Preconditioning of finite frames

Kasso Okoudjou

Department of Mathematics & Norbert Wiener Center University of Maryland, College Park

Institute for Mathematics and Its Applications 2015 PI Summer Graduate Program College Park July 27–29 , 2015

Outline

- 1 Review of finite frame theory
 - Definition and elementary properties
 - Optimally conditioned frames: FUNTFs
- Preconditioning of finite frames
 - Scalable Frames: Definition and basic examples
 - Basic properties of scalable frames
 - \bullet Characterization of scalable frames in \mathbb{R}^2
- 3 Characterization of scalable frames in \mathbb{R}^N
 - Characterization using convex geometry
 - A geometric characterization
 - Topology of scalable frames
- Measures of scalability
 - Fritz John's ellipsoid theorem and scalable frames
 - A quadratic programing approach to scalability and a second measure of scalability
 - Distance to the set of scalable Frames and a third measure of scalability
 - Comparing the measure of scalability Kasso Okoudion

Preconditioning of finite frames

Definition and elementary properties Optimally conditioned frames: FUNTFs

Definition

Definition

 $\Phi = \{\varphi_k\}_{k=1}^M \subseteq \mathbb{R}^N \text{ is a frame for } \mathbb{R}^N \text{ if } \exists A, B > 0 \text{ such that } \forall x \in \mathbb{R}^N,$

$$A||x||^2 \le \sum_{k=1}^M |\langle x, \varphi_k \rangle|^2 \le B||x||^2.$$

If, in addition, $\|\varphi_k\| = 1$ for each k, we say that Φ is a *unit-norm frame*. The set of frames for \mathbb{R}^N with M elements will be denoted by \mathcal{F} . In addition, we let \mathcal{F}_u the the subset of unit-norm frames.

- 4 同 6 - 4 三 6 - 4 三 6

Definition and elementary properties Optimally conditioned frames: FUNTFs

Analysis and Synthesis with frame

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$.

The analysis operator, is defined by

$$\mathbb{R}^N \ni x \mapsto \Phi^T x = \{ \langle x, \varphi_k \rangle \}_{k=1}^M \in \mathbb{R}^M.$$

The synthesis operator is defined by

$$\mathbb{R}^M \ni c = (c_k)_{k=1}^M \mapsto \Phi c = \sum_{k=1}^M c_k \varphi_k \in \mathbb{R}^N.$$

• The frame operator $S = \Phi \Phi^T$ is given by

$$\mathbb{R}^N \ni x \mapsto Sx = \sum_{k=1}^M \langle x, \varphi_k \rangle \varphi_k \in \mathbb{R}^N.$$

The Gramian (operator) G = Φ^TΦ of the frame is the M × M matrix whose (i, j)th entry is (φ_j, φ_i).

Definition and elementary properties Optimally conditioned frames: FUNTFs

Resolution of the identity with frame

If $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ is a frame,

$$\{\tilde{\varphi}_k\}_{k=1}^M = \{S^{-1}\varphi_k\}_{k=1}^M$$

is the canonical dual frame, and, for each $x \in \mathbb{R}^N$, we have

$$x = SS^{-1}(x) = S^{-1}S(x)$$
$$x = \sum_{k=1}^{M} \langle x, \varphi_k \rangle \tilde{\varphi}_k = \sum_{k=1}^{M} \langle x, \tilde{\varphi}_k \rangle \varphi_k.$$
 (1)

(日) (同) (三) (三)

Definition and elementary properties Optimally conditioned frames: FUNTFs

Tight frames and FUNTFs

A frame Φ is a *tight frame* if we can choose A = B.
If Φ = {φ_k}^M_{k=1} ⊂ ℝ^M is a frame then

$$\{\varphi_k^{\dagger}\}_{k=1}^M = \{S^{-1/2}\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$$

is a tight frame, and for every $x \in \mathbb{R}^N$

$$x = SS^{-1}x = SS^{-1/2}S^{-1/2}x = \sum_{k=1}^{M} \langle x, \varphi_k^{\dagger} \rangle \varphi_k^{\dagger}.$$
 (2)

If Φ is a tight frame of unit-norm vectors, we say that Φ is a *finite* unit-norm tight frame (FUNTF). In this case, the reconstruction formula (1) reduces to

$$\forall x \in \mathbb{R}^N, \quad x = \frac{N}{M} \sum_{k=1}^M \langle x, \varphi_k \rangle \varphi_k. \tag{3}$$

Definition and elementary properties Optimally conditioned frames: FUNTFs

Example of FUNTFs

Example

Let $\omega = e^{2\pi i/M}$

$$\frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1\\ 1 & \omega & \omega^2 & \dots & \omega^{M-1}\\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(M-1)}\\ \vdots & \vdots & \vdots & \dots & \vdots\\ 1 & \omega^{M-1} & \omega^{2(M-1)} & \dots & \omega^{(M-1)^2} \end{bmatrix}$$

Any (normalized) N rows from the $M \times M$ DFT matrix is a tight frame for \mathbb{C}^N .

Every tight frame of M vectors in \mathbb{K}^N is obtained from an orthogonal projection of an ONB in \mathbb{K}^M onto \mathbb{K}^N .

(日) (同) (三) (三)

Review of finite frame theory

 $\begin{array}{c} \mbox{Preconditioning of finite frames}\\ \mbox{Characterization of scalable frames in \mathbb{R}^N}\\ \mbox{Measures of scalability}\\ \mbox{Application: Scaling wavelet frames} \end{array}$

Definition and elementary properties Optimally conditioned frames: FUNTFs

Examples of frames

Figure : The MB-Frame

(日) (同) (三) (三)

э

Definition and elementary properties Optimally conditioned frames: FUNTFs

The frame potential

Theorem (Benedetto and Fickus, 2003)

For each $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$, such that $\|\varphi_k\| = 1$ for each k, we have

$$FP(\Phi) = \sum_{j=1}^{M} \sum_{k=1}^{M} |\langle \varphi_j, \varphi_k \rangle|^2 \ge \frac{M}{N} \max(M, N).$$
(4)

Furthermore,

• If $M \leq N$, the minimum of FP is M and is achieved by orthonormal systems for \mathbb{R}^N with M elements.

• If $M \ge N$, the minimum of FP is $\frac{M^2}{N}$ and is achieved by FUNTFs. FP(Φ) is the frame potential.

- 4 同 2 4 日 2 4 日 2

Definition and elementary properties Optimally conditioned frames: FUNTFs

Proof

Proof.

$$FP(\{\varphi_k\}_{k=1}^M) = M + \sum_{k \neq \ell=1}^M |\langle \varphi_k, \varphi_\ell \rangle|^2 \ge M.$$

 \bullet If $M \leq N$ the minimizers are exactly orthonormal systems and the minimum is M.

• Now assume $M \ge N$ and let $G = \Phi^* \Phi$. Observe that

$$Tr(G^{2}) = \sum_{k=1}^{M} \langle G^{2}e_{k}, e_{k} \rangle = \sum_{k=1}^{M} \langle Ge_{k}, Ge_{k} \rangle = \sum_{k=1}^{M} \|Ge_{k}\|^{2}$$

But

$$||Ge_k||^2 = \sum_{\ell=1}^M |G(\ell, k)|^2 = \sum_{\ell=1}^M |\langle \varphi_\ell, \varphi_k \rangle|^2.$$

Definition and elementary properties Optimally conditioned frames: FUNTFs

Proof

Proof.

$$FP(\{\varphi_k\}_{k=1}^M) = M + \sum_{k \neq \ell=1}^M |\langle \varphi_k, \varphi_\ell \rangle|^2 \ge M.$$

- \bullet If $M \leq N$ the minimizers are exactly orthonormal systems and the minimum is M.
- Now assume $M \ge N$ and let $G = \Phi^* \Phi$. Observe that

$$Tr(G^{2}) = \sum_{k=1}^{M} \langle G^{2}e_{k}, e_{k} \rangle = \sum_{k=1}^{M} \langle Ge_{k}, Ge_{k} \rangle = \sum_{k=1}^{M} \|Ge_{k}\|^{2}.$$

But

$$||Ge_k||^2 = \sum_{\ell=1}^M |G(\ell,k)|^2 = \sum_{\ell=1}^M |\langle \varphi_\ell, \varphi_k \rangle|^2.$$

Definition and elementary properties Optimally conditioned frames: FUNTFs

Proof (continued)

Proof.

Consequently,

$$FP(\{\varphi_k\}_{k=1}^M) = Tr(G^2) = \sum_{k=1}^N \lambda_k^2$$

and, $trace(G) = \sum_{k=1}^{N} \lambda_k = M$. Minimizing $FP(\{\varphi_k\}_{k=1}^{M})$ is equivalent to minimizing

$$\sum_{k=1}^{N} \lambda_k^2 \quad \text{such that} \quad \sum_{k=1}^{N} \lambda_k = M.$$

- 4 同 2 4 日 2 4 日 2

э

Definition and elementary properties Optimally conditioned frames: FUNTFs

Proof (continued)

Proof.

Solution: $\lambda_k = M/N$ for all k. Hence $S = \frac{M}{N}I_N$ where I_N is the identity matrix. The corresponding minimizers $\{\varphi_k\}_{k=1}^M$ are FUNTFs

$$x = \frac{N}{M} \sum_{k=1}^{M} \langle x, \varphi_k \rangle \varphi_k \quad \forall x \in \mathbb{K}^N$$

• • • • • • • • • • • • •

Definition and elementary properties Optimally conditioned frames: FUNTFs

Construction of FUNTFs

Fact

- Numerical schemes such as gradient descent can be used to find minimizers of the frame potential and thus find FUNTFs.
- The spectral tetris method was proposed by Casazza, Fickus, Mixon, Wang, and Zhou (2011) to construct all FUNTFs. Further contributions by Krahmer, Kutyniok, Lemvig, (2012); Lemvig, Miller, Okoudjou (2012).
- Other methods (algebraic geometry) have been proposed by Cahill, Fickus, Mixon, Strawn.

Definition and elementary properties Optimally conditioned frames: FUNTFs

Optimally conditioned frames

Remark

- FUNTFs can be considered "optimally conditioned" frames. In particular the condition number of the frame operator is 1.
- There are many preconditioning methods to improve the condition number of a matrix, e.g., Matrix Scaling.
- A matrix A is (row/column) scalable if there exit diagonal matrices D₁, D₂ with positive diagonal entries such that D₁A, AD₂, or D₁AD₂ have constant row/column sum.

- 4 同 6 - 4 三 6 - 4 三 6

Application: Sca Main guestion Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Question

Given a (non-tight) frame $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ can one transform Φ into a tight frame? If yes can this be done algorithmically and can the class of all frames that allow such transformations be described?

Solution

• If Φ denotes again the $N \times M$ synthesis matrix, a solution to the above problem is the associated canonical tight frame

$$\{S^{-1/2}\varphi_k\}_{k=1}^M.$$

Involves the inverse frame operator.

What "transformations" are allowed?

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Goals of this section

Remark

- I How to transform a (non) tight frame into a tight one?
- What "transformations" are allowed?
- Give theoretical guarantees and algorithms.
- For a given "transformation", what happens if a frame cannot be transformed exactly?

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Choosing a transformation

Question

Given a (non-tight) frame $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ can one find nonnegative numbers $\{c_k\}_{k=1}^M \subset [0,\infty)$ such that $\widetilde{\Phi} = \{c_k\varphi_k\}_{k=1}^M$ becomes a tight frame?

Remark

In matrix notation, one seeks a diagonal $(M \times M)$ matrix C with nonnegative entries such that ΦC is a tight frame. More generally, one can ask when there exist (structured) matrices Dsuch that ΦD is a tight frame.

・ロト ・同ト ・ヨト ・ヨト

Definition

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Definition

A frame $\Phi = \{\varphi_k\}_{k=1}^M$ in \mathbb{R}^N is *scalable*, if $\exists \{c_k\}_{k=1}^M \subset [0, \infty)$ such that $\{c_k\varphi_k\}_{k=1}^M$ is a tight frame for \mathbb{R}^N . The set of scalable frames is denoted by $\mathcal{SC}(M, N)$. In addition, if $\{c_k\}_{k=1}^M \subset (0, \infty)$, the frame is called *strictly scalable* and the set of strictly scalable frames is denoted by $\mathcal{SC}_+(M, N)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

A more general definition

Definition

Given, $N \leq m \leq M$, a frame $\Phi = \{\varphi_k\}_{k=1}^M$ is said to be *m*-scalable, respectively, strictly *m*-scalable, if $\exists \Phi_I = \{\varphi_k\}_{k \in I}$ with $I \subseteq \{1, 2, \ldots, M\}$, #I = m, such that $\Phi_I = \{\varphi_k\}_{k \in I}$ is scalable, respectively, strictly scalable. We denote the set of *m*-scalable frames, respectively, strictly *m*-scalable frames in $\mathcal{F}(M, N)$ by $\mathcal{SC}(M, N, m)$, respectively, $\mathcal{SC}_+(M, N, m)$.

< 回 > < 三 > < 三 >

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Some basic examples

Example

- When M = N, a frame $\Phi = \{\varphi_k\}_{k=1}^N \subset \mathbb{R}^N$ is scalable if and only if Φ is an orthogonal set.
- **②** When M ≥ N, if Φ contains an orthogonal basis, then it is clearly N-scalable.
- Thus, given M ≥ N, the set SC(M, N, N) consists exactly of frames that contains an orthogonal basis for ℝ^N.

- 4 同 6 - 4 三 6 - 4 三 6

Useful remarks

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Remark

We note that a frame $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ with $\varphi_k \neq 0$ for each $k = 1, \dots, M$ is scalable if and only if $\Phi' = \{\frac{\varphi_k}{\|\varphi_k\|}\}_{k=1}^M$ is scalable.

(日) (同) (三) (三)

э

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Useful remarks

Remark

Given a frame $\Phi \subset \mathbb{R}^N$, assume that $\Phi = \Phi_1 \cup \Phi_2$ where

$$\Phi_1 = \{\varphi_k^{(1)} \in \Phi : \varphi_k^{(1)}(N) \ge 0\}$$

and

$$\Phi_2 = \{\varphi_k^{(2)} \in \Phi : \varphi_k^{(2)}(N) < 0\}.$$

Let

$$\Phi' = \Phi_1 \cup (-\Phi_2).$$

 Φ is scalable if and only if Φ' is scalable. We shall assume that all the frame vectors are in the upper-half space, i.e., $\Phi \subset \mathbb{R}^{N-1} \times \mathbb{R}_{+,0}$ where $\mathbb{R}_{+,0} = [0, \infty)$.

Elementary properties of scalable frames

Proposition

Let $M \ge N$, and $m \ge 1$ be integers.

(i) If $\Phi \in \mathcal{F}$ is *m*-scalable then $m \geq N$.

(ii) For any integers m,m' such that $N \leq m \leq m' \leq M$ we have that

$$\mathcal{SC}(M, N, m) \subset \mathcal{SC}(M, N, m'),$$

and

$$\mathcal{SC}(M,N) = \bigcup_{m=N}^{M} \mathcal{SC}(M,N,m).$$

- (iii) $\Phi \in SC(M, N)$ if and only if $T(\Phi) \in SC(M, N)$ for one (and hence for all) orthogonal transformation(s) T on \mathbb{R}^N .
- (iv) Let $\Phi = \{\varphi_k\}_{k=1}^{N+1} \in \mathcal{F}(N+1,N) \setminus \{0\}$ with $\varphi_k \neq \pm \varphi_\ell$ for $k \neq \ell$. If $\Phi \in \mathcal{SC}_+(N+1,N)$, then $\Phi \notin \mathcal{SC}_+(N+1,N+1)$.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frames: When and How?

Question

- When is a frame $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ scalable?
- **2** If $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ is scalable, how to find the coefficients?
- \bullet If Φ is not scalable, how close to scalable is it?
- What are the topological properties of $\mathcal{SC}(M, N)$?

- 4 同 6 - 4 三 6 - 4 三 6

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

A reformulation

Fact

 Φ is (m-) scalable $\iff \exists \{x_k\}_{k \in I} \subset [0, \infty)$ with $\#I = m \ge N$ such that $\widetilde{\Phi} = \Phi X$ satisfies

$$\widetilde{\Phi}\widetilde{\Phi}^T = \Phi X^2 \Phi^T = \widetilde{A}I_N = \frac{\sum_{k \in I} x_k^2 \|\varphi_k\|^2}{N} I_N$$
(5)

where $X = \text{diag}(x_k)$. (5) is equivalent to solving

$$\Phi Y \Phi^T = I_N \tag{6}$$

(日) (同) (三) (三)

-

for $Y = \frac{1}{\tilde{A}}X^2$.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frames in \mathbb{R}^2

Question

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^2$ be a frame contained in the first quadrant:

$$\Phi = \begin{pmatrix} 1 & a_1 & a_2 & \dots & a_{M-1} \\ 0 & b_1 & b_2 & \dots & b_{M-1} \end{pmatrix}$$

Is Φ scalable?

Solution

 Φ is scalable $\iff \exists : x = \{x_k\}_{k=1}^M \subset [0,\infty)$ with $||x||_0 \ge 2$: the rows of the following matrix are orthogonal

 $\begin{pmatrix} x_1 & x_2a_1 & x_3a_2 & \dots & x_Ma_{M-1} \ 0 & x_2b_1 & x_3b_2 & \dots & x_Mb_{M-1} \end{pmatrix}$

This happens when $\sum_{k=1}^{M-2} x_{k+1}^2 a_k b_k = 0$ has a nontrivial solution. Which is not the case, so Φ is not scalable

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frames in \mathbb{R}^2

Question

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^2$ be a frame contained in the first quadrant:

$$\Phi = \begin{pmatrix} 1 & a_1 & a_2 & \dots & a_{M-1} \\ 0 & b_1 & b_2 & \dots & b_{M-1} \end{pmatrix}$$

Is Φ scalable?

Solution

 Φ is scalable $\iff \exists : x = \{x_k\}_{k=1}^M \subset [0,\infty)$ with $||x||_0 \ge 2$: the rows of the following matrix are orthogonal

$$\begin{pmatrix} x_1 & x_2a_1 & x_3a_2 & \dots & x_Ma_{M-1} \\ 0 & x_2b_1 & x_3b_2 & \dots & x_Mb_{M-1} \end{pmatrix}$$

This happens when $\sum_{k=1}^{M-2} x_{k+1}^2 a_k b_k = 0$ has a nontrivial solution. Which is not the case, so Φ is not scalable

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

/ \

<ロ> <同> <同> < 回> < 回>

э

Scalable frames in \mathbb{R}^2

Question

Let
$$\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^2$$
 be a frame with, $\varphi_1 = e_1$, $\varphi_2 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$ with,
 $a_1, b_1 > 0$, $\varphi_3 = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$, with $a_2 < 0 < b_2$
$$\Phi = \begin{pmatrix} 1 & a_1 & a_2 & \dots & a_{M-1} \\ 0 & b_1 & b_2 & \dots & b_{M-1} \end{pmatrix}.$$

Is Φ scalable?

Solution

There exist $x_2, x_3 > 0$ such that $\{\varphi_1, x_2\varphi_2, x_3\varphi_3\}$ forms a tight frames, since $x_1^2a_1b_1 + x_2^2a_2b_2 = 0$ has nontrivial nonnegative solutions. Φ is scalable.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

1

< 同 → < 三

Scalable frames in \mathbb{R}^2

Question

Let
$$\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^2$$
 be a frame with, $\varphi_1 = e_1, \varphi_2 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$ with,
 $a_1, b_1 > 0, \varphi_3 = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$, with $a_2 < 0 < b_2$
$$\Phi = \begin{pmatrix} 1 & a_1 & a_2 & \dots & a_{M-1} \\ 0 & b_1 & b_2 & \dots & b_{M-1} \end{pmatrix}.$$

Is Φ scalable?

Solution

There exist $x_2, x_3 > 0$ such that $\{\varphi_1, x_2\varphi_2, x_3\varphi_3\}$ forms a tight frames, since $x_1^2a_1b_1 + x_2^2a_2b_2 = 0$ has nontrivial nonnegative solutions. Φ is scalable.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frame in $\mathbb{R}^{2^{n}}$

Question

More generally, when is $\Phi = \{\varphi_k\}_{k=1}^M \subset S^1$ is a scalable frame in \mathbb{R}^2 ?

Solution

Assume that
$$\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R} \times \mathbb{R}_{+,0}$$
, $\|\varphi_k\| = 1$, and $\varphi_\ell \neq \varphi_k$ for $\ell \neq k$. Let $0 = \theta_1 < \theta_2 < \theta_3 < \ldots < \theta_M < \pi$, then

$$\varphi_k = \begin{pmatrix} \cos \theta_k \\ \sin \theta_k \end{pmatrix} \in S^1.$$

Let $Y = (y_k)_{k=1}^M \subset [0,\infty)$, then (6) becomes

$$\begin{pmatrix} \sum_{k=1}^{M} y_k \cos^2 \theta_k & \sum_{k=1}^{M} y_k \sin \theta_k \cos \theta_k \\ \sum_{k=1}^{M} y_k \sin \theta_k \cos \theta_k & \sum_{k=1}^{M} y_k \sin^2 \theta_k \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (7)

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frame in \mathbb{R}^2

Solution

(7) is equivalent to

$$\sum_{k=1}^{M} y_k \sin^2 \theta_k = 1$$

$$\sum_{k=1}^{M} y_k \cos 2\theta_k = 0$$

$$\sum_{k=1}^{M} y_k \sin 2\theta_k = 0.$$

Consequently, for Φ to be scalable we must find a nonnegative vector $Y = (y_k)_{k=1}^M$ in the kernel of the matrix whose k^{th} column is $\begin{pmatrix} \cos 2\theta_k \\ \sin 2\theta_k \end{pmatrix}$

(日) (同) (三) (

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frame in \mathbb{R}^2

Solution

(7) is equivalent to

$$\sum_{k=1}^{M} y_k \sin^2 \theta_k = 1$$

$$\sum_{k=1}^{M} y_k \cos 2\theta_k = 0$$

$$\sum_{k=1}^{M} y_k \sin 2\theta_k = 0.$$

Consequently, for Φ to be scalable we must find a nonnegative vector $Y = (y_k)_{k=1}^M$ in the kernel of the matrix whose k^{th} column is $\begin{pmatrix} \cos 2\theta_k \\ \sin 2\theta_k \end{pmatrix}$.

(日) (同) (三) (三)

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Scalable frame in \mathbb{R}^2

Solution

The problem is equivalent to finding non-trivial nonnegative vectors in the nullspace of

$$\begin{pmatrix} 1 & \cos 2\theta_2 & \dots & \cos 2\theta_M \\ 0 & \sin 2\theta_2 & \dots & \sin 2\theta_M \end{pmatrix}.$$
 (8)

< A >

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

We first consider the case M = 3. In this case, we have $0 = \theta_1 < \theta_2 < \theta_3 < \pi$, and the (8) becomes

$$\begin{pmatrix} 1 & \cos 2\theta_2 & \cos 2\theta_3 \\ 0 & \sin 2\theta_2 & \sin 2\theta_3 \end{pmatrix}.$$
 (9)

-

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

If $\theta_{k_0} = \pi/2$ for $k_0 \in \{2,3\}$, then the corresponding frame contains an ONB and, hence is scalable.

For example, when $k_0 = 2$, then $0 = \theta_1 < \theta_2 = \pi/2 < \theta_3 < \pi$. In this case, the fame is 2- scalable but not 3- scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.
Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

If $\theta_{k_0} = \pi/2$ for $k_0 \in \{2, 3\}$, then the corresponding frame contains an ONB and, hence is scalable. For example, when $k_0 = 2$, then $0 = \theta_1 < \theta_2 = \pi/2 < \theta_3 < \pi$. In this

case, the fame is 2- scalable but not 3- scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

Suppose $\theta_k \neq \pi/2$ for k = 2, 3. If $\theta_3 < \pi/2$, then the frame cannot be scalable. Indeed, $u = (z_1, z_2, z_3)$ belongs to the kernel of (9) if and only if

$$\begin{cases} z_1 = \frac{\sin 2(\theta_3 - \theta_2)}{\sin 2\theta_2} z_3, \\ z_2 = -\frac{\sin 2\theta_3}{\sin 2\theta_2} z_3, \end{cases}$$
(10)

where $z_3 \in \mathbb{R}$. The choice of the angles implies that $z_2 z_3 < 0$, unless $z_3 = 0$.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

This is illustrated by

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

Suppose that $0 = \theta_1 < \theta_2 < \pi/2 < \theta_3 < \pi$. From (10) $z_2 > 0$ for all $z_3 > 0$ and $z_1 > 0$ for all $z_3 > 0$ if and only if $\theta_3 - \theta_2 < \pi/2$. Consequently, when $0 = \theta_1 < \theta_2 < \pi/2 < \theta_3 < \pi$ the frame $\Phi \in \mathcal{SC}_+(3,2,3)$ if and only if $0 < \theta_3 - \theta_2 < \pi/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(3,2)$

Example

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

(日) (同) (三) (三)

э

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(4,2)$

Example

When ${\cal M}=4$ we are lead to seek nonnegative non-trivial vectors in the null space of

$$\begin{pmatrix} 1 & \cos 2\theta_2 & \cos 2\theta_3 & \cos 2\theta_4 \\ 0 & \sin 2\theta_2 & \sin 2\theta_3 & \sin 2\theta_4 \end{pmatrix}$$

< A >

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(4,2)$

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

< 🗇 🕨

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(4,2)$

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

< 🗇 🕨

Scalable Frames: Definition and basic examples Basic properties of scalable frames Characterization of scalable frames in \mathbb{R}^2

Describing $\mathcal{SC}(4,2)$

Figure : Blue=original frame; Red=the frames obtained by scaling; Green=associated canonical tight frame.

< 17 ▶

Characterization using convex geometry A geometric characterization Topology of scalable frames

A more general reformulation

Setting

Recall that Φ is (m-) scalable $\iff \exists \{x_k\}_{k \in I} \subset [0, \infty)$ such that $\widetilde{\Phi} = \Phi X$ satisfies $\widetilde{\Phi} \widetilde{\bullet} \widetilde{T} = \Phi X^2 \bullet T = I$

$$\widetilde{\Phi}\widetilde{\Phi}^T = \Phi X^2 \Phi^T = I_N$$

where $X = \text{diag}(x_k)$. This is equivalent to

$$\begin{cases} \sum_{k=1}^{M} \varphi_k(j)^2 y_k = 1 & \text{for } j = 1, \dots, N, \\ \sum_{k=1}^{M} \varphi_k(\ell) \varphi_k(j) y_k = 0 & \text{for } \ell, j = 1, \dots, N, \, k > \ell. \end{cases}$$
(11)

< 17 ▶

4 E b

Characterization using convex geometry A geometric characterization Topology of scalable frames

A more general reformulation

Setting

(11) leads to

$$\begin{cases} \sum_{k=1}^{M} \left(\varphi_k(1)^2 - \varphi_k(j)^2\right) y_k = 0 & \text{for } j = 2, \dots, N, \\ \sum_{k=1}^{M} \varphi_k(\ell) \varphi_k(j) y_k = 0 & \text{for } \ell, j = 1, \dots, N, \ k > \ell. \end{cases}$$
(12)

Image: A math a math

э

Characterization using convex geometry A geometric characterization Topology of scalable frames

When is a frame scalable: A generic solution

Question

When is
$$\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$$
 scalable?

Proposition

A frame Φ for \mathbb{R}^N is *m*-scalable, respectively, strictly *m*-scalable, if and only if there exists a nonnegative $u \in \ker F(\Phi) \setminus \{0\}$ with $||u||_0 \leq m$, respectively, $||u||_0 = m$, and where $F(\Phi)$ is the $d \times M$ matrix whose k^{th} column is $F(\varphi_k)$.

Characterization using convex geometry A geometric characterization Topology of scalable frames

A more general reformulation

Setting

Let $F : \mathbb{R}^N \to \mathbb{R}^d$, d := (N-1)(N+2)/2, defined by

$$F(x) = \begin{pmatrix} F_0(x) \\ F_1(x) \\ \vdots \\ F_{N-1}(x) \end{pmatrix}$$

$$F_0(x) = \begin{pmatrix} x_1^2 - x_2^2 \\ x_1^2 - x_3^2 \\ \vdots \\ x_1^2 - x_N^2 \end{pmatrix}, \dots, F_k(x) = \begin{pmatrix} x_k x_{k+1} \\ x_k x_{k+2} \\ \vdots \\ x_k x_N \end{pmatrix}$$

and $F_0(x) \in \mathbb{R}^{N-1}$, $F_k(x) \in \mathbb{R}^{N-k}$, k = 1, 2, ..., N-1.

- 4 回 2 - 4 三 2 - 4 三 2

Characterization using convex geometry A geometric characterization Topology of scalable frames

The map F when N = 2

Example

When N = 2 the map F reduces to

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x^2 - y^2\\xy\end{pmatrix}.$$

Note that in the examples given above we consider

$$\widetilde{F}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x^2 - y^2\\2xy\end{pmatrix}$$

< □ > < 同 >

Characterization using convex geometry A geometric characterization Topology of scalable frames

Some convex geometry notions

Fact

- Let $X = \{x_i\}_{k=1}^M \subset \mathbb{R}^N$.
 - The polytope generated by X is the convex hull of X, denoted by P_X (or co(X)).
 - **2** The affine hull generated by X is denoted by aff(X).
 - The relative interior of the polytope co(X) denoted by ri co(X), is the interior of co(X) in the topology induced by aff(X).
 - It is true that $ri \operatorname{co}(X) \neq \emptyset$ whenever $\#X \ge 2$, and

$$ri\operatorname{co}(X) = \left\{ \sum_{k=1}^{M} \alpha_k x_k : \alpha_k > 0, \sum_{k=1}^{M} \alpha_k = 1 \right\},\$$

- 4 同 6 - 4 三 6 - 4 三 6

Characterization using convex geometry A geometric characterization Topology of scalable frames

A key tool: The Farkas Lemma

Lemma (Farkas's lemma)

For every real $N \times M$ -matrix A exactly one of the following cases occurs:

- (i) The system of linear equations Ax = 0 has a nontrivial nonnegative solution x ∈ ℝ^M, i.e., all components of x are nonnegative and at least one of them is strictly positive.
- (ii) There exists $y \in \mathbb{R}^N$ such that $y^T A$ is a vector with all entries strictly positive.

・ 同 ト ・ ヨ ト ・ ヨ ト

Characterization using convex geometry A geometric characterization Topology of scalable frames

Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F. Both of these examples result in non scalable frames.

< 17 ▶

Characterization using convex geometry A geometric characterization Topology of scalable frames

Farkas lemma with N = 2, M = 4

Figure : Bleu=original frame; Green=image by the map F. Both of these examples result in scalable frames.

< 🗇 🕨 < 🖻 🕨

Characterization using convex geometry A geometric characterization Topology of scalable frames

Proof of Farkas Lemma

Proof.

Let $S = \{a_k\}_{k=1}^M \subset \mathbb{R}^N$ where a_k is the k^{th} column vector of A. The two alternatives correspond to $0 \in \operatorname{co}(S)$ and $0 \notin \operatorname{co}(S)$.

4 A > 4 > 4 4

Characterization using convex geometry A geometric characterization Topology of scalable frames

Scalable frames and Farkas's lemma

Theorem

Let $M \ge N \ge 2$, and let m be such that $N \le m \le M$. Assume that $\Phi = \{\varphi_k\}_{k=1}^M \in \mathcal{F}^*(M, N)$ is such that $\varphi_k \neq \pm \varphi_\ell$ when $k \neq \ell$. Then the following statements are equivalent:

- (i) Φ is *m*-scalable, respectively, strictly *m*-scalable,
- (ii) There exists a subset $I \subset \{1, 2, ..., M\}$ with #I = m such that $0 \in co(F(\Phi_I))$, respectively, $0 \in ri co(F(\Phi_I))$.
- (iii) There exists a subset $I \subset \{1, 2, ..., M\}$ with #I = m for which there is no $h \in \mathbb{R}^d$ with $\langle F(\varphi_k), h \rangle > 0$ for all $k \in I$, respectively, with $\langle F(\varphi_k), h \rangle \ge 0$ for all $k \in I$, with at least one of the inequalities being strict.

3

Characterization using convex geometry A geometric characterization Topology of scalable frames

Sketch of the proof

Proof.

(i) \iff (ii). This equivalence follows directly if we can show the following equivalences for $\Psi \subset \Phi$:

 $\begin{array}{ll} 0\in \mathrm{co}(F(\Psi)) & \Longleftrightarrow & \ker F(\Psi)\setminus\{0\} \text{ contains a} \geq 0 \text{ vector and} \\ 0\in ri\,\mathrm{co}(F(\Psi)) & \Longleftrightarrow & \ker F(\Psi) \text{ contains a} > 0 \text{ vector.} \end{array}$

 $\begin{array}{l} \Rightarrow: \text{ easy.} \\ \Leftarrow \text{ Case 1: Let } I \subset [M] \text{ be such that } \Psi = \Phi_I, \ I = \{i_1, \ldots, i_m\}, \text{ and let } \\ u = (c_1, \ldots, c_m)^T \in \ker F(\Psi) \text{ be a non-zero nonnegative vector. Set } \\ A := \sum_{k=1}^m c_k > 0 \text{ and with } \lambda_k := c_k/A, \text{ we see that } 0 \in \operatorname{co}(F(\Psi)). \\ \text{ Case 2: each } c_k > 0 \text{ leading to } \lambda_k > 0. \\ (\text{ii}) \Longleftrightarrow (\text{iii}) \text{ In the first case this follows from Farkas's lemma.} \end{array}$

3

Characterization using convex geometry A geometric characterization Topology of scalable frames

A useful property of F

For $x=(x_k)_{k=1}^N\in\mathbb{R}^N$ and $h=(h_k)_{k=1}^d\in\mathbb{R}^d$, we have that

$$\langle F(x),h\rangle = \sum_{\ell=2}^{N} h_{\ell-1}(x_1^2 - x_\ell^2) + \sum_{k=1}^{N-1} \sum_{\ell=k+1}^{N} h_{k(N-1-(k-1)/2)+\ell-1} x_k x_\ell.$$
(13)

Consequently, fixing $h \in \mathbb{R}^d$, $\langle F(x), h \rangle$ is a homogeneous polynomial of degree 2 in x_1, x_2, \ldots, x_N . The set of all polynomials of this form can be identified with the subspace of real symmetric $N \times N$ matrices whose trace is 0.

Characterization using convex geometry A geometric characterization Topology of scalable frames

A useful property of F

Remark

 $\langle F(x),h\rangle = \langle Q_h x,x\rangle = 0$ defines a quadratic surface in \mathbb{R}^N , and condition (iii) in the last Theorem stipulates that for Φ to be scalable, one cannot find such a quadratic surface such that the frame vectors (with index in I) all lie on (only) "one side" of this surface.

Characterization using convex geometry A geometric characterization Topology of scalable frames

A geometric characterization of scalable frames

Theorem

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N \setminus \{0\}$ be a frame for \mathbb{R}^N . Then the following statements are equivalent.

- (i) Φ is not scalable.
- (ii) There exists a symmetric $M \times M$ matrix Y with trace(Y) < 0 such that $\langle \varphi_j, Y \varphi_j \rangle \ge 0$ for all $j = 1, \ldots, M$.
- (iii) There exists a symmetric $M \times M$ matrix Y with trace(Y) = 0 such that $\langle \varphi_j, Y \varphi_j \rangle > 0$ for all $j = 1, \dots, M$.

- 4 回 ト - 4 回 ト

Characterization using convex geometry A geometric characterization Topology of scalable frames

Scalable frames in \mathbb{R}^2 and \mathbb{R}^3

Figures show sample regions of vectors of a non-scalable frame in \mathbb{R}^2 and \mathbb{R}^3 .

Figure : (a) shows a sample region of vectors of a non-scalable frame in \mathbb{R}^2 . (b) and (c) show examples of sets in \mathcal{C}_3 which determine sample regions in \mathbb{R}^3 .

Other necessary and sufficient conditions for scalability

Theorem

Let $\Phi \in \mathcal{F}(M, N)$ be a unit-norm frame. Then the following hold: (a) (A necessary condition for scalability) If Φ is scalable, then

$$\min_{\|d\|_{2}=1} \max_{i} |\langle d, \varphi_{i} \rangle| \ge \frac{1}{\sqrt{N}}.$$
(14)

(b) (A sufficient condition for scalability) If

$$\min_{\|d\|_2=1} \max_{i} |\langle d, \varphi_i \rangle| \ge \sqrt{\frac{N-1}{N}},\tag{15}$$

then Φ is scalable.

Remark

For ${\cal N}=2$ the conditions in the last theorem are necessary and sufficient. But this fails for ${\cal N}>2$.

Other necessary and sufficient conditions for scalability

Theorem

Let $\Phi \in \mathcal{F}(M, N)$ be a unit-norm frame. Then the following hold: (a) (A necessary condition for scalability) If Φ is scalable, then

$$\min_{\|d\|_{2}=1} \max_{i} |\langle d, \varphi_i \rangle| \ge \frac{1}{\sqrt{N}}.$$
(14)

(b) (A sufficient condition for scalability) If

$$\min_{\|d\|_2=1} \max_{i} |\langle d, \varphi_i \rangle| \ge \sqrt{\frac{N-1}{N}},\tag{15}$$

then Φ is scalable.

Remark

For ${\cal N}=2$ the conditions in the last theorem are necessary and sufficient. But this fails for ${\cal N}>2$.

Characterization using convex geometry A geometric characterization Topology of scalable frames

Topology of scalable frames

Proposition

Let $M \ge m \ge N \ge 2$.

(a) Let $\Phi = \{\varphi_k\}_{k=1}^M \mathcal{F}(M, N) \setminus \mathcal{SC}(M, N)$. Then there exists $\epsilon > 0$ such that each set of vectors $\{\psi_k\}_{k=1}^M \subset \mathbb{R}^N$ with

$$\|\varphi_k - \psi_k\| < \epsilon$$
 for all $k = 1, \dots, M$

is a frame for \mathbb{R}^N which is not scalable.

(b) SC(M, N, m) is closed in F(M, N).

< 回 > < 三 > < 三 >

Characterization using convex geometry A geometric characterization Topology of scalable frames

Topology of scalable frames

Theorem

Assume that $2 \le N \le M < d + 1 = N(N + 1)/2$. Then SC(M, N) does not contain interior points. In other words, for the boundary of SC(M, N) we have

$$\partial \mathcal{SC}(M,N) = \mathcal{SC}(M,N).$$

Remark

When $2 \le N \le M < d+1 = N(N+1)/2$, $\mathcal{SC}(M,N)$ is a "hollow set". It can be shown that in this regime, the probability of a unit norm frame whose vectors are drawn randomly from the unit ball according to the uniform distribution is 0.

- < 同 > < 三 > < 三 >

Fritz John's Theorem

Fritz John's ellipsoid theorem and scalable frames

A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

- 4 回 ト - 4 回 ト

Theorem (F. John (1948))

Let K
ightarrow B = B(0,1) be a convex body with nonempty interior. There exits a unique ellipsoid \mathcal{E}_{min} of minimal volume containing K. Moreover, $\mathcal{E}_{min} = B$ if and only if there exist $\{\lambda_k\}_{k=1}^m \subset (0,\infty)$ and $\{u_k\}_{k=1}^m \subset \partial K \cap S^{N-1}$, $m \ge N+1$ such that (i) $\sum_{k=1}^m \lambda_k u_k = 0$ (ii) $x = \sum_{k=1}^m \lambda_k \langle x, u_k \rangle u_k, \forall x \in \mathbb{R}^N$ where ∂K is the boundary of K and S^{N-1} is the unit sphere in \mathbb{R}^N .

Fritz John's ellipsoid theorem and scalable frames

A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

イロト イポト イヨト イヨト

F. John's characterization of scalable frames

Setting

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset S^{N-1}$ be a frame for \mathbb{R}^N . We apply F. John's theorem to the convex body $K = P_{\Phi} = conv(\{\pm \varphi_k\}_{k=1}^M)$. Let \mathcal{E}_{Φ} denote the ellipsoid of minimal volume containing P_{Φ} , and $V_{\Phi} = Vol(\mathcal{E}_{\Phi})/\omega_N$ where ω_N is the volume of the euclidean unit ball.

Theorem

Let $\Phi = {\varphi_k}_{k=1}^M \subset S^{N-1}$ be a frame. Then Φ is scalable if and only if $V_{\Phi} = 1$. In this case, the ellipsoid \mathcal{E}_{Φ} of minimal volume containing $P_{\Phi} = conv({\{\pm\varphi_k\}_{k=1}^M})$ is the euclidean unit ball B.

Fritz John's ellipsoid theorem and scalable frames

A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

F. John's characterization of scalable frames

Setting

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset S^{N-1}$ be a frame for \mathbb{R}^N . We apply F. John's theorem to the convex body $K = P_{\Phi} = conv(\{\pm \varphi_k\}_{k=1}^M)$. Let \mathcal{E}_{Φ} denote the ellipsoid of minimal volume containing P_{Φ} , and $V_{\Phi} = Vol(\mathcal{E}_{\Phi})/\omega_N$ where ω_N is the volume of the euclidean unit ball.

Theorem

Let $\Phi = \{\varphi_k\}_{k=1}^M \subset S^{N-1}$ be a frame. Then Φ is scalable if and only if $V_{\Phi} = 1$. In this case, the ellipsoid \mathcal{E}_{Φ} of minimal volume containing $P_{\Phi} = conv(\{\pm \varphi_k\}_{k=1}^M)$ is the euclidean unit ball B.

Fritz John's ellipsoid theorem and scalable frames

A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

A first measure of scalability: Volume of the frame's John's ellipsoid

Remark

Let $\Phi \subset S^{N-1}$ be a frame. Then V_{Φ} is a "measure of scalability": the closer it is to 1 the more scalable is the frame.

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

A quadratic programing approach to scalability

Setting

w

$$\Phi = \{\varphi_i\}_{i=1}^M \text{ is scalable } \iff \exists \{c_i\}_{i=1}^M \subset [0,\infty) : \Phi C \Phi^T = I,$$

where $C = \operatorname{diag}(c_i).$

$$C_{\Phi} = \{ \Phi C \Phi^T = \sum_{i=1}^M c_i \varphi_i \varphi_i^T : c_i \ge 0 \}$$

is the (closed) cone generated by $\{\varphi_i \varphi_i^T\}_{i=1}^M$.

$$\Phi = \{\varphi_i\}_{i=1}^M \text{ is scalable } \iff I \in C_{\Phi}.$$
$$D_{\Phi} := \min_{C \ge 0 \text{ diagonal}} \left\| \Phi C \Phi^T - I \right\|_F$$

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

Comparing D_{Φ} to the frame potential

Proposition

- (a) Φ is scalable if and only if $D_{\Phi} = 0$.
- (b) If $\Phi = \{\varphi_k\}_{k=1}^M \subset \mathbb{R}^N$ is a unit norm frame we have

$$D_{\Phi}^2 \leq N - \frac{M^2}{\mathrm{FP}(\Phi)},$$

where $FP(\Phi)$ is the frame potential of Φ .

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

イロト イポト イヨト イヨト

A second measure of scalability

Remark

Let $\Phi \subset S^{N-1}$ be a frame. Then D_{Φ} is a "measure of scalability": the closer it is to 0 the more scalable is the frame.
Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

(日) (同) (三) (三)

Distance to the set of scalable frames

Let $\Phi \in \mathcal{F}(M,N)$ be a unit norm frame and denote

$$d_{\Phi} := \inf_{\Psi \in \mathcal{SC}(M,N)} \|\Phi - \Psi\|_F.$$

Proposition

If $\Phi \in \mathcal{F}_u(M, N)$ such that $d_{\Phi} < 1$ then there exists $\hat{\Phi} \in \mathcal{SC}(M, N)$ such that $\|\Phi - \hat{\Phi}\|_F = d_{\Phi}$.

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

(日) (同) (三) (三)

Comparison of D_{Φ} and V_{Φ}

Theorem

Let
$$\Phi = \{\varphi_i\}_{i=1}^M \in \mathcal{F}_u(M, N)$$
, then

$$\frac{N(1-D_{\Phi}^2)}{N-D_{\Phi}^2} \le V_{\Phi}^{4/N} \le \frac{N(N-1-D_{\Phi}^2)}{(N-1)(N-D_{\Phi}^2)} \le 1,$$
 (16)

where the leftmost inequality requires $D_{\Phi} < 1$. Consequently, $V_{\Phi} \rightarrow 1$ is equivalent to $D_{\Phi} \rightarrow 0$.

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

- A - D

Examples in \mathbb{R}^4

Values of V_{Φ} and D_{Φ} for randomly generated frames of M vectors in \mathbb{R}^4 .

Figure : Relation between V_{Φ} and D_{Φ} with M = 6, 11. The black line indicates the upper bound in the last theorem, while the red dash line indicates the lower bound.

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabili Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

Comparing the measures of scalability

Values of V_{Φ} and D_{Φ} for randomly generated frames of M vectors in \mathbb{R}^4 .

Figure : Relation between V_{Φ} and D_{Φ} with M = 15, 20. The black line indicates the upper bound in the last theorem, while the red dash line indicates the lower bound.

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

Comparison of the Measures D_{Φ} and V_{Φ} with d_{Φ}

Theorem

Let
$$\Phi \in \mathcal{F}_u(M, N)$$
 and assume that $d_{\Phi} < 1$. Then with
 $K := \min\{M, \frac{N(N+1)}{2}\}$ and $\omega := D_{\Phi} + \sqrt{K}$ we have

$$\frac{D_{\Phi}}{\omega + \sqrt{\omega^2 - D_{\Phi}^2}} \le d_{\Phi} \le \sqrt{KN\left(1 - V_{\Phi}^{2/N}\right)}.$$
(17)

< □ > < 同 >

4 E b

Fritz John's ellipsoid theorem and scalable frames A quadratic programing approach to scalability and a second measure of scalabil Distance to the set of scalable Frames and a third measure of scalability Comparing the measure of scalability

Size of the set of scalable frames

Theorem

Given $\Phi = \{\varphi_i\}_{i=1}^M \subset \mathbb{R}^N$, where each vector φ_i is drawn independently and uniformly from \mathbb{S}^{N-1} , let $P_{M,N}$ denote the probability that Φ is scalable. Then the following holds:

- (i) When $M < \frac{N(N+1)}{2}$, $P_{M,N} = 0$.
- (ii) When $M \geq \frac{N(N+1)}{2}$, $P_{M,N} > 0$ and

$$C_N \left(1 - A_{\alpha}^{N-1}\right)^M \ge 1 - P_{M,N} \ge \left(1 - A_a^{N-1}\right)^{M-N},$$

where

$$\alpha = \frac{1}{2} \arccos \sqrt{\frac{N-1}{N}}, \quad a = \arccos \frac{1}{\sqrt{N}},$$

and where C_N is the number of caps with angular radius α needed to cover \mathbb{S}^{N-1} . Consequently, $\lim_{M\to\infty} P_{M,N} = 1$.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

A B > A B >

< 17 ▶

Laplacian pyramid based Laurent polynomial LP² matrix

Setting

Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. $\mathcal{M}_{q,p}(z)$ will denote the set of all $q \times p$ matrices whose entries are Laurent polynomials in $z \in \mathbb{T}$ with real coefficients, and $\mathcal{M}_q(z) := \mathcal{M}_{q,1}(z)$ will denote the set of all column vectors of length q. Consider a nonzero column vector with Laurent polynomial entries,

denoted by

$$\mathbf{H}(z) := [H_0(z), H_1(z), \dots, H_{q-1}(z)]^T \in \mathcal{M}_q(z).$$

To the (Laurent polynomial valued) vector ${\rm H}(z)$ we associate the Laplacian pyramid based Laurent polynomial (LP²) matrix $\,\Phi_{\rm H}(z)$ defined by

$$\Phi_{\mathrm{H}}(z) := \begin{bmatrix} \mathrm{H}(z) & \mathrm{I} - \mathrm{H}(z) \mathrm{H}^*(z) \end{bmatrix} \in \mathcal{M}_{q \times (q+1)}(z),$$

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

- A - D

Laplacian pyramid based Laurent polynomial LP² matrix

Setting

Note that

$$\begin{aligned} \mathbf{H}^*(z) &:= \overline{\mathbf{H}(z)}^T \\ &= [\overline{H_0(z)}, \overline{H_1(z)}, \dots, \overline{H_{q-1}(z)}] \\ &= [H_0(z^{-1}), H_1(z^{-1}), \dots, H_{q-1}(z^{-1})]. \end{aligned}$$

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

(日) (同) (三) (三)

Laplacian pyramid based Laurent polynomial LP² matrix

Setting

It follows that

$$\Phi_{\mathrm{H}}(z) \left[egin{array}{c} \mathrm{H}^{*}(z) \ \mathrm{I} \end{array}
ight] = \mathrm{I}, \quad \forall z \in \mathbb{T}.$$

Consequently, rank $\Phi_{\mathrm{H}}(z) = q$ for all $z \in \mathbb{T}$. Hence, for each $z \in \mathbb{T}$ the columns of $\Phi_{\mathrm{H}}(z)$ form of frame for \mathbb{C}^{q} .

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

A B > A B >

< A >

Paraunitary LP² matrices

Setting

The LP² matrix $\Phi_{\rm H}(z)$ is said to be paraunitary, if

$$\Phi_{\mathrm{H}}(z)\Phi_{\mathrm{H}}^{*}(z)=\mathrm{I}.$$

In this case, the pair $(\Phi_{\rm H}(z), \Phi_{\rm H}(z)^*)$ can be used to construct a a tight filter bank.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

- 4 同 6 - 4 三 6 - 4 三 6

Paraunitary LP² matrices

Setting

The existence of a tight filter bank from a paraunitary LP^2 matrix $\Phi_{\rm H}(z)$ is equivalent to the existence of a column matrix ${\rm H}(z)$ such that ${\rm H}^*(z){\rm H}(z)=1$, that is, $\sum_{k=0}^{q-1}|H_k(z)|^2=1$ for $all z\in {\mathbb T}$.

Question

Can a column vector $\mathbb{H}(z)$ such that $\mathbb{H}^*(z)\mathbb{H}(z) \neq 1$ be modified into $\widetilde{\mathbb{H}}(z)$ for which $\widetilde{\mathbb{H}}^*(z)\widetilde{\mathbb{H}}(z) = 1$ leading to a paraunitary LP^2 matrix $\Phi_{\widetilde{\mathbb{H}}}(z)$.

Definition

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

Definition

An LP² matrix $\Phi_{\rm H}(z)$ for which there exists a diagonal matrix M(z) such that $\Phi_{\rm H}(z)M(z)$ is paraunitary, i.e.

$$[\Phi_{\mathrm{H}}(z)M(z)][M^*(z)\Phi_{\mathrm{H}}^*(z)] = \mathrm{I}.$$

is called a scalable LP^2 matrix.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

(日) (同) (三) (三)

э

Characterizing LP² matrix

Theorem

Let $\Phi_{\rm H}(z)$ be an LP² matrix associated with ${\rm H}(z)\in {\cal M}_q(z).$ Then we have

 $\Phi_{\mathrm{H}}(z)\mathrm{diag}([2-\mathrm{H}^*(z)\mathrm{H}(z),1,\ldots,1])\Phi_{\mathrm{H}}^*(z)=\mathrm{I}.$

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

- 4 同 6 - 4 三 6 - 4 三 6

Characterizing LP² matrix

Theorem

Let $\mathbb{H}(z) = [H_0(z), H_1(z), \dots, H_{q-1}(z)]^T \in \mathcal{M}_q(z)$, and let $\Phi_{\mathbb{H}}(z)$ be the associated LP^2 matrix. Suppose that $B(z) \in \mathcal{M}_{(q+1) \times (q+1)}(z)$ is diagonal satisfying $\Phi_{\mathbb{H}}(z)B(z)\Phi_{\mathbb{H}}^*(z) = \mathbb{I}$. Then $B(z) = \operatorname{diag}([2 - \mathbb{H}^*(z)\mathbb{H}(z), 1, \dots, 1])$ for $z \in \mathbb{T} \setminus S_{\mathbb{H}}$, where the set $S_{\mathbb{H}} \subset \mathbb{T}$ is defined as

$$S_{\rm H} := \{ z \in \mathbb{T} : H_0(z) \overline{H_1(z)} = 0 \text{ or } 1 - |H_0(z)|^2 - |H_1(z)|^2 = 0 \}$$

if q = 2, and as $S_{\mathbb{H}} := \{z \in \mathbb{T} : H_{k-1}(z) | \overline{H_{i+k-1}(z)} = 0, \text{ for some } k = 1, \dots, q-1, i = 1, \dots, q$ if $q \ge 3$.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix **Univariate tight wavelet filter banks** Examples of scalable LP² matrices

- 4 同 6 - 4 三 6 - 4 三 6

Filters and wavelet

Setting

Let $\lambda \geq 2$. A filter $h : \mathbb{Z} \to \mathbb{R}$ is called lowpass if $\sum_{k \in \mathbb{Z}} h(k) = \sqrt{\lambda}$, and highpass if $\sum_{k \in \mathbb{Z}} h(k) = 0$. The z-transform of a filter h is defined as $H(z) := \sum_{k \in \mathbb{Z}} h(k)z^{-k}$. A Laurent polynomial column vector $H(z) \in \mathcal{M}_{a}(z)$ is called the (synthesis)

polyphase representation of a filter h if

$$\mathbf{H}(z) = [H_{\nu_0}(z), H_{\nu_1}(z), \dots, H_{\nu_{q-1}}(z)]^T,$$

where $H_{\nu}(z)$ is the *z*-transform of the filter h_{ν} defined as $h_{\nu}(k) = h(\lambda k + \nu), k \in \mathbb{Z}$.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix **Univariate tight wavelet filter banks** Examples of scalable LP² matrices

Polyphase representation

Setting

Let h be a lowpass filter, and let $H(z) \in \mathcal{M}_q(z)$ be its polyphase representation. Suppose that there exists a Laurent polynomial $m_{\mathrm{H}}(z)$ such that $2 - \mathrm{H}^*(z)\mathrm{H}(z) = |m_{\mathrm{H}}(z)|^2$. Then,

$$\Phi_{\mathrm{H}}(z)\mathrm{diag}([m_{\mathrm{H}}(z), 1, \dots, 1]) = \begin{bmatrix} m_{\mathrm{H}}(z)\mathrm{H}(z) & \mathrm{I} - \mathrm{H}(z)\mathrm{H}^{*}(z) \end{bmatrix}$$

is paraunitary, i.e. $\Phi_{\mathtt{H}}(z)$ is scalable.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

- A - D

- - E > - - E >

Fejér-Riesz lemma

Question

The construction of tight wavelet frames hinges on the existence of a Laurent polynomial $m_{\rm H}(z)$ such that $2 - {\rm H}^*(z){\rm H}(z) = |m_{\rm H}(z)|^2$. This is possible if and only if $2 - {\rm H}^*(z){\rm H}(z) \ge 0$, for all $z \in {\mathbb T}$.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix **Univariate tight wavelet filter banks** Examples of scalable LP² matrices

Tight wavelet filter banks

Theorem

Let h be a 1-D lowpass filter with positive accuracy and dilation $\lambda \geq 2$, and let H(z) be its polyphase representation. Suppose $2 - H^*(z)H(z) > 0$, $\forall z \in \mathbb{T}$. Then there is a polynomial $m_H(z)$ such that $[m_H(z)H(z), I - H(z)H^*(z)]$ gives rise to a tight wavelet filter bank whose lowpass filter \tilde{h} is associated with $m_H(z)H(z)$ and has the same accuracy as h. Furthermore, if the support of h is contained in $\{0, 1, \ldots, s\}$, then the support of \tilde{h} is contained in $\{0, 1, \ldots, 2s\}$.

Laplacian pyramid based Laurent polynomial (LP²) matrix Scalable LP² matrix Univariate tight wavelet filter banks Examples of scalable LP² matrices

Examples

Example

Let h := [1/4 - a/2, 1/4, a, 1/4, 1/4 - a/2]Then, the associated z-transform H(z) is,

$$H(z) = \sqrt{2} \left(\frac{1}{4} - \frac{a}{2}\right) \left(z^{-2} + z^2\right) + \frac{\sqrt{2}}{4} (z^{-1} + z) + \sqrt{2}a, \quad z \in \mathbb{T},$$

and the components of the polyphase representation ${\rm H}(z)=[H_0(z),H_1(z)]^T$, $z\in \mathbb{T}$, are given as

$$H_0(z) = \sqrt{2} \left(\frac{1}{4} - \frac{a}{2}\right) \left(z^{-1} + z\right) + \sqrt{2}a, \quad H_1(z) = \frac{\sqrt{2}}{4}(1+z).$$

Thank You! http://www2.math.umd.edu/ okoudjou

A (1) > A (1) > A