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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Definition

Definition
O = {pop} L, CRY is a frame for RY if 34, B > 0 such that Vo € RV,

M

Allz? <) [z, ox) < Bllz|>.
k=1

If, in addition, ||| = 1 for each k, we say that ® is a unit-norm frame.
The set of frames for RY with M elements will be denoted by F. In
addition, we let F,, the the subset of unit-norm frames.
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Analysis and Synthesis with frame

Let ® = {pp}2L, C RV,
© The analysis operator, is defined by

RY 520 070 = {(x, pp) 121, € RM.

@ The synthesis operator is defined by

M
RM s c= ()i, QCZch@k e RV,
k=1

@ The frame operator S = ®®7 is given by

M
RY 52 Sz = Z(m,cpk>g0k eRY.
k=1

© The Gramian (operator) G = ®1® of the frame is the M x M
matrix whose (i, j)'" entry is (¢}, ¢i).
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Resolution of the identity with frame

If & = {op}L, CRY is a frame,
{&ehily = (S "ol
is the canonical dual frame, and, for each € RY, we have
x=S85"1(z)=5"15(x)
M

M
= (@, 06)¢ (T, Pr)Pr- (1)
k=1 h=1
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Tight frames and FUNTFs

Q@ A frame @ is a tight frame if we can choose A = B.
Q If = {pp}M, c RM is a frame then

{el L, = {8720 1L, c RN
is a tight frame, and for every z € RN

M
z=85"w=S85"125"1r = (w, ] )el. (2)
k=1

Q If ® is a tight frame of unit-norm vectors, we say that @ is a finite
unit-norm tight frame (FUNTF). In this case, the reconstruction
formula (1) reduces to

M
Ve € RY, xz%Zxcpk (3)
k=1
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Example of FUNTFs

Let w = e2™/M

1 1 1 . 1
1 w w? o =1
1 1 w? wt o w2M-1)
VM
1 wM—l w2(M—1) W(M-—1)2

Any (normalized) N rows from the M x M DFT matrix is a tight frame
for CN.

Every tight frame of M vectors in K is obtained from an orthogonal
projection of an ONB in KM onto K.
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Review of finite frame theory

D mentary propertie
Optlmally condmoned frames: FUNTFs

Examples of frames

W-B Frame
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Figure : The MB-Frame
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Review of finite frame theory

Definition and elementary pr
Optimally conditioned frame:

The frame potential

Theorem (Benedetto and Fickus, 2003)

For each ® = {¢)}2L, C RY, such that |||l = 1 for each k, we have

M
ZZ| (@i, 0m)| 2> %max(M,N), (4)

j=1k=1

Furthermore,

e If M < N, the minimum of FP is M and is achieved by orthonormal
systems for RN with M elements.

o [f M > N, the minimum of FP is MTQ and is achieved by FUNTFs.
FP(®) is the frame potential.
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

M
FP({oril) = M+ > ok, 00))> > M.
kott=1

e If M < N the minimizers are exactly orthonormal systems and the
minimum is M.
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

M
P{ox i) =M+ > [er o) = M.
k#Ae=1

e If M < N the minimizers are exactly orthonormal systems and the
minimum is M.
o Now assume M > N and let G = ®*®. Observe that

M M M
Tr(G?) = Z(GQek,ek> = Z(Gek,Gek> = Z |Ger .
k=1 k=1 k=1

But
|Gex||* = ZIG (¢, k)| Z\(%%W

{=1
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Review of finite frame theory

Definition and elementary propert
Optimally conditioned frames: FUNTFs

Proof (continued)

Consequently,

=

P({er}ils) = Tr(G?) = YN,

k=1

and, trace(G) = Zgzl k=M.
Minimizing FP({px}*L ) is equivalent to minimizing

N N
Z A\{ suchthat Z Ay =M
k=1 k=1
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Review of finite frame theory
Definition and elementary properties
Optimally conditioned frames: FUNTFs

Proof (continued)

Proof.

Solution: A\, = M/N for all k.
Hence S = %IN where [y is the identity matrix. The corresponding
minimizers {px }L | are FUNTFs

N
— N
z= 57 kil(ar, vryer Yo e KV,
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Construction of FUNTFs

@ Numerical schemes such as gradient descent can be used to find
minimizers of the frame potential and thus find FUNTFs.

@ The spectral tetris method was proposed by Casazza, Fickus, Mixon,
Wang, and Zhou (2011) to construct all FUNTFs. Further
contributions by Krahmer, Kutyniok, Lemvig, (2012); Lemvig,
Miller, Okoudjou (2012).

o Other methods (algebraic geometry) have been proposed by Cahill,
Fickus, Mixon, Strawn.
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Review of finite frame theory

Definition and elementary properties
Optimally conditioned frames: FUNTFs

Optimally conditioned frames

@ FUNTFs can be considered “optimally conditioned” frames. In
particular the condition number of the frame operator is 1.

© There are many preconditioning methods to improve the condition
number of a matrix, e.g., Matrix Scaling.

@ A matrix A is (row/column) scalable if there exit diagonal matrices
Dy, Dy with positive diagonal entries such that D1 A, ADs, or
D1 ADy have constant row/column sum.
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic pr able frames
Characterizatio able frames in R2

Main question

Question

Given a (non-tight) frame ® = {p;}. | C RY can one transform ® into
a tight frame? If yes can this be done algorithmically and can the class of
all frames that allow such transformations be described?

<

@ If ® denotes again the N x M synthesis matrix, a solution to the
above problem is the associated canonical tight frame

{S_l/QSDk}kM:r

Involves the inverse frame operator.

@ What “transformations” are allowed?
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Preconditioning of finite frames Scalable Definition and basic examples

Goals of this section

@ How to transform a (non) tight frame into a tight one?

@ What “transformations” are allowed?
© Give theoretical guarantees and algorithms.

© For a given “transformation”, what happens if a frame cannot be
transformed exactly?
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Preconditioning of finite frames Scalable Frames: Definition and basic examples

Choosing a transformation

Given a (non-tight) frame ® = {px}., C RY can one find nonnegative

numbers {c; }AL, C [0,00) such that ® = {cypx L, becomes a tight
frame?

In matrix notation, one seeks a diagonal (M x M ) matrix C' with
nonnegative entries such that ®C' is a tight frame.

More generally, one can ask when there exist (structured) matrices D
such that ®D is a tight frame.
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
B

Definition

Definition

A frame @ = {@, }ML, in RY is scalable, if 3{ci}1L, C [0,00) such that
{ckpr 1M, is a tight frame for RY.

The set of scalable frames is denoted by SC(M, N).

In addition, if {c;}2L, C (0,00), the frame is called strictly scalable and
the set of strictly scalable frames is denoted by SC (M, N).
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Preconditioning of finite frames Scalable Frames: Definition and basic examples

ble frames 5
-9

ble frames in

A more general definition

Definition

Given, N <m < M, a frame & = {@k}ﬂ/le is said to be m-scalable,
respectively, strictly m—scalable, if 3®; = {pk trer with
IC{1,2,...,M}, #I = m, such that ®; = {@k }rers is scalable,
respectively, strictly scalable.

We denote the set of m-scalable frames, respectively, strictly m-scalable
frames in F(M, N) by SC(M, N, m), respectively, SC (M, N, m).
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
B

Some basic examples

@ When M = N, a frame ® = {¢}}2_; C RY is scalable if and only if
® is an orthogonal set.

@ When M > N, if ® contains an orthogonal basis, then it is clearly
N —scalable.

@ Thus, given M > N, the set SC(M, N, N) consists exactly of
frames that contains an orthogonal basis for R .
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Preconditioning of finite frames a Definition and basic examples
s of scalable frames
on of scalable frames in

Useful remarks

We note that a frame ® = {px} | C RN with ¢, # 0 for each
k=1,...,M is scalable if and only if ®' = {25 1)L, is scalable.
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R“

Useful remarks

Given a frame ® Cc RY, assume that ® = ®; U &5 where

0, = {p”) € @: oV (V) > 0}

and , ,
@y = {o? € ®: P (N) < 0}.
Let
o = P, U (—(1)2).

® s scalable if and only if ®' is scalable.
We shall assume that all the frame vectors are in the upper-half space,
ie, ® C RN xRy o where Ry g = [0, 00).
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R“

Elementary properties of scalable frames

Let M > N, and m > 1 be integers.
(i) If ® € F is m-scalable then m > N.
(ii) For any integers m,m’ such that N < m <m' < M we have that

SC(M,N,m) C SC(M,N,m’),
and
SC(M,N) = U SC(M,N,m).

m=N
(iii) ® € SC(M, N) if and only if T(®) € SC(M, N) for one (and hence
for all) orthogonal transformation(s) T on RY .
(iv) Let ® = {pr}nt' € F(N +1,N)\ {0} with @), # £, for k # L.
If®eSCL(N+1,N), then® ¢ SC.(N +1,N +1).
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Preconditioning of finite frames

Scalable frames: When and How?

@ When is a frame ® = {¢}2L, C RY scalable?
Q If® = {p)}M, C RY is scalable, how to find the coefficients?
@ I/f ® is not scalable, how close to scalable is it?

@ What are the topological properties of SC(M, N)?
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames o
Characterization of scalable frames in R“

A reformulation

® is (m-) scalable <= F{ay}rer C [0,00) with #1 =m > N such
that ® = ®X satisfies

~ o Z2 2
3T = o X207 = Ay = ZeerZellenl o (5)

where X = diag(xy).
(5) is equivalent to solving

Yol = Iy (6)

forY = %Xz.
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Preconditioning of finite frames ble Frames: Definition and basic examples
sic properties of scalable frames .
Characterization of scalable frames in R?

Scalable frames in R?

Let ® = {¢}2L, C R? be a frame contained in the first quadrant:

b — 1 al as .. ap—1
" \0 by by ... by1)

Is ® scalable?
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Scalable frames in R?

Let ® = {¢}2L, C R? be a frame contained in the first quadrant:

b — 1 ay az ... Qap-—1
N0 by by ... by )

Is ® scalable?

Solution

| A

@ is scalable <= 3 : z = {x;}M, C[0,00) with ||z|lo > 2 : the rows
of the following matrix are orthogonal

Tr1 T2a1 T30 ... TpQpr—1

0 :L'2b1 Igbg e IMbM—l

This happens when > v'> 3 aby, = 0 has a nontrivial solution.
Which is not the case, so ® is not scalable
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R

Scalable frames in R?

Let ® = {@r}2L, C R? be a frame with, p1 = ey, g3 = (Zl> with,
1

(Il,bl >0, Y3 = (Zj), with as < 0 < by

o — 1 a1 ax ... apm—1
—\0 bl bg bM,1 ’

Is ® scalable?
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Preconditioning of finite frames calable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Scalable frames in R?

Question

Let ® = {@r}2L, C R? be a frame with, p1 = ey, g3 = (Zl> with,
1

(Il,bl >0, Y3 = (Zj), with as < 0 < by

o — 1 a1 ax ... apm—1
—\0 bl bg bM,1 ’

Is ® scalable?

Solution

There exist xo,x3 > 0 such that {¢1,xaps, x3p3} forms a tight frames,
since x%al by + .’E%ang = 0 has nontrivial nonnegative solutions.
® is scalable.
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Scalable frame in R?

More generally, when is ® = {¢}2, C S* is a scalable frame in R??

Solution

Assume that ® = {1 | CR xRy g, |lokll =1, and @ # oy, for
L#£k Let 0=0, < by <03<...<0p <m, then

o = <cos0k> c gl

sin 6y,

Let Y = (yx)M, C [0,00), then (6) becomes

( Zkle Y cos? Oy, 212/1:1 Yi sin O, cos 9k> _ (1 O) (7)

So yesinbcosfy YL yksin? 6y 0 1
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Preconditioning of finite frames ble Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R2

Scalable frame in R?

(7) is equivalent to

ZIICVI:l Yk Sin2 Hk = 1
Zi\il Yk cos 20,
ch\il ypsin26, = 0.
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Preconditioning of finite frames calable Frames: Definition and basic examples
3asic properties of scalable frames
Characterization of scalable frames in R2

Scalable frame in R?

Solution

(7) is equivalent to

ZIICVIZI Yk Sin2 Hk = 1
Zi\il Yk cos 20, =
22/121 ypsin26, = 0.

Consequently, for ® to be scalable we must find a nonnegative vector

cos 20,
sin26 ) °

Y = (yx)M., in the kernel of the matrix whose k" column is (

v
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Preconditioning of finite frames

Scalable frame in R?

The problem is equivalent to finding non-trivial nonnegative vectors in
the nullspace of

<1 cos20, ... cos29M> (8)

0 sin26y ... sin20,,
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Preconditioning of finite frames

Describing SC(3,2)

We first consider the case M = 3. In this case, we have
0 =061 <6y <03 <, and the (8) becomes

1 cos26y cos20;
0 sin 292 sin 293 ’
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Preconditioning of finite frames calable Frames: Definition and basic examples
3asic properties of scalable frames
Characterization of scalable frames in R2

Describing SC(3,2)

If O, = /2 for ko € {2,3}, then the corresponding frame contains an
ONB and, hence is scalable.
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Preconditioning of finite frames Scalable Frames: Definition and basic examples
Basic properties of scalable frames
Characterization of scalable frames in R

Describing SC(3,2)

Example

If O, = /2 for ko € {2,3}, then the corresponding frame contains an
ONB and, hence is scalable.

For example, when kg = 2, then 0 = 6; < 05 = 7/2 < 03 < 7. In this
case, the fame is 2— scalable but not 3— scalable.

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Definition and basic examples

Sc
f scalable frames

Preconditioning of finite frames
B ol
AR L2
haracterization of scalable frames in R“

C|

Describing SC(3,2)

Example
Suppose 6y # 7/2 for k = 2,3. If 83 < 7/2, then the frame cannot be

scalable. Indeed, u = (21, 22, z3) belongs to the kernel of (9) if and only if
_ sin2(03792)
7 = 2l
v (10)
2 = sin 205 <37

angles implies that z5z3 < 0, unless

where z3 € R. The choice of the

2310.
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Preconditioning of finite frames ble Frames: Definition and k amples
sic properties of scalable frar
Characterization of scalable frames in

Describing SC(

This is illustrated by

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Preconditioning of finite frames Sc a inition and ba
B alable frames
Characterization of scalable frames in R?

Describing SC(3,2)

Suppose that 0 = 61 < 6 < 7/2 < 5 < . From (10) z2 > 0 for all
z3 > 0 and z; > 0 for all z3 > 0 if and only if 3 — 0 < 7/2.
Consequently, when 0 = 601 < 5 < 7/2 < 63 < 7 the frame

® € S8C,(3,2,3) if and only if 0 < 03 — b5 < 7/2.
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Preconditioning of finite frames ble Frames: Definition and & amples

sic properties of scalable frar
Characterization of scalable frames in

Describing SC(3,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;

Green=associated canonical tight frame.
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Preconditioning of finite frames Definition and basic examples
Basic propertie calable frames
Characterization of scalable frames in R

Describing SC(4,2)

When M = 4 we are lead to seek nonnegative non-trivial vectors in the
null space of

1 cos260y cos203 cos204
0 sin26y sin203 sin26y)°
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Preconditioning of finite frames S
Basic properties of scalable frames .
Characterization of scalable frames in R?

Describing SC(4,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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Preconditioning of finite frames S
Basic properties of s N
Characterization of scalable frames in R2

Describing SC(4,2)
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Figure : Blue=original frame; Red=the frames obtained by scaling;

Green=associated canonical tight frame.
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Preconditioning of finite frames S
Basic properties of scalable frames .
Characterization of scalable frames in R?

Describing SC(4,2)

Figure : Blue=original frame; Red=the frames obtained by scaling;
Green=associated canonical tight frame.
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= Characterization using convex geometry
Characterization of scalable frames in R*" A ion

To

A more general reformulation

Setting

Recall that ® is (m-) scalable <= F{xy}rer C [0,00) such that
® = ®X satisfies

307 = X207 = Iy
where X = diag(zy).
This is equivalent to

Siier@P =1  forj=1..,N, o
Z,iwzlgok(é)gak(j)yk:O fort,j=1,...,N, k> /.

v

Kasso Okoudjou Preconditioning of finite frames



5 Characterization using convex geometry
Characterization of scalable frames in R*"

A more general reformulation

(11) fleads to

lec\il (@k(l)z - Sok(])Q)yk =0 fOI’j = 2)' . 'aNa (12)
Ziw:lgpk(f)gok(j)ykzo foré,5=1,...,N, k> /.
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5 Characterization using convex geometry
Characterization of scalable frames in R*" tio

When is a frame scalable: A generic solution

When is ® = {p }M | C RN scalable?

Proposition

A frame ® for RN s m-scalable, respectively, strictly m-scalable, if and
only if there exists a nonnegative u € ker F'(®) \ {0} with ||ullp < m,
respectively, ||u|lo = m, and where F(®) is the d x M matrix whose k'
column is F(pg).
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e Characterization using convex geometry
Characterization of scalable frames in R*" acterization
0 calable frames

A more general reformulation

Let F: RN - RY, d:= (N — 1)(N + 2)/2, defined by
Fy(z)
Flo) = Fl(:zr)
Fy-1(z)
xi — xé TpTh1
R@=|"" Tx?’ o Fu(@) = | TR
22—z o
and Fo(z) e RN, Fr(x) e RN % k=1,2,...,N — 1.
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5 Characterization using convex geometry
Characterization of scalable frames in R*Y A g etric characterization
of scalable frames

The map F' when N =2

When N = 2 the map F' reduces to

() =)

Note that in the examples given above we consider

)=o)
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e Characterization using convex geometry
Characterization of scalable frames in R*" A atiof
T

Some convex geometry notions

Let X = {x;}}L, C RV,
@ The polytope generated by X is the convex hull of X, denoted by
Px (or co(X)).
@ The affine hull generated by X is denoted by aff (X).

@ The relative interior of the polytope co(X) denoted by rico(X), is
the interior of co(X) in the topology induced by aff(X).

Q It is true that rico(X) # () whenever #X > 2, and

M M
rico(X) = {Zakmk Doy > O,Zak = 1};
k=1 k=1
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Characterization using convex geometry

Characterization of scalable frames in RV

A key tool: The Farkas Lemma

Lemma (Farkas’s lemma)

For every real N x M-matrix A exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution x € RM | je., all components of x are nonnegative and at

least one of them is strictly positive.
(i) There exists y € RN such that yT A is a vector with all entries
strictly positive.
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Characterization using convex geometry

Characterization of scalable frames in R

Figure : Bleu=original frame; Green=image by the map F. Both of these
examples result in non scalable frames.
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Characterization using convex geometry

Characterization of scalable frames in R

Figure : Bleu=original frame; Green=image by the map F'. Both of these
examples result in scalable frames.
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Characterization using convex geometry
Characterization of scalable frames in geometric cha ation

lable frames

Proof of Farkas Lemma

Let S = {ax}}, C RY where ay is the k" column vector of A. The
two alternatives correspond to 0 € co(S) and 0 ¢ co(S5). O
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= Characterization using convex geometry
Characterization of scalable frames in R*" A atio

Scalable frames and Farkas's lemma

Theorem

Let M > N > 2, and let m be such that N < m < M. Assume that

® = {pp}M, € F*(M, N) is such that oy, # +@, when k # £. Then the

following statements are equivalent:

(i) @ is m—scalable, respectively, strictly m—scalable,

(ii) There exists a subset I C {1,2,..., M} with #I = m such that
0 € co(F(®y)), respectively, 0 € rico(F(®r)).

(i) There exists a subset I C {1,2,..., M} with #I = m for which
there is no h € RY with (F(py),h) > 0 for all k € I, respectively,

with (F(pk),h) > 0 for all k € I, with at least one of the
inequalities being strict.
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e Characterization using convex geometry
Characterization of scalable frames in R*" A tion
To

Sketch of the proof

Proof.
(i) <= (ii). This equivalence follows directly if we can show the
following equivalences for U C &:

0 € co(F(¥)) <= ker F(¥)\ {0} contains a > 0 vector and
0 € rico(F(¥)) <= ker F(¥) contains a > 0 vector.

= easy.
< Case 1: Let I C [M] be such that ¥ = &7, T = {iy,...,%m}, and let
u=(c1,...,cm)T € ker F(¥) be a non-zero nonnegative vector. Set

A:=>"" c, > 0 and with Ay := ¢ /A, we see that 0 € co(F (D).
Case 2: each ¢ > 0 leading to A\x > 0.
(ii) <= (iii) In the first case this follows from Farkas's lemma. O
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5 Characterization using convex geometry
Characterization of scalable frames in R*" etric tion

A useful property of F

For x = (z)M_; € RY and h = (hy){_, € RY, we have that

N N-1 N
(F(x),h) = Z he(z] —x7) + Z Z P (N 1= (k=1)/2)+0-1Tk T
=2 k=1 ¢=k+1

(13)
Consequently, fixing h € R?, (F(x),h) is a homogeneous polynomial of
degree 2 in x1,x2,...,xN. The set of all polynomials of this form can be
identified with the subspace of real symmetric N x N matrices whose
trace is 0.
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5 Characterization using convex geometry
Characterization of scalable frames in R*" A geometric cha ation

lable frames

A useful property of F

(F(z),h) = (Qnx,z) = 0 defines a quadratic surface in RY, and
condition (iii) in the last Theorem stipulates that for ® to be scalable,
one cannot find such a quadratic surface such that the frame vectors
(with index in I) all lie on (only) “one side” of this surface.

Kasso Okoudjou Preconditioning of finite frames



Characterization of scalable frames in RV

A geometric characterization of scalable frames

Theorem

Let ® = {p, 121, C RV \ {0} be a frame for RN. Then the following
statements are equivalent.

(i) @ is not scalable.

(ii) There exists a symmetric M x M matrix Y with trace(Y') < 0 such
that (p;,Y ;) >0 forallj=1,..., M.

(iii) There exists a symmetric M x M matrix Y with trace(Y') = 0 such
that (p;,Y ;) >0 forallj=1,..., M.

v
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on
Characterization of scalable frames in R geometric characterization
op f scalable f

Scalable frames in R? and R?

Figures show sample regions of vectors of a non-scalable frame in R? and
R3.

PR eIgeTy
SRNEOSS
:\Qst‘“\::“;"o %

(a) (b) ()

Figure : (a) shows a sample region of vectors of a non-scalable frame in R?.
(b) and (c) show examples of sets in C3 which determine sample regions in R
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Let ® € F(M,N) be a unit-norm frame. Then the following hold:
(a) (A necessary condition for scalability) If ® is scalable, then

1
min max |[(d, ;)| > —. 14
ldll2=1 i (d, 3)] N (14)
(b) (A sufficient condition for scalability) If
N -1
min max [(d, ;)| >/ ———, 15
(pin  max [{d, )| T (15)

then ® s scalable.
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Characterization of scalable frames in RV

Other necessary and sufficient conditions for scalability

Let ® € F(M,N) be a unit-norm frame. Then the following hold:
(a) (A necessary condition for scalability) If ® is scalable, then

1
min max |[(d, ;)| > —. 14
ldll2=1 i (d, 3)] N (14)
(b) (A sufficient condition for scalability) If
N -1
min max [(d, ;)| >/ ———, 15
(pin  max [{d, )| T (15)

then ® s scalable.

For N = 2 the conditions in the last theorem are necessary and sufficient.
But this fails for N > 2 .
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K Characterization
Characterization of scalable frames in R*Y A geometric char n
Topology of scalable frames

Topology of scalable frames

Let M >m > N > 2.

(a) Let ® = {op}L, F(M,N)\ SC(M,N). Then there exists ¢ > 0
such that each set of vectors {{; }2L, C RN with

lor — vl <e forallk=1,..., M

is a frame for RN which is not scalable.
(b) SC(M, N, m) is closed in F(M,N).
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K Characterization
Characterization of scalable frames in R*Y A geometric char n
Topology of scalable frames

Topology of scalable frames

Theorem

Assume that 2 < N < M <d+1= N(N +1)/2. Then SC(M, N) does
not contain interior points. In other words, for the boundary of
SC(M, N) we have

dSC(M,N) = SC(M, N).

Remark

When2 < N <M <d+1=N(N+1)/2, SC(M,N) is a "hollow set”.
It can be shown that in this regime, the probability of a unit norm frame
whose vectors are drawn randomly from the unit ball according to the
uniform distribution is 0.
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Fritz John'’s ellipsoid theorem and scalable frames

" - abil
Measures of scalability

Fritz John's Theorem

Theorem (F. John (1948))

Let K C B = B(0,1) be a convex body with nonempty interior. There
exits a unique ellipsoid &,,;, of minimal volume containing K.
Moreover, &,,in, = B if and only if there exist {\;}7"; C (0,00) and
{ug}, COKNSN=1, m > N + 1 such that

(i) k1 Aeur =0

(i) & =Y, A, up)ug, Vo € RY
where OK is the boundary of K and S™~1 is the unit sphere in RY.
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Fritz John's ellipsoid theorem and scalable frames

Measures of scalability

F. John’s characterization of scalable frames

Let ® = {p 121, € SNV~ be a frame for RN. We apply F. John's
theorem to the convex body K = Py = conv({£pi} ). Let £y denote
the ellipsoid of minimal volume containing Py, and Vo = Vol(Eg) /wn
where wy is the volume of the euclidean unit ball.
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Measures of scalability

F. John’s characterization of scalable frames

Let ® = {p 121, € SNV~ be a frame for RN. We apply F. John's
theorem to the convex body K = Py = conv({£pi} ). Let £y denote
the ellipsoid of minimal volume containing Py, and Vo = Vol(Eg) /wn
where wy is the volume of the euclidean unit ball.

v
Theorem

Let ® = {@p}M, < SNV=! be a frame. Then ® is scalable if and only if
Vo = 1. In this case, the ellipsoid £ of minimal volume containing
Py = conv({xpr}L,) is the euclidean unit ball B.
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Fritz John's ellipsoid theorem and scalable frames
pproach bility and

A . and a third m
Measures of scalability = Hre

A first measure of scalability: Volume of the frame's
John'’s ellipsoid

Let ® C SN~ be a frame. Then Vg is a “measure of scalability”: the
closer it is to 1 the more scalable is the frame.
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Fritz John's ellipsoid theorem and scalable frames
A quadratic programing approach to scalability and a second measure of scalabili
Dist t of scalable Frames and a third measure of scalability

Measures of scalabilit
Y Compal asure of scalability

A quadratic programing approach to scalability

® = {p;} M, isscalable <= FH{c;}M, C[0,00) : PCPT =T

where C' = diag(c;).

s = {<I>C(I)T chgol(pl ¢; > 0}

=1

is the (closed) cone generated by {p; ol } M.

® = {p;}M, is scalable <= I € Cy.

Dy :=  min = [eCe" - 1],
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Fritz John's ellipsoid theorem and scalable frames
A quadratic programing approach to scalability and a second measure of scalabili
D f ble Frames and a third measure of scalability

Measures of scalability h c
S \parin calability

Comparing D¢ to the frame potential

(a) @ is scalable if and only if Dy = 0.
(b) If® = {px} , C RN is a unit norm frame we have

M2
D2 < N—-——
= FP(®)’

where FP(®) is the frame potential of ®.

Kasso Okoudjou Preconditioning of finite frames



a second measure of scalabili
and a third measure of scalability

Measures of scalability

A second measure of scalability

Let ® C SN~ be a frame. Then Dg is a “measure of scalability”: the
closer it is to O the more scalable is the frame.
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Measures of scalability S
M Comparing the me:

Distance to the set of scalable frames

Let ® € F(M, N) be a unit norm frame and denote

dq> = inf ||<I>—\I/||F
YeSC(M,N)

Proposition

If ® € F,(M, N) such that de < 1 then there exists $ € SC(M, N)
such that |® — @||p = do.
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" - Di 0 ble Frames and a third m
Measures of scalability

Comparing the measure of scalability

Comparison of Dg and Vg

Theorem

Let ® = {o;}M, € F,(M,N), then

N(1-Dj) < VN < N(N —1-Dj)
N-D} - D(¥ - D3)

<1, (16)

where the leftmost inequality requires Dy < 1. Consequently, Vo — 1 is
equivalent to Dg — 0.
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Fritz John's ellip
Aqu

Measures of scalability

Comparing the measure of scalability

Examples in R*

Values of Vg and Dg for randomly generated frames of M vectors in R%.

Frames of size 4x 6 Frames of size 4 11

Figure : Relation between Vg and Dg with M = 6,11. The black line indicates
the upper bound in the last theorem, while the red dash line indicates the lower
bound.
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Values of Vg and Dg for randomly generated frames of M vectors in R%.

Frames of size 415 Frames of size 4x 20

Figure : Relation between Vp and Dg with M = 15,20. The black line
indicates the upper bound in the last theorem, while the red dash line indicates
the lower bound.
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Fritz John's

Aqt

Dist to th of ble Frz and a third m
Comparing the measure of scalability

Measures of scalability

Comparison of the Measures Dg and Vg with dg

Let ® € F,(M,N) and assume that de < 1. Then with
K := min{M, W} and w := Dg + VK we have

Dg 2/N
_— < < — .
Y dg < \/KN (1 V2 ) (17)
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Fritz John's ellipsoid theorem and scalable fi

A quadratic programing app to scalabili second measure of scala
Distance to the set of scalable Frames and a third measure of scalability
Comparing the measure of scalability

Measures of scalability

Size of the set of scalable frames

Theore

Given ® = {p;}M, C RN, where each vector ; is drawn independently
and uniformly from SN=1, let Pys n denote the probability that ® is
scalable. Then the following holds:

(i) When M < X3 p v — 0.

(i) When M > XD "pyy v > 0 and

Cv(1—A" Y > 1_pypy > (1-aV- )M

)

where

@ = arccos —
/N K

and where Cy is the number of caps with angular radius a needed

to cover SN~1. Consequently, limp; 00 Py v = 1.
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d based Laurent polynomial (LP2) matrix

F\tsr banks

matrices
Application: Scaling wavelet frames

Laplacian pyramid based Laurent polynomial LP? matrix

Setting

Let T ={z € C:|z| =1}. Mg,(2) will denote the set of all ¢ x p
matrices whose entries are Laurent polynomials in z € T with real
coefficients, and My (z) := Mg 1(z) will denote the set of all column
vectors of length q.

Consider a nonzero column vector with Laurent polynomial entries,
denoted by

H(2) := [Ho(2), Hi(2), ..., Hy_1(2)]" € M,(2).

To the (Laurent polynomial valued) vector H(z) we associate the
Laplacian pyramid based Laurent polynomial (LP?) matrix ®y(z) defined
by

Py(z) == [ H(z) I—H(2)H"(2) | € Myx(es1)(?),
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ian pyramid based Laurent polynomial (LP2) matrix

Application: Scaling wavelet frames ame o L

Laplacian pyramid based Laurent polynomial LP? matrix

Note that
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Laplacian mid based Laurent polynomial (LP2) matrix

filter banks
matrices

Application: Scaling wavelet frames

Laplacian pyramid based Laurent polynomial LP? matrix

It follows that
Dy (2) { H f) ] =1, VzeT.

Consequently, rank ®y(z) = q for all z € T. Hence, for each z € T the
columns of ®y(z) form of frame for C4.

Kasso Okoudjou Preconditioning of finite frames



Application: Scaling wavelet frames

Paraunitary LP? matrices

The LP? matrix ®y(z) is said to be paraunitary, if

In this case, the pair (Py(z), Pu(2)*) can be used to construct a a tight
filter bank.
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sed Laurent polynomial (LP2) matrix

Application: Scaling wavelet frames

Paraunitary LP? matrices

The existence of a tight filter bank from a paraunitary LP? matrix ®y(2)
is equivalent to the existence of a column matrix H(z) such that

H*(2)H(2) = 1, that is, Zz;é |Hy(2)|> = 1for allz € T.

| \

Question

Can a column vector H(z) such that H*(2)H(z) # 1 be modified into H(z)
for which H*(2)H(z) = 1 leading to a paraunitary LP* matrix ®5(z).
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Laplacian pyramid based Laurent polynomial (LP2) matrix
Scalable LP< matrix

Application: Scaling wavelet frames

Definition

Definition
An LP? matrix ®y(z) for which there exists a diagonal matrix M (z) such
that ®y(2)M (2) is paraunitary, i.e.

[@n(2) M (2)][M”"(2)®5(2)] = .

is called a scalable LP2 matrix.
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Laplacian pygamid based Laurent polynomial (LP2) matrix

Application: Scaling wavelet frames

Characterizing LP? matrix

Let ®y(z) be an LP* matrix associated with H(z) € M, (z). Then we
have
Dy (z)diag([2 — H*(2)H(2), 1,...,1]))®5(z) = L.
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Laplacian pyy Laurent polynomial (LP2) matrix
Scalable LP< m:

Univariate tight

Examples of

Application: Scaling wavelet frames

Characterizing LP? matrix

Theorem

Let H(z) = [Ho(2), H1(2), ..., Hy—1(2)]T € My(2), and let ®y(z) be the
associated LP* matrix. Suppose that B(z) € M(4+1)x(q+1)(2) Is
diagonal satisfying ®y(z)B(z)®5(z) = I. Then

B(z) = diag([2 — H*(2)H(2), 1, ...,1]) for z € T \ Sy, where the set

Sy C T is defined as

Sg:={z€T: Ho(z)Hi(z) =0 or 1 — |Hy(2)|> — |H1(2)|? = 0}
ifq =2, and as

Sp:={2€T: Hx_1(2)Hizx-1(2) =0, forsomek=1,...,q—1,i=1,1..,q

ifq > 3.
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d based Laurent polynomial (LP2) matrix

e é
iate tight wavelet filter banks
Application: Scaling wavelet frames e P Gnsiiites

Filters and wavelet

Setting

Let X\ > 2. A filter h : Z — R is called lowpass if ), ., h(k) = VA, and
highpass if ), ., h(k) = 0.

The z-transform of a filter h is defined as H (z) := Y, ., h(k)z"%. A
Laurent polynomial column vector H(z) € M(z) is called the (synthesis)
polyphase representation of a filter h if

H(z) = [HVO (2), Hyy (2),- - 7HVq71(z)]T7

where H,(z) is the z-transform of the filter h, defined as
hy(k) = h(Ak+v), k € Z.
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LP< matrices

Application: Scaling wavelet frames

Polyphase representation

Setting

Let b be a lowpass filter, and let H(z) € M(z) be its polyphase
representation. Suppose that there exists a Laurent polynomial my(z)
such that 2 — H*(2)H(2) = |mu(2)|?>. Then,

Py(z)diag([mu(z),1,...,1]) = [ ma(2)H(z) I —H(2)H*(z) ]

is paraunitary, i.e. ®y(2) is scalable.
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Lap mid based Laurent polynomial (LP2) matrix
S le matrix
Univariate tight wavelet filter banks
Examples able LP2 matrices

Application: Scaling wavelet frames

Fejér-Riesz lemma

The construction of tight wavelet frames hinges on the existence of a
Laurent polynomial my(2) such that 2 — H*(2)H(z) = |mu(2)|%. This is
possible if and only if 2 — H*(z)H(z) > 0, for all z € T.
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Laurent polynomial (LP<) matrix

< matrix
te tight wavelet filter banks
1

alable LP? matrices
Application: Scaling wavelet frames S1aBIe matrices

Tight wavelet filter banks

Theorem

Let h be a 1-D lowpass filter with positive accuracy and dilation \ > 2,
and let H(z) be its polyphase representation. Suppose 2 — H*(z)H(z) > 0,
Vz € T. Then there is a polynomial my(z) such that

[mu(2)H(2), I — H(2)H*(2)] gives rise to a tight wavelet filter bank whose
lowpass filter h is associated with my(z)H(z) and has the same accuracy
as h. Furthermore, if the support of h is contained in {0,1,...,s}, then
the support of h is contained in {0,1,...,2s}.
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Laurent polynomial (LP<) matrix

tigl ilter banks
Examples of scalable LP< matrices

Application: Scaling wavelet frames

Examples

Let h:=[1/4 —a/2,1/4,a,1/4,1/4 — a/2]
Then, the associated z-transform H(z) is,

and the components of the polyphase representation
H(z) = [Ho(2), H1(2)]T, 2 €T, are given as

Ho(z) = V2 (le - (21) (z7"+2) + V2a, Hi(z)= g(l + 2).
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ate ti
Examples of

Application: Scaling wavelet frames

Thank You!
http://www2.math.umd.edu/ okoudjou
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