∑M

k=1 yk sin θk cos θk
∑M
k=1 yk sin2 θk

)
=

(
1 0
0 1

)
. (7)
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Scalable frame in R2

Solution

(7) is equivalent to 
∑M
k=1 yk sin2 θk = 1∑M
k=1 yk cos 2θk = 0∑M
k=1 yk sin 2θk = 0.

Consequently, for Φ to be scalable we must find a nonnegative vector

Y = (yk)Mk=1 in the kernel of the matrix whose kth column is

(
cos 2θk
sin 2θk

)
.
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Scalable frame in R2

Solution
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Scalable frame in R2

Solution

The problem is equivalent to finding non-trivial nonnegative vectors in
the nullspace of (

1 cos 2θ2 . . . cos 2θM
0 sin 2θ2 . . . sin 2θM

)
. (8)
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Describing SC(3, 2)

Example

We first consider the case M = 3. In this case, we have
0 = θ1 < θ2 < θ3 < π, and the (8) becomes(

1 cos 2θ2 cos 2θ3

0 sin 2θ2 sin 2θ3

)
. (9)
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Describing SC(3, 2)

Example

If θk0 = π/2 for k0 ∈ {2, 3}, then the corresponding frame contains an
ONB and, hence is scalable.
For example, when k0 = 2, then 0 = θ1 < θ2 = π/2 < θ3 < π. In this
case, the fame is 2− scalable but not 3− scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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If θk0 = π/2 for k0 ∈ {2, 3}, then the corresponding frame contains an
ONB and, hence is scalable.
For example, when k0 = 2, then 0 = θ1 < θ2 = π/2 < θ3 < π. In this
case, the fame is 2− scalable but not 3− scalable.
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Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Describing SC(3, 2)

Example

Suppose θk 6= π/2 for k = 2, 3. If θ3 < π/2, then the frame cannot be
scalable. Indeed, u = (z1, z2, z3) belongs to the kernel of (9) if and only if{

z1 = sin 2(θ3−θ2)
sin 2θ2

z3,

z2 = − sin 2θ3
sin 2θ2

z3,
(10)

where z3 ∈ R. The choice of the angles implies that z2z3 < 0, unless
z3 = 0.
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Green=associated canonical tight frame.
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Example

Suppose that 0 = θ1 < θ2 < π/2 < θ3 < π. From (10) z2 > 0 for all
z3 > 0 and z1 > 0 for all z3 > 0 if and only if θ3 − θ2 < π/2.
Consequently, when 0 = θ1 < θ2 < π/2 < θ3 < π the frame
Φ ∈ SC+(3, 2, 3) if and only if 0 < θ3 − θ2 < π/2.
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Example

When M = 4 we are lead to seek nonnegative non-trivial vectors in the
null space of (

1 cos 2θ2 cos 2θ3 cos 2θ4

0 sin 2θ2 sin 2θ3 sin 2θ4

)
.
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A more general reformulation

Setting

Recall that Φ is (m-) scalable ⇐⇒ ∃{xk}k∈I ⊂ [0,∞) such that

Φ̃ = ΦX satisfies
Φ̃Φ̃T = ΦX2ΦT = IN

where X = diag(xk).
This is equivalent to{∑M

k=1 ϕk(j)2yk = 1 for j = 1, . . . , N,∑M
k=1 ϕk(`)ϕk(j)yk = 0 for `, j = 1, . . . , N, k > `.

(11)
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A more general reformulation

Setting

(11) leads to{∑M
k=1

(
ϕk(1)2 − ϕk(j)2

)
yk = 0 for j = 2, . . . , N,∑M

k=1 ϕk(`)ϕk(j)yk = 0 for `, j = 1, . . . , N, k > `.
(12)
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When is a frame scalable: A generic solution

Question

When is Φ = {ϕk}Mk=1 ⊂ RN scalable?

Proposition

A frame Φ for RN is m-scalable, respectively, strictly m-scalable, if and
only if there exists a nonnegative u ∈ kerF (Φ) \ {0} with ‖u‖0 ≤ m,
respectively, ‖u‖0 = m, and where F (Φ) is the d×M matrix whose kth

column is F (ϕk).
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A more general reformulation

Setting

Let F : RN → Rd, d := (N − 1)(N + 2)/2, defined by

F (x) =


F0(x)
F1(x)

...
FN−1(x)



F0(x) =


x2

1 − x2
2

x2
1 − x2

3
...

x2
1 − x2

N

 , . . . , Fk(x) =


xkxk+1

xkxk+2

...
xkxN


and F0(x) ∈ RN−1, Fk(x) ∈ RN−k, k = 1, 2, . . . , N − 1.
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The map F when N = 2

Example

When N = 2 the map F reduces to

F

(
x
y

)
=

(
x2 − y2

xy

)
.

Note that in the examples given above we consider

F̃

(
x
y

)
=

(
x2 − y2

2xy

)
.
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Some convex geometry notions

Fact

Let X = {xi}Mk=1 ⊂ RN .

1 The polytope generated by X is the convex hull of X, denoted by
PX (or co(X)).

2 The affine hull generated by X is denoted by aff(X).

3 The relative interior of the polytope co(X) denoted by ri co(X), is
the interior of co(X) in the topology induced by aff(X).

4 It is true that ri co(X) 6= ∅ whenever #X ≥ 2, and

ri co(X) =

{
M∑
k=1

αkxk : αk > 0,

M∑
k=1

αk = 1

}
,
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A key tool: The Farkas Lemma

Lemma (Farkas’s lemma)

For every real N ×M -matrix A exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution x ∈ RM , i.e., all components of x are nonnegative and at
least one of them is strictly positive.

(ii) There exists y ∈ RN such that yTA is a vector with all entries
strictly positive.
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Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F . Both of these
examples result in non scalable frames.

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Characterization using convex geometry
A geometric characterization
Topology of scalable frames

Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F . Both of these
examples result in scalable frames.
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Proof of Farkas Lemma

Proof.

Let S = {ak}Mk=1 ⊂ RN where ak is the kth column vector of A. The
two alternatives correspond to 0 ∈ co(S) and 0 6∈ co(S).
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Scalable frames and Farkas’s lemma

Theorem

Let M ≥ N ≥ 2, and let m be such that N ≤ m ≤M . Assume that
Φ = {ϕk}Mk=1 ∈ F∗(M,N) is such that ϕk 6= ±ϕ` when k 6= `. Then the
following statements are equivalent:

(i) Φ is m−scalable, respectively, strictly m−scalable,

(ii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m such that
0 ∈ co(F (ΦI)), respectively, 0 ∈ ri co(F (ΦI)).

(iii) There exists a subset I ⊂ {1, 2, . . . ,M} with #I = m for which
there is no h ∈ Rd with 〈F (ϕk), h〉 > 0 for all k ∈ I, respectively,
with 〈F (ϕk), h〉 ≥ 0 for all k ∈ I, with at least one of the
inequalities being strict.
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Sketch of the proof

Proof.

(i)⇐⇒ (ii). This equivalence follows directly if we can show the
following equivalences for Ψ ⊂ Φ:

0 ∈ co(F (Ψ)) ⇐⇒ kerF (Ψ) \ {0} contains a ≥ 0 vector and

0 ∈ ri co(F (Ψ)) ⇐⇒ kerF (Ψ) contains a > 0 vector.

⇒: easy.
⇐ Case 1: Let I ⊂ [M ] be such that Ψ = ΦI , I = {i1, . . . , im}, and let
u = (c1, . . . , cm)T ∈ kerF (Ψ) be a non-zero nonnegative vector. Set
A :=

∑m
k=1 ck > 0 and with λk := ck/A, we see that 0 ∈ co(F (Ψ)).

Case 2: each ck > 0 leading to λk > 0.
(ii)⇐⇒ (iii) In the first case this follows from Farkas’s lemma.
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A useful property of F

For x = (xk)Nk=1 ∈ RN and h = (hk)dk=1 ∈ Rd, we have that

〈F (x), h〉 =

N∑
`=2

h`−1(x2
1 − x2

`) +

N−1∑
k=1

N∑
`=k+1

hk(N−1−(k−1)/2)+`−1xkx`.

(13)
Consequently, fixing h ∈ Rd, 〈F (x), h〉 is a homogeneous polynomial of
degree 2 in x1, x2, . . . , xN . The set of all polynomials of this form can be
identified with the subspace of real symmetric N ×N matrices whose
trace is 0.
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A useful property of F

Remark

〈F (x), h〉 = 〈Qhx, x〉 = 0 defines a quadratic surface in RN , and
condition (iii) in the last Theorem stipulates that for Φ to be scalable,
one cannot find such a quadratic surface such that the frame vectors
(with index in I) all lie on (only) “one side” of this surface.
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A geometric characterization of scalable frames

Theorem

Let Φ = {ϕk}Mk=1 ⊂ RN \ {0} be a frame for RN . Then the following
statements are equivalent.

(i) Φ is not scalable.

(ii) There exists a symmetric M ×M matrix Y with trace(Y ) < 0 such
that 〈ϕj , Y ϕj〉 ≥ 0 for all j = 1, . . . ,M .

(iii) There exists a symmetric M ×M matrix Y with trace(Y ) = 0 such
that 〈ϕj , Y ϕj〉 > 0 for all j = 1, . . . ,M .
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Scalable frames in R2 and R3

Figures show sample regions of vectors of a non-scalable frame in R2 and
R3.

(a) (b) (c)

Figure : (a) shows a sample region of vectors of a non-scalable frame in R2.
(b) and (c) show examples of sets in C3 which determine sample regions in R3.
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Other necessary and sufficient conditions for scalability

Theorem

Let Φ ∈ F(M,N) be a unit-norm frame. Then the following hold:

(a) (A necessary condition for scalability ) If Φ is scalable, then

min
‖d‖2=1

max
i
|〈d, ϕi〉| ≥

1√
N
. (14)

(b) (A sufficient condition for scalability ) If

min
‖d‖2=1

max
i
|〈d, ϕi〉| ≥

√
N − 1

N
, (15)

then Φ is scalable.

Remark

For N = 2 the conditions in the last theorem are necessary and sufficient.
But this fails for N > 2 .
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Let Φ ∈ F(M,N) be a unit-norm frame. Then the following hold:

(a) (A necessary condition for scalability ) If Φ is scalable, then

min
‖d‖2=1

max
i
|〈d, ϕi〉| ≥

1√
N
. (14)

(b) (A sufficient condition for scalability ) If

min
‖d‖2=1

max
i
|〈d, ϕi〉| ≥

√
N − 1

N
, (15)

then Φ is scalable.

Remark

For N = 2 the conditions in the last theorem are necessary and sufficient.
But this fails for N > 2 .
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Topology of scalable frames

Proposition

Let M ≥ m ≥ N ≥ 2.

(a) Let Φ = {ϕk}Mk=1F(M,N) \ SC(M,N). Then there exists ε > 0
such that each set of vectors {ψk}Mk=1 ⊂ RN with

‖ϕk − ψk‖ < ε for all k = 1, . . . ,M

is a frame for RN which is not scalable.

(b) SC(M,N,m) is closed in F(M,N).

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Characterization using convex geometry
A geometric characterization
Topology of scalable frames

Topology of scalable frames

Theorem

Assume that 2 ≤ N ≤M < d+ 1 = N(N + 1)/2. Then SC(M,N) does
not contain interior points. In other words, for the boundary of
SC(M,N) we have

∂SC(M,N) = SC(M,N).

Remark

When 2 ≤ N ≤M < d+ 1 = N(N + 1)/2, SC(M,N) is a “hollow set”.
It can be shown that in this regime, the probability of a unit norm frame
whose vectors are drawn randomly from the unit ball according to the
uniform distribution is 0.
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Fritz John’s Theorem

Theorem (F. John (1948))

Let K ⊂ B = B(0, 1) be a convex body with nonempty interior. There
exits a unique ellipsoid Emin of minimal volume containing K.
Moreover, Emin = B if and only if there exist {λk}mk=1 ⊂ (0,∞) and
{uk}mk=1 ⊂ ∂K ∩ SN−1, m ≥ N + 1 such that

(i)
∑m
k=1 λkuk = 0

(ii) x =
∑m
k=1 λk〈x, uk〉uk,∀x ∈ RN

where ∂K is the boundary of K and SN−1 is the unit sphere in RN .
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F. John’s characterization of scalable frames

Setting

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame for RN . We apply F. John’s
theorem to the convex body K = PΦ = conv({±ϕk}Mk=1). Let EΦ denote
the ellipsoid of minimal volume containing PΦ, and VΦ = Vol(EΦ)/ωN
where ωN is the volume of the euclidean unit ball.

Theorem

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Then Φ is scalable if and only if
VΦ = 1. In this case, the ellipsoid EΦ of minimal volume containing
PΦ = conv({±ϕk}Mk=1) is the euclidean unit ball B.

Kasso Okoudjou Preconditioning of finite frames



Review of finite frame theory
Preconditioning of finite frames

Characterization of scalable frames in RN
Measures of scalability

Application: Scaling wavelet frames

Fritz John’s ellipsoid theorem and scalable frames
A quadratic programing approach to scalability and a second measure of scalability
Distance to the set of scalable Frames and a third measure of scalability
Comparing the measure of scalability

F. John’s characterization of scalable frames

Setting

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame for RN . We apply F. John’s
theorem to the convex body K = PΦ = conv({±ϕk}Mk=1). Let EΦ denote
the ellipsoid of minimal volume containing PΦ, and VΦ = Vol(EΦ)/ωN
where ωN is the volume of the euclidean unit ball.

Theorem

Let Φ = {ϕk}Mk=1 ⊂ SN−1 be a frame. Then Φ is scalable if and only if
VΦ = 1. In this case, the ellipsoid EΦ of minimal volume containing
PΦ = conv({±ϕk}Mk=1) is the euclidean unit ball B.
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A first measure of scalability: Volume of the frame’s
John’s ellipsoid

Remark

Let Φ ⊂ SN−1 be a frame. Then VΦ is a “measure of scalability”: the
closer it is to 1 the more scalable is the frame.
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A quadratic programing approach to scalability

Setting

Φ = {ϕi}Mi=1 is scalable ⇐⇒ ∃{ci}Mi=1 ⊂ [0,∞) : ΦCΦT = I,

where C = diag(ci).

CΦ = {ΦCΦT =

M∑
i=1

ciϕiϕ
T
i : ci ≥ 0}

is the (closed) cone generated by {ϕiϕTi }Mi=1.

Φ = {ϕi}Mi=1 is scalable ⇐⇒ I ∈ CΦ.

DΦ := min
C≥0 diagonal

∥∥ΦCΦT − I
∥∥
F
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Comparing DΦ to the frame potential

Proposition

(a) Φ is scalable if and only if DΦ = 0.

(b) If Φ = {ϕk}Mk=1 ⊂ RN is a unit norm frame we have

D2
Φ ≤ N − M2

FP(Φ)
,

where FP(Φ) is the frame potential of Φ.
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A second measure of scalability

Remark

Let Φ ⊂ SN−1 be a frame. Then DΦ is a “measure of scalability”: the
closer it is to 0 the more scalable is the frame.
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Distance to the set of scalable frames

Let Φ ∈ F(M,N) be a unit norm frame and denote

dΦ := inf
Ψ∈SC(M,N)

‖Φ−Ψ‖F .

Proposition

If Φ ∈ Fu(M,N) such that dΦ < 1 then there exists Φ̂ ∈ SC(M,N)
such that ‖Φ− Φ̂‖F = dΦ.
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Comparison of DΦ and VΦ

Theorem

Let Φ = {ϕi}Mi=1 ∈ Fu(M,N), then

N(1−D2
Φ)

N −D2
Φ

≤ V
4/N
Φ ≤ N(N − 1−D2

Φ)

(N − 1)(N −D2
Φ)
≤ 1, (16)

where the leftmost inequality requires DΦ < 1. Consequently, VΦ → 1 is
equivalent to DΦ → 0.
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Examples in R4

Values of VΦ and DΦ for randomly generated frames of M vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 6, 11. The black line indicates
the upper bound in the last theorem, while the red dash line indicates the lower
bound.
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Comparing the measures of scalability

Values of VΦ and DΦ for randomly generated frames of M vectors in R4.
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Figure : Relation between VΦ and DΦ with M = 15, 20. The black line
indicates the upper bound in the last theorem, while the red dash line indicates
the lower bound.
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Comparison of the Measures DΦ and VΦ with dΦ

Theorem

Let Φ ∈ Fu(M,N) and assume that dΦ < 1. Then with

K := min{M, N(N+1)
2 } and ω := DΦ +

√
K we have

DΦ

ω +
√
ω2 −D2

Φ

≤ dΦ ≤
√
KN

(
1− V 2/N

Φ

)
. (17)
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Size of the set of scalable frames

Theorem

Given Φ = {ϕi}Mi=1 ⊂ RN , where each vector ϕi is drawn independently
and uniformly from SN−1, let PM,N denote the probability that Φ is
scalable. Then the following holds:

(i) When M < N(N+1)
2 , PM,N = 0.

(ii) When M ≥ N(N+1)
2 , PM,N > 0 and

CN
(
1−AN−1

α

)M ≥ 1− PM,N ≥
(
1−AN−1

a

)M−N
,

where

α =
1

2
arccos

√
N − 1

N
, a = arccos

1√
N
,

and where CN is the number of caps with angular radius α needed
to cover SN−1. Consequently, limM→∞ PM,N = 1.
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Laplacian pyramid based Laurent polynomial LP2 matrix

Setting

Let T = {z ∈ C : |z| = 1}. Mq,p(z) will denote the set of all q × p
matrices whose entries are Laurent polynomials in z ∈ T with real
coefficients, and Mq(z) :=Mq,1(z) will denote the set of all column
vectors of length q.
Consider a nonzero column vector with Laurent polynomial entries,
denoted by

H(z) := [H0(z), H1(z), . . . ,Hq−1(z)]T ∈Mq(z).

To the (Laurent polynomial valued) vector H(z) we associate the
Laplacian pyramid based Laurent polynomial (LP2) matrix ΦH(z) defined
by

ΦH(z) :=
[
H(z) I− H(z)H∗(z)

]
∈Mq×(q+1)(z),
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Laplacian pyramid based Laurent polynomial LP2 matrix

Setting

Note that

H∗(z) := H(z)
T

= [H0(z), H1(z), . . . ,Hq−1(z)]

= [H0(z−1), H1(z−1), . . . ,Hq−1(z−1)].
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Laplacian pyramid based Laurent polynomial LP2 matrix

Setting

It follows that

ΦH(z)

[
H∗(z)
I

]
= I, ∀z ∈ T.

Consequently, rank ΦH(z) = q for all z ∈ T. Hence, for each z ∈ T the
columns of ΦH(z) form of frame for Cq.
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Paraunitary LP2 matrices

Setting

The LP2 matrix ΦH(z) is said to be paraunitary, if

ΦH(z)Φ
∗
H(z) = I.

In this case, the pair (ΦH(z),ΦH(z)
∗) can be used to construct a a tight

filter bank.
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Paraunitary LP2 matrices

Setting

The existence of a tight filter bank from a paraunitary LP2 matrix ΦH(z)
is equivalent to the existence of a column matrix H(z) such that

H∗(z)H(z) = 1, that is,
∑q−1
k=0 |Hk(z)|2 = 1 for all z ∈ T.

Question

Can a column vector H(z) such that H∗(z)H(z) 6= 1 be modified into H̃(z)
for which H̃∗(z)H̃(z) = 1 leading to a paraunitary LP2 matrix ΦH̃(z).
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Definition

Definition

An LP2 matrix ΦH(z) for which there exists a diagonal matrix M(z) such
that ΦH(z)M(z) is paraunitary, i.e.

[ΦH(z)M(z)][M∗(z)Φ∗H(z)] = I.

is called a scalable LP2 matrix.
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Characterizing LP2 matrix

Theorem

Let ΦH(z) be an LP2 matrix associated with H(z) ∈Mq(z). Then we
have

ΦH(z)diag([2− H∗(z)H(z), 1, . . . , 1])Φ∗H(z) = I.
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Characterizing LP2 matrix

Theorem

Let H(z) = [H0(z), H1(z), . . . ,Hq−1(z)]T ∈Mq(z), and let ΦH(z) be the
associated LP2 matrix. Suppose that B(z) ∈M(q+1)×(q+1)(z) is
diagonal satisfying ΦH(z)B(z)Φ∗H(z) = I. Then
B(z) = diag([2− H∗(z)H(z), 1, . . . , 1]) for z ∈ T \ SH, where the set
SH ⊂ T is defined as

SH := {z ∈ T : H0(z)H1(z) = 0 or 1− |H0(z)|2 − |H1(z)|2 = 0}

if q = 2, and as

SH := {z ∈ T : Hk−1(z)Hi+k−1(z) = 0, for some k = 1, . . . , q − 1, i = 1, . . . , q − k}

if q ≥ 3.
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Filters and wavelet

Setting

Let λ ≥ 2. A filter h : Z→ R is called lowpass if
∑
k∈Z h(k) =

√
λ, and

highpass if
∑
k∈Z h(k) = 0.

The z-transform of a filter h is defined as H(z) :=
∑
k∈Z h(k)z−k. A

Laurent polynomial column vector H(z) ∈Mq(z) is called the (synthesis)
polyphase representation of a filter h if

H(z) = [Hν0(z), Hν1(z), . . . ,Hνq−1
(z)]T ,

where Hν(z) is the z-transform of the filter hν defined as
hν(k) = h(λk + ν), k ∈ Z.
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Polyphase representation

Setting

Let h be a lowpass filter, and let H(z) ∈Mq(z) be its polyphase
representation. Suppose that there exists a Laurent polynomial mH(z)
such that 2− H∗(z)H(z) = |mH(z)|2. Then,

ΦH(z)diag([mH(z), 1, . . . , 1]) =
[
mH(z)H(z) I− H(z)H∗(z)

]
is paraunitary, i.e. ΦH(z) is scalable.
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Fejér-Riesz lemma

Question

The construction of tight wavelet frames hinges on the existence of a
Laurent polynomial mH(z) such that 2− H∗(z)H(z) = |mH(z)|2. This is
possible if and only if 2− H∗(z)H(z) ≥ 0, for all z ∈ T.
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Tight wavelet filter banks

Theorem

Let h be a 1-D lowpass filter with positive accuracy and dilation λ ≥ 2,
and let H(z) be its polyphase representation. Suppose 2− H∗(z)H(z) > 0,
∀z ∈ T. Then there is a polynomial mH(z) such that
[mH(z)H(z), I− H(z)H∗(z)] gives rise to a tight wavelet filter bank whose

lowpass filter h̃ is associated with mH(z)H(z) and has the same accuracy
as h. Furthermore, if the support of h is contained in {0, 1, . . . , s}, then

the support of h̃ is contained in {0, 1, . . . , 2s}.
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Examples

Example

Let h := [1/4− a/2, 1/4, a, 1/4, 1/4− a/2]
Then, the associated z-transform H(z) is,

H(z) =
√

2

(
1

4
− a

2

)(
z−2 + z2

)
+

√
2

4
(z−1 + z) +

√
2a, z ∈ T,

and the components of the polyphase representation
H(z) = [H0(z), H1(z)]T , z ∈ T, are given as

H0(z) =
√

2

(
1

4
− a

2

)(
z−1 + z

)
+
√

2a, H1(z) =

√
2

4
(1 + z).
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Thank You!
http://www2.math.umd.edu/ okoudjou
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