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A Functional analysis , Y, s
WeTeh ooy

A.1 Definitions of spaces

This appendix lists results from functional analysis that are used in this book,
There are many excellent texts and expositions including [134] [162], [235],
[194], [302], {379], [393], [451].

Definition A.1.1. Topological space
A topological space X is a pair (X, T), where X is a non-empty set, T C P{X),
and 7 satisfies the conditions:

.0eT, XeT,

#, {Un:a€l, anindex set} C T == |, ; Us € T,

il {Up:j=1,...n}CT =", U; 7.

The elements of 7 are called open sets and 7T is a topology for the set X.
The interior of § C X, denoted by int §, is the largest open set contained
in . The complement of an open set is & closed set. A set § in a topological
space {X,7) is a neighborhood of z € X ifx € 7 C & for some U € 7.
B C T is a basis for the topological space (X,7) if for each z € X and
each neighborhood S of z, we have € V C & for some V & B. B, is a
basis af x € X if each element of B; is a neighborhood of z and, for every
neighborhood S of z, we have z € B C 8 for some B & B;.

Theorem A.1.2. Characterization of a basis
A family B is a basis for some topology T for X = |J{B : B ¢ B} if and only
if

VU, VeB and VzelUNV,3IWcB suchthat z e W CUNY.
In this case, T is the family of all unions of members of B.

We shall assume that all of our topological spaces X are Hausdorff, i.e.,
that they satisfy the following property:

VoyeX, z#y, AUz, Uy € T such thatz € Uy, y € Uy, and U, N, =

Let (X, T) be a topological space and let ¥ C X, Define Ty = {Uﬂ Y:
U € T}. Assuch, (Y, 7y) is a topological space, and 75 is the induced topology
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on Y from (X, 7). Among other natural situations, the concept of induced
topology allows us to discuss the Borel algebra B(Y) in terms of B(X), as
well as Borel measurable functions on Y when we are given B(X), e.g., see
Sections 2.4 and B.7.

AsetY C X is dense in X if for each z € X and each open set U
containing x. there is a point y € ¥ NI/, According to Definition 1.2.114,
K C X is compact if every covering of K by open sets contains a finite
subcovering; and K C X is relatively compact if its closure (the smallest
closed set containing it) is compact. A topological space X is locally compact
if every point has at least one compact neighborhood, i.e., if

Vee X, 3K C X, compact, and 3V € T such that x € V C K.

Recall that a function f : Xy -+ X3 is a bijection if f is one-to-one
(injective) and onto (surjective). Two topological spaces (X;,T;), ¢ = 1,2,
are homeomorphic if there is a hijection f : X; — X, such that

YUET, fU)eET, and YV e, f YV)eT.

In this case, f is an homeomorphism. These two conditions define the conti-
nuity of 71 and f on X3 and X1, respectively, cf., the equivalent definition
of continuity for metric spaces X and Y in Definition A.4.2. This latter def-
inition emphasizes the local nature of continuity by defining continuity at a
point,

Theorem A.1.3. Urysohn lemma

Let X be a locally compact Hausdorff space. If K C X is compact and U C X
is an open set containing K, then there is a continuous function f : X — [0, 1]
suchthat f =1l on K and f=0on U™,

A topological space X is connected if it cannot be represented as a disjoint
union of two non-empty closed sets. X is locally connected if it has the follow-
ing property at each x € X: Every neighborhood of x contains a connected
neighborhood of z. If X is a locally compact Hausdorff space and i for every
two points z,y € X there exists a continuous function p : [0,1] — X such
that p(0) = z and p(1) = y, we say that X is pathwise connected.

Standard references for topological spaces include [271], [298].

Definition A.1.4. Metric space
a. A metric space X is a pair (X, p), where X is a non-empty set and p :
X % X — R? satisfies the conditions:
.VoyeX, plz,y) =0,
i.vVe,y€eX, plzy)=ply ),
W.Vaz,y.z€X, plx,z)<plz,y)+ ply,z) (triangle inequality),
w¥r,yeX, pl,y)=0=zs=y.
p is a metric. If only the first three conditions are satisfied we say that g is a
pseudometric.
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b. The open ball B(z,7), with center £ and radius , in a metric space X
is
Bla,r)={y e X :pla,y) <r}.

A metric space is a topological space and U is defined to be open if
VeelU, ZdB(z,r)Cl.

Equivalently, we can define a basis B for the topology in a metric space X to
be {B{z,r):x € X,r > 0}.

In particular, metric spaces are Hausdorfl

c. A sequence {z,, :n=1,...} C X, where X is a metric space, is Couchy
if

Ve >0, AN such that Vm,n > N, p(Zm,zn) <&

If X is a metric space in which every Cauchy sequence {z, : n = 1,...}
converges to some element x, i.e., plz,,z) — 0, then X is complete.

d. Two metric spaces (X, p;), 1 = 1,2, are isometric if there is a bijection
f X1 — X5 such that

Vz,ye X, Pl(l':y) = ,Oz(f(ﬂ?), f(y))

In this case, f is an isometry.

e. Let (X, p) be a metric space. A subset V' C X is closed if, whenever
{zn 'n=1,...} TV and p(z,,z) — 0 for some 2 € X, we can conclude
that z € V. The closure ¥ of a subset ¥ C X is the set of all elements x € X
for which there is a sequence {z, : n = 1,...} € Y such that p{z.,z) — 0.
The complement of a closed set V' is open and vice-versa.

f. The diameter of a subset ¥ of a metric space (X, p), denoted by
diam (Y), is

diam (Y') = sup{p(z, ) : 7,y €Y}.

Theorem A.1.5. Compact metric spaces
Let {X, p) be a metric space. A subset K C X is compact if and only if every
sequence has a convergent subsequence

Remark. If a topological space X has a countable basis then X is said to
satisfy the second ariom of countability. If X is a locally compact Hausdorff
space, then the second axiom of countability is equivalent to the existence of
ametric p on X and a sequence of compact sets I}, such that X = |7, F,,
F, C int F,1q; see [270], Theorem 1.5.3.

Example A.1.6. Hilbert cube

An important example of a metric space is the Hilbert cube [0,1]%. It is
defined to be the Cartesian product of countably infinitely many copies of
[0,1] equipped with the metric
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oo 1/2
plz,y) = (Z(min(l/i, |z — y«;[))z) :

g=1
foro={z;:i=1.. Yandy={yi:i=1,...}.

The following result should be compared with our construction of the
Cantor functior in Example 1.2.74.

Proposition A.1.7. There erists a continuous function f : C — [0,1]%0
that maps the Cantor set C onto the Hilbert cube [0,1]N0.

An excellent reference for metric spaces is [192].

1t is sometimes necessary to consider topological vector spaces where the
topology cannct be described by a metric, e.g., in the theory of distributions,
see Chapter 7, Example A.6.5, [235], [415], or [39], Chapter 2. In such cases
we would still like to have a notion of completeness and this is accomplished
through the theory of uniform spaces, e.g., [271].

Definition A.1.8. Uniform space
A uniform structure on a set X is a family X of subsets of X x X which
satisfies the conditions:

wYVelX {{z,o):ze X} CV,

i VVeX {(y,z): (z,y) e V}e X,

wi. YV e X, AV’ € X such that

{(z,y) : 3 z € X such that (z,2),(z,¥) e V'} € X,

w VYV, Ved VnVekX,

v YVCXx X, forwhich3aV' eXand V' CV, wehave V c X,

A uniform space (X, X) is a topological space (X, 7} with the topology
T defined by sets of the form

U={z:zxecXand3dyec AC X such that (y,2) € V € X},
for all subsets A C X and for all sets V' € X,

A uniform structure X is pseudometrizable if its corresponding topology
T has a countable hagis.

If {p;, i = 1,...} is a family of pseudometrics, respectively, metrics, on
a non-empty set X, consider the uniform structure A on X defined by the
collection of sets

{(zy) e X xX:plz,y)<e}, e>0,i=1,....

If the topology 7 corresponding to this uniform structure X has a countable
basis, then there exists a pseudometric, respectively, metric, p which induces
the same topology as (X, X).

Standard references for uniform spaces are [271], [71].
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Definition A.1.9. Normed vector space and Banach space
Let X be a vector space over F,F =R or F = C. X is a normed vector space
if there is a function ||...| : X — R* such that

.V eX, |zg]=0<=z=0,

wV¥zyeX, [z+yl <zl + |yl (triangle inequality),

W VaeF, VeeX, |az|=]|al|z|.
[|...| is & norm. A normed vector space is a metric space with metric p(z,y) =
llz - yll-

A complete normed vector space is a Banach space.

Let X be a normed vector space. Y 2, converges to xz € X, for z, € X,

n=1,... i
N
a:—an =0.
n=1

lim
N —00

3z, is absolutely convergent if

o0
E ||| < oco.
n=1

‘We have the following characterization of Banach spaces.

Proposition A.1.10. A normed vector space X is o Banach space if and
only if every absolutely convergent series is convergent.

Proof. (=} Take {zn:n=1,...} € X for which Y ||z,|| < co, and choose
e>0.If Y 07y ||lzal] < £/2, then, for each n > m > N,

mn
E Till < E.
Jj=m

Thus, 3 =, converges to some z € X since X is complete.
{<=) Let {z,, : n =1,...} C X be a Cauchy sequence in X. Hence, for
each k there is ny € N such that

1
¥m,n > ng, H.Tm —wﬂH < Q_k;

we can also choose ngyy > ng. Seb yr = Tn, — &p, , for k =1,..., where
Ty, = 0. Therefore, 3 yy. is absolutely convergent, so that by hypothesis and

the fact that
T
Z Y = Tnps
k=1

{Zn,, : m=1,...} converges to some x € X. It is easy to check that

lim |jx—z,] =0
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Let X be a Banach space over F = R or F = €. A subset V C X is
a linear subspace of X if V is a vector space over F, If V C X is a linear
subspace then its closure V in X is also a linear subspace.

The span of a subset Z C X, designated span Z, is the set of all finite
linear combinations x = 3 enxp, where ¢, € ¥ and z, € Z. (The notion
of span Z can be defined in any vector space.) Clearly, span Z is a linear
subspace of X and its closure is designated by span Z.

Definition A.1.11. Hilbert space
Let F=R or F == C. A Hilbert space H is a Banach space with a function
(veyee) s H X H — T which satisfies the conditions:

"‘J'V:E:yEHa (m,y)z(y,m),

iV z,y,z € H, ($+y,z)=(m,z)+(y,z),

#.VoclF and Va,ye H, ({azy)=a{z,vy),

wVzeH, I|z=+{(zz.

{1y o) I8 a1 tnner product.

The following result is straightforward to verify, and it does not require
completeness,

Proposition A.1.12. Let H be o Hilbert space. Then,
Va,ye H,  [(z,9)] < |l=llyll (A1)

and '
Vao,ye H lm+yl® + o —yl® =202 + ly|). (A.2)

Remark. (A.1) is the Schwarz inequality, which in the case of H = L2(X) is
the Holder inequality, see Theorem 5.5.20 and Example A.2.3. Of course, this
does not mean there is a simple proof of the Holder inequality by means of
the elementary inequality (A.1). In fact, the Schwarz inequality assumes the
existence of an inner product; and the Hélder inequality shows the existence
of an inner product for H.

(A.2}) is the parallelogram law, see Example A.2.5.

Excellent references for Banach and Hilbert spaces are [19], [194], [379],
393], [451], [502].

A.2 Examples

1. a. Let X be a topelogical space and let C(X)} be the vector space of
continuous functions f: X — C, (X)) denotes the vector space of functions
f € C(X) such that

I flloc = sup |f(z}] < o0, (A.3)
zeX

i.e., f is bounded on X.
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b. Now let X be a locally compact Hausdoril space and let Co(X) be the
vector space of functions f € Cp(X) such that

Ye>0, AK; C X, compact, for which Yz ¢ Kf, |f(z)<e. (A4)

Intuitively, f “vanishes at infinity”. (X)) is the vector space of functions
J € Cp(X) such that f vanishes outside of some compact set Ky C X. (A.3)
defines a norm on C3(X), and, with this norm, Cp(X) and Co{ X} are Banach
spaces. Co(X) is a closed subspace of Cp(X). With this norm on Cy(X), the
Urysohn lemma, gives

Cu(X) = Co(X).

In fact, for f € Cuo(X), £ > 0, and K¢ as in (A.4), choose g € C.(X) with
0<g<1landg=1on K; by Theorem A.1.3, set h = fg € C,(X), and
obtain ||f — A« <&

If X is compact we write C(X) = Cy(X).

c. Let (X, A, ) be a measure space which is also a topological space.
Since the uniform limit of continuous functions is continuous, Cy(X) can be
regarded as a closed subspace of L{P(X), defined in Definition 2.5.9. 1t is for
this reason we use the notation || ... s from Definition 2.5.9 in {A.3).

2. LE(X), 1 < p < oo, with L¥-norm | ...||; defined in Definition 5.5.1,
is & Banach space (Theorem 5.5.2). Further, the set of simple functions
> i1 @il u(4;) < oo, is dense in LE(X) (Theorem 5.5.3). In the case
that X is a locally compact Hausdorff space and p is a regular Baorel mea-

sure, we noted that

Co(X) = LE(X)
(Theorem 7.2.6).

3. For any measure space (X, A, i), Li (X) is o Hilbert space with inner
product

(frg) = fX ()90 dulz).

The fact that the integral is defined follows from the Hilder inequality (The-
orem 3.5.2b). The structurally important converse is: Let H be o non-zero
Hilbert space; then there is a set X and a linear bijection,

L: H— £4(X),

such that

(z,9) = D (L) BETHNE).

teX

The fundamental elementary results of Hilbert space theory are used to prove
thig fact and to determine card X uniquely in terms of the cardinality of
orthonormal sets, see Definition A.12.1.
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4. If the measure space (X, A, 1) is also a compact Hausdorff space and
if /A contains the Borel algebra, then

CX)CLPX)C...CLAX)CL(X)C...C LX), 1<r<p.

In (X,P(X),c), where X is topologized with the metric p(z,y) =0ifx =y
and p(z,y) = 1 if © # y, we have

AXNC.. . CPX)CTE(X)C...CINX)=Cp(X), 1<p<r

In both cases we have the inequality || ||, > || ||» so that the corresponding
injection is continuous (continuous functions are defined in Definition A.4.2).

5. a. A Banach space is a Hilbert space if and only if the parallelogram
law, iz + 9% + [z — yl|* = 2{||z}|* + ||¥}|*), is valid, see Proposition A.1.12.
Using this fact we see that there are Banach spaces which are not Hilbert
Spaces.

b. Next, we give a standard example of a non-trivial complete metric
vector space which is not a Banach space. Let X be the space of C*°-functions
on [0, 1]. Define the metric p by

oo

B IF = all ey
plfg) = % 2L+ — gligey)”

where ‘
£l = sup 79 |oo-
0<i<k

As such X is complete. If the complete metric space X is a normed vector
space with norm ||...||, it is possible to show that

Vn=1,..., 3C, such thatV f € X, for which ||f|| <1,
170 < Ch.

It is then not difficult to find f € X such that
Yn=1,..., [fe >nCs,

from which we obtain the desired comtradiction to the hypothesis that X is
normed.

6. If (X,p} is a metric space there is a complete metric space (X,7)
such that X C X', p=pon X x X, and X is dense in X. X is the set of
equivalence classes of Cauchy sequences from X, where {z,, :n=1,...} is
said to be equivalent to {yp 1 n = 1,...} if p(zn,yn) — 0. Let {z,} € X
be a Cauchy sequence, and let {{z,}} be the equivalence class of all Cauchy
sequences {z,} C X equivalent to {z,}, L.e., imy, o0 p(Zn, 2.} = 0. For two
equivalence classes, {{zn}} and {{y.}}, § is defined by
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F{{onth ({sad) = Tim plaf ),

where {z], : n =1,...} and {y,, : n = 1,...} are any representatives of the
equivalence classes {{z, }} and {{yn}}, respectively. (X, 5) is the completion
of (X, p). A relevant theorem using this concept is the following. Define

b
v f,9.€ C((a,b]), Mﬁm=Rjﬁf~w

then 5([&, b)) = Lk {[a,b]) and p(f,g) = f; If — g, cf., Theorem 7.1.1 and
the Remark at the end of Section 7.3. :

An even more basic example of the completion of a metric space is the
construction of real numbers from rational numbers mentioned in Chapter 1.

For an alternative way to describe the completion of a metric space (X, p),
let B(X) be the Banach space of bounded real functions on X with metric
o(f,g) = sup{|f(z) —g(z)| : ® € X}. Fix 2o € X and define the function
F:X — B(X), z— f;, where

fm(y) = ,O(CU,'y) - p(mo,y)-
Then, F is an isometry X — F(X) € B(X) and X = F(X).

7. Let p > 2 be a prime number. Any z € Q@ \ {0} has the unique factor-
ization x = p"g, where r € Z and where the numerator and denominator of
g € Q are both relatively prime to p. The p-adic norm ||z|| of z is |z} =p~"
and we define ||0]} = 0. It is elementary to check that

Vo,yeQ |lz+yll <max(|lz]], |y]) and |oyll ==zl (A.5)

The function py(z,y) = |z — y|| defines the p-adic metric on Q, and the
completion of € with respect to p, is the field {J, of p-adic numbers. The
completion Z, of Z with respect to p, is the ring of p-adic integers. Note
the analogy with the construction of R from @, as the completion of @ with
respect to the usual absolute value norm. For one entry into p-adic analysis,
see [385], {370].

We point out that @@, consists of all formal Laurent series in p with coef-
ficients 0,1,...,p— 1, with addition and multiplication as usual for Laurent
series, except with carrying of digits. For example, in Q5, we have

(3+2-5)+(44+3-5)=2+1-5+1-5"

@p is a locally compact Abelian group under addition, with topology
induced by the p-adic norm, see Appendix B.9 for a definition of a locally
compact group. However, an important distinction between R and (@, driven
by (A.5), is the fact that Z is a compact open subgroup of Q. This property
leads to fascinating analysis with far-reaching applications in subjects as
diverse ag number theory, quantum field theory, and wavelet theory. In this
last area, see [40].
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A.3 Separability

A topological space is separable if it contains a countable dense subset. It is
not difficult to prove the following theorem.

Theorem A.3.1. Separability of some LP-spaces, p € [1, 00)
Let (X, M(R%),m?) be a measure space, where X C R and where m? is
Lebesgue measure on X. If p € [1,00), then Lfnd (X) is separable.

Example A.3.2. L%([0,1]) is not separable
We shall prove that L3([0,1]) is not separable. Let {f, :n=1,...} be an
arbitrary sequence in L22([0,1]) and write

01=U (grga] = U

n=1 n=1
If 1

esssup | fn{x)| < =,

reE, 2

define g = 1 on Ey,. (“esssup” was defined in Definition 2.5.9.) Otherwise set
g =10 on E,. Consequently, g € L2([0,1]) and

1
Vn:l,..., Hf'f?»_g”0025
Thus, {fn : n =1,...} is not dense in LY([0,1]}. Since {fn : n =1,...} is
arbitrary, L22{[0, 1] cannot be separable.

Example A.3.3. Non-separability of some LP-spaces, p € [1,00)

The fact that a given space X is separable has no bearing on the separability
of L7 (X), 1 £ p < oo. Take ([0,1],P([0, 1]}, ¢}, where ¢ is counting measure.
If f € L}([0,1]), then f = O outside of a countable set. Thus, if {f, : n =
1,...} € LY{[0,1]}, then there is y € [0,1] such that f,{y) = 0 for each n.
Define g = 1,y € LL([0,1]) so that

V’n:l,..., Hf'n_g“lzl

Theorem A.3.4. Sequential pointwise convergence of simple func-
tions

Let (X, A, 1) be a measure space, let Y be a separable complete metric space,
and let (Y,C,v) be o measure space, where BY) CC. If f: X — Y is mea-
surable, then there is a sequence {gr * k = 1,...} of simple functions X — Y
such that {gx : k = 1,...} converges pointwise to f.

Historically, a separable complete metric space is Polish.
The next theorem states that the Hilbert cube is “universal” for separable
metric spaces.
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Theorem A.3.5. Urysohn theorem
Fuery separable metric space X is homeomorphic with o subset of the Hilbert
cube [0, 1],

Corollary A.3.6. For every separable metric space X there exists a subset
A of the Cantor set C' and o continuous surjective function f 1 A— X. If X
is compact, then A can be chosen to be closed,

Corollary A.3.6 is an extension of Proposition A.1.7 and Example 1.2.74.

A.4 Moore-Smith and Arzelda—Ascoli theorems

Let (X, p) be a metric space. We say that {Zmn} — @, Le, My novoo Tnn =
x, if
Ye>0, dNsuchthat Vim,n >N, plzmnz) <e.

The following result can be generalized to uniform spaces with essentially the
same proof.

Theorem A.4.1. Moore—Smith theorem
Let {Zmp 1 myn = 1,...} be a sequence in o complete metric space (X, p).
Assume

i 3 limy oo T = UYm uniformly in m,

. ¥n=1,..., 3 My Tmn = 2n.
Then, liMy o0 i 00 Tnyn, Mmoo lip e Tmny 008 1My oo Trn,p ol
exist and are equal,

Proof. Assumption ¢ means that
Ye>0,dK >0suchthat Vo> KandVm, p¥mTman) <Ee.

Using 4 and  we show that {y,, : m = 1,...} is Cauchy by computing

Z and  p(zk, Zpk) < Z‘

Since X is complete, 4 — w € X; and it is easy to check that

P(Yms Tmyn) <

Hm w0 = w. (A.6)
M, TL— 00
Thus,
lim lim @y, = Hm 2m,,=w.
11— 00 1L—+00 m,n—oo

Finally, in order to prove that lim, z, = w, take £ > 0 and write

Pzn, w) < plzn, Tmn) + p(Tmn, w).

Since (A.6) holds,
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3 N € Nsuch that ¥ m,n > N, P(Zmn, W) < &

and so
V>N, plzn,w) < lim plz,,2mn) +e=¢.
TR0

Definition A.4.2. Continuity and equicontinuity
Let (X, p) and (Y, 8) be metric spaces. A function ¥ : X — Y is continuous
at ¢ € X if

Ve >0, 34 > 0such that p(z,z) < d = 8(f(z), f{z)) < ¢

and f is continuous on X if it is continuous at each z € X.
A sequence {f, :n =1,...} of continuous functions is equicontinuous at
reXif

Ve>0,3d8>0suchthatVn, plz,z) <= 0(fa(2), fr(z)) <&
{fn:n=1,...}is equicontinuous on X i{it is equicontinuous at each z € X.

The notion of equicontinuity was introduced by AscoLl in 1883 [13] and
the following theorem was proved by ARZELA in 1895 and 1899 [11], [12],
cf., [230], [231]. Clearly, the theorem generalizes the Bolzano—Weierstrass
property of R.

Theorem A.4.3. Arzeld—Ascoli theorem

Let X be a separable metric space, let Y be a compact metric space, and let
{fnn=1,...} be an equicontinuous sequence of functions X — Y. Then,
there is a subsequence of {fn, : n = 1,...} which converges pointwise io a
condinuous function.

Proof. Let {z, :n=1,...} C X be dense. Since ¥ is compact,
34 Jy € Nsuch that {f.(z1) : n € J1} is convergent.

Pick J» C Jy such that {f(x2) : n € Jy} is convergent, and continue in this
way. Consequently,

Vj =1,..., 3 klggofm(wj) :g(xj)r

where ny, € Ji and limgone = co. Let z € X \ {z, : n = 1,...} with

x4, — % as p — oc. Then,

lim fr,(2q,) = fai(2), umiformlyink=1,...,
pooo

by the equicontinuity hypothesis. Also,



A.5 Uniformly continuous functions 457
Vp=1,..., klim Frel®q,) = g(xg, ).
OO
Consequently, by the Moore-Smith theorem,
3 lim f,,{z) = g(z).
k—oo

The continuity of g is straightforward to check.
]

Obvicusly the result is still true if, instead of assuming that Y is compact,
we assume that the range of each f,, is compact in Y. It is also easy to prove
that the convergence of {f,, : &k =1,...} is uniform on compact subsets of
X.

Remark. The notion of equicontinuity of a sequence can be generalized to
an equicontinucus set by replacing “V n” in Definition A.4.2 with “for all
elements of the set”. Specifically, if X is a compact set and § C C(X), then
Theorem A.4.3 can be formulated as follows: If S is pointwise bounded and
equicontinuous, then S is relatively compact in the sup norm topology on
C(X), and every sequence in S has a uniformly convergent subsequence.

A.5 Uniformly continuous functions

Definition A.5.1. Uniform continuity
Let (X, p) and (Y, 8} be metric spaces. f: X — Y is uniformly continuous if

Ve >0, 36> 0suchthat plz,y) < = 0(f(z), f(¥)) <e.

Remark. If X is a compact metric space and f: X - R iz continuous then
f is uniformly continuous. f{z) = sin(1/z) is a bounded continuous function
{0,1] — [-1,1] which is not uniformly continuous. Observe that

f:[0,1) — [0,00)

T
T

1=z

ig bijective and bicontinuous, i.e., a homeomorphism, whereas the Cauchy
sequence {1 — (1/n) : n =1,...} in [0,1) is transformed into the sequence
{n—1:n=1,...}, which is not Cauchy. In this case the range space is com-
plete and [0,1) is not complete. Such a phenomenon leads us to distinguish
between topological properties, dealing with homeomorphisms, and uniform
properties, dealing with Cauchymess, uniform continuity, and completeness,

Generally there are no relations between these two categories except the
following: Let X be o metrie space; X 1s compact if and only if it is complete
and totally bounded ((X, p) is totally bounded if
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i
Ye>0, d3,...,2, € X such that X C U B(z;,€)).
Jj=1

The proof of this theorem can be obtained by means of a circular chain of
implications in which Theorem A.1.5 is also proved, e.g., [192], pages 267-268.
In any case, for perspective, recall from Definition 1.2.11 that the compact
subsets of R% are precisely the closed and bounded subsets of RZ.

Theorem A.5.2. Unique uniformly continuous extensions

Let X be a metric space and let Y be a complete metric space. Assume that
ZC X and that f: Z =Y is a uniformly continuous function. Then, f has
o unigque uniformly continuous estension to Z.

Definition A.5.3. Absolute continuity
Let {X,p) and (Y, 8) be metric spaces and let f : X — Y be a continuous
function. f is absolutely continuous if

Ye>0,d6 >0suchthatV {z,...,2,} C X,

i—1 n—1
> pleg i) <8 = 6(f(zy), flmie1)) <.
=1 -1

Remark. Let (X,p) and (Y,4) be metric spaces and let f : X — Y be
absolutely continuous. If ¢ : X x X — R is defined by o(z,y) = plz,y) +
8(f(x), f(y)), then (X, p) and (X, o) have the same topologies and

fi(X,0) = (¥,9)

is absgolutely continuous. For X = ¥ = R, taken with the absolute value
metrie, this definition of absolute continuity characterizes the class of Lip-
schitz functions, which, in turn, is properly contained in the class of absolutely
continuous functions on R as defined in Chapter 4.

Example A.5.4. Comparison between absolute and uniform conti-
nuity

Let (X, p) and {Y,#) be metric spaces and let f: X — ¥ be a continuous
function. We shall show that it is not generally possible to find metrics o
and 7 on X and Y, respectively, so that f: (X, o} — (Y, 7) is absolutely and
uniformly continuous. Take f : {0,1] — [L,00), f(z) = 1/z, with the usual
metrics, Assume we can find o, 7 which yield both absolute and uniform
continuity. Then, from Theorem A.5.2, f has a unique uniformly continuous
extension {0,1] -» [1,00), and this is obviously false.

A.6 Baire category theorem

An excellent reference for the Baire category theorem is [352]. A metric space
is Baire if every countable intersection of open dense sets is dense. Since R is
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a complete metric gspace, Theorem A.6.1 and Theorem A.6.2b yield the fact
that R is not a set of first category, see (1.12).

Theorem A.6.1. Baire category theorem I
Every complete metric space X is Buire,

Proof. 4. We give CANTOR’s necessary conditions for the completeness of a
metric space, as promised in Section 2.1. (The converse is true and easy.)
Take {A, :n=1,...} € X where each A, is closed, non-empty, and A; 2
Ay D .. .. Assuming that lim, o sup{p(y,2) : ¥,z € A, } = 0 we verify that
NAn = {z} C X for some z € X.

For all n, let z, € An. The sequence {z, : n = 1,...} is Cauchy, for if
m > n, then

(T, ) S sup{p(y,2) 1y, z € Apy=diam 4, - 0, n— .
Here, for A C R?, we write
diam (A) =sup {|z —y| : z,y € A}

By the completeness of X there is a point z € X such that p(zy,,z) — 0. Now,
for each n, x € A, when m is sufficiently large. Consequently, z € A,
since Ay Is closed. If y € (] Ay, then p(z,y) < diam A, for each n so that,
by hypothesis, p(z,y) = 0. Thus, z = y.

ii. Let U, be an open and dense subset of X. Thus, A, = U’ is nowhere
dense, ie., int A, = 0. (NU,)" = J A, = 4 where each A, is closed. We
prove that if V' is open, then

v (ﬁ Uﬂ) #
n=1

Choose an open set Vi such that V; € V and diam V1 < 1. Since V; is not
a subset of A;,
V-l i Ul 71" wr

and V; NU7 is open.

Choose an open set Vp such that Vo € Vi N Ty and diam Vs < 1/2.
Generally, then, we choose open sets V,, with V,, € V,,_1 N U, 1 and
diam V, < 1/n. The hypotheses of part i are satisfied for V,,, and hence
MVa = {z}. Therefore,

zc ﬂ(v NUL) SN (ﬂU)

n=1
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Let X be a metric space. A C X is a set of first category if it is the count-
able union of nowhere dense sets, i.e., sets having empty interior. Any other
subset of X is a set of second calegory. RENE BAIRE introduced these notions
in 1899. Among other resuits, he proved that the countable intersection of
open dense sets (in R) is dense, and this is our definition of a Baire metric
space. The following is straightforward to prove.

Theorem A.6.2. Baire category theorem II
The following are equivalent for a metric space X.
a. X is Baire.
b. Every countable union of closed nowhere dense sets has empty interior,
c. Every non-empty open set is of second category.
d. If | J A, An closed, contains an open set, then some A; contains an
open sef.
e. The complement of every set of first category is dense in X.

Example A.6.3. Sets of first and second category
a. First category sets are not necessarily nowhere dense. In fact, take Q C R
noting that { is of first category and @ = R.

b.Let SCR.If {z—vy: 2,9 € 5} is aset of first category, then S is a set
of first category; and so, if § is of second category, then {# —y: z,y € 5} is
of second category.

c. It is easy to construct a first category set of Lebesgue measure 1 in
[0,1]. Let E, be a perfect symmetric set with m(E,) > 1 — (1/n). Then,
E = || E,, does the trick, cf., Problem 2.9 and Problem 2.10.

d. Clearly, [0,1] does not contain a countable dense G5, D = (U;. In
fact, if D = {d; : j = 1,...} weze such a set, then V; = U; \ (J/_, d,,) is
open and dense, and () V; = §. This contradicts Baire category theorem 1.

Example A.6.4. Open coverings of accessible points

Let E C [0,1] be any perfect symmetric set. As such, it is associated with
a countable set A of accessible points. (a € A C R is accessible if it is
the endpoint of a contiguous open interval.) Note that if {U,} is an open
covering of A, it does not necessarily follow that E C | JU,. For example, if
z € E\ A consider [0,z) U (z,1]. For each a, € A let {Inn:m =1,...}
be a sequence of open intervals about e whose lengths tend to 0. Then,
{an :n=1,...} =i Imn. Now let Vi, = U2, Inn s0 that BNV, is
open and dense in E. Observe that A C (>_,(F N Vy,), properly. To prove
this note that Uy, = ENVi \{a1,...,am} is open and dense in E so that [ Uy,
is dense. On the other hand, AN (M Un) =8 and M{(ENVin) = AU (N Un).

Example A.6.5. A complete non-metric space

Let C.(R) be the vector space of continuous functions f : R — C which
vanish outside of some compact set, depending on f. We define sequential
convergence in C,(R) as follows:
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fo = finCe(R), fu, f € Co(R),if [ fo — flloo = 0 and
dr > Osuch that Vn, fr = 0on [-r,r]™.

We shall prove that, with this convergence, C,(R) cannot be a complete

metric space (C.(R), p). If such a metric p exists, then C.(R) is a Baire space.

We shall show that (C,(R), p) is of first category to obtain the contradiction.
First, note that

Co(R) = | | Comy  Clog={f € Cc(R) : f =0 0n [-n,n]™}.
=1

Clearly, Cen = Ce,n, and it is sufficient to check that int C,,,, = {). Assume
not, and let V' € (., be an open neighborhood of 0 in C,(R). Choose
fr € Cemgr \ Con such that p(fy,0) — 0. Consequently, fr € V C Cpp,
and this contradicts the definition of fi. There is, in fact, a (completely
regular) topology on Co{R) whose uniform structure renders C.(R) complete
and whose sequential convergence is that given above, cf., Section 7.3.

Example A.6.6. Everywhere continuous nowhere differentiable
functions

In Chapter 1 we discussed everywhere continuous nowhere differentiable func-
tions. The soft analysis proof of their existence uses Baire category theorem
1. Take C'(|0,1]) with the ||.. .|l norm so that C'([0,1}) is complete with the

metic p(f,g) = |/ = glloo. Define
< }

Each F,, is closed and nowhere dense, and so C'([0, 1]) # | Fr- Consequently,
the set of continuous nowhere differentiable functions is dense in C{[0,1]).

Example A.6.7. Sets A such that 0 < p{ANT) < u(l) for all |

The proof of Problem 2.454 is elementary. First, let 43 C [0, 1] be a perfect
symmetric set of measure 1/4. Then, let Ay = [ J72; A2, where the measure
of Az is 1/8 and where each A; 5 is a perfect symmetric set of positive measure
in the jth contiguous interval of A;. Define all of the A; in this way, and set
A =72, 4. A generalization of this result is due to R. B. KIRK [277]:
Let the measure space {X, A, 1) be a separable metric space with metric g,
assume i is continuous, and suppose B(X) C A; then there is A € B(X)
such that for each open set I of positive measure we have

O <p(ANI) < pl).

Fnz{fEC([O,l]):Elwe[O,l] Suchthach>0,‘w

A.7 Uniform Boundedness Principle and Schur lemma

The Uniform Boundedness Principle, also known as the Banach—Steinhaus
theorem, i3 one of fundamental results in functional analysis. The first result
of this type was proved by BANACH and STEINHAUS in 1927 [24].
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Theorem A.7.1. Banach—Steinhaus Uniform Boundedness Princi-
ple

Let (X, p) be a complete metric space and let 7 be a set of continuous func-
tions X — C. Assume

Vee X, IM, >0suchthatV f € F, |f(z)l < M,.
Then, there 15 a non-empty open set U C X and a constant M such that
VecUandVfeF, |flz)<M.
Proof. For each f € F and m € N, define

Amyg={z:|f(z)] £m} and A4, = ﬂ Am, 5.
feF

Since f is continuous, A,, is closed. We show that X = |J A,,. In fact, if
z € X choose m = M_, so that z € A,.
Consequently, from Baire category theorems [ and If, 7 = int A, # (} for
some 71 and we take M = n.
0

See Theorem A.8.6 for a statement of the Uniform Boundedness Principle
in terms of Banach spaces.

As noted after Definition 6.3.1, sequentia! weak convergence in L, (X) is
actually sequential convergence for a certain topology (called the weak topol-
ogy) on Lﬁ (X). We shall discuss the weak topology generally in Appendix
A.9 but for now consider a special result for the case of £1(N). This result,
Theorem A.7.3 (the Schur lemma}, is studied in greater detail in Chapter
6. The proof we outline uses the Baire category theorems. To formulate the
Schur lemma we need the following definition.

Definition A.7.2. The weak topology o(£!(N), £~°(N})
Let F' C £°°(N) be a finite set and let @ € £1(N). Define

UlF,z,e)={y e '(N):¥Vz' € F, |2'{y — )] <&},

where, if o' = {2} € C,y = {y;} € C, and & = {z;} € C, then the
operation of =’ on (y ~ «) is «'(y - z) = 72, 24{y; — z;). The family
{(U(F,z,e) : F C £2(N),z € £(N), and € > 0} is a basis for a topology
o (£ (N), £°(N)} on £*{N). This is the weak topology for £1(N).

If U is open for the ||...||; topology on £1(N}, then U € o{(£*(N), £2°{N)).
It is not difficult to verify that

S= {m € 0H(N): Z\xﬂ = 1} ig]... |1 closed
i=1
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and
the weak closure of S is the ||... |1 closure of B{0,1),

where the ball B(0,1) is defined in terms of | ... |l;. Consequently, the topol-
ogy o{€*{N), £*°{N)) is strictly weaker than the norm topology on ¢ (N). Note
that sequential weak convergence for 1 (N) is precisely the analogue for N of
that defined for [0,1] immediately after Theorem A.7.1.

The Schur lemma [411] tells us that o (£1(N), £°(N)) and ||... |1 yeld the
same convergent sequences in £1(N), see [19], pages 137-139, cf., [210], Section
3.2, and [451], pages 327-329, for selected results from [411].

Theorem A.7.3. Schur lemma
Fle™ :n = 1,...} C £Y(N) converges to 0 in o(£'(N), £°(N))}, then
&z —o.

Proof. Let Y = {z’ € £>°(N) : sup |z}| < 1} and define

et e, sy~ S
VeV ey =2, T
jﬂ

(Y, p) is complete, and sets of the form
Va' €Y, Sps={y :|z} -y} <4, [§| < T}

are a basis at z’ for the topology of (Y, p). Next we define

Ve»0andVm, Ap=<v€Y:V¥Vn>m, Zygwgn) <eg,

i=1

It can be shown that An, is closed in (Y, p) and ¥ = | J A, so that by
Baire category theorems I and II there is m such that int A, # 0. From this
point it is straightforward to prove that [|z¥|}; — 0.

’ O

A.8 Hahn—Banach theorem

Our presentation of the Hahn—Banach theorem (Theorem A.8.3) is standard.
There are basically three distinct parts to the proof. The first and crucial step
is Lemma A.8.2 which allows us to extend continuous linear functionals from
a closed subspace Y to the closed subspace generated by ¥ and an element
x (the setting here is necessarily with real vector spaces). Second, an axiom
of choice argument is used to expand this finite procedure to extend maps
in the infinite dimensional case. Finally, an ingenious trick due to HENRI F.
BounNeNBLUST and SOBCZYK yields the result for the complex case.
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Remark. Let X and Y be vector spaces over F=R or F=C, let VC X
be a linear subspace, and let I. : V' — ¥ be a linear function. Then, there
exists K : X — Y such that K is linear on X and K = L on V. In infinite
dimensions the proof requires the axiom of choice, usually in the form of the
Zorn lemma, see Section 2.6.1. The general problem of extending continuous
linear functions L: Z — Y, Z C X, is usually intractable.

Our setting for Appendix A.8 ~ Appendix A.11 will be non-zero normed
vector spaces, although many of the results are true for Hausdorfi locally
convex topological vector spaces. There are just a few cases where we need this
generality, e.g., in Chapter 7, so we have chosen to be efficient space-wise (sic},
at least in this case, and not write-out all the details. See BOURBAKT's Hspaces
Vectorieles Topologigues or [235] for classic and classical presentations.

Proposition A.8.1. Let X and Y be normed vector spaces, and let L1 X —
Y be a lnear function.

a. Either L is continuous ot everyx € X or at nox € X.

b. L is continuous on X if and only if

AC >0 such that Yz e X, || L{z)]| < C|=|.

Proof. Part a and the sufficient condition for continuity in part b are straight-
forward.
For the necessary condition in part b, assume L is continuous at 0. Thus,

36 >0 such that |jz|| < § == [L(z)|| < 1.

If z + 0, let x5 = (6z)/(2]|z|}), and so || L{xs)|| < 1. Hence,
[ = 3llal 1)) < slzl,

and so we set ' =2/,
a

If X and Y are normed vector spaces, Z C X is a linear subspace, and
L. Z — Y is linear, we define

|IZ{] = sup{{|L(z)l| : [z} < 1, z € Z}. (A7)

Thus, ||L|| is the smallest constant (! such that [|L{z)|| < C|z| foraliz € Z.
If ||L|| < oo then, because of Proposition A.8.1, we say that L is a continuous
or bounded linear function Z — Y. Clearly, | Ll depends on the subspace Z.
This is important in what follows.

The space of continuous linear functions X — C is denoted by X’'. X' is
the dual space of X, and its elements are usually called continuous or bounded
linear functionals.

Hilbert spaces H have the property that
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H = H. (A8)

(A.8) is the Riesz representation theorem for the case of Hilbert spaces, see
the last comment in Section 7.1.

Lemma A.8.2. Let X be a real normed vector space, ¥ € X a closed linear
subspace, and Z the closed linear subspace of X generated by Y and some
s e X\Y. IfL:Y — R is linear and continuous, then there 48 a continuous
linear functional K : Z - R such that K =L on Y and | K| = ||Z].

Proof. f z,y € Y, then
L{z) — L{y) < | Lllllz+2[ + | L}y + =[;
and so

sup (= | Lfi[iu+ 2] = L{u)) = e < b= inf (||L}{lv+ 2] — L{u)).
uey (s

For fixed ¢ € [a,b] we define K(y+71z) = L{y)+7rc, wherer € R, y € Y, and
{ytrz:reRyc¥Y}=2
O

Theorem A.8.3. Hahn—Banach theorem
a. Let Y C X be a lineor subspace of the normed vector space X, and assume
LY — C is linear ond continuous. Then, there is K € X' such that K = L
onY and | K| = ||L]|.

b. If Y C X is o closed linear subspace of the normed vector space X and
z ¢ Y, then there is L € X' such that L(z) A0 and L=0 on Y.

Proof. a.i. We choose ¥ to be closed without any loss of generality. In fact,
it is easy to extend L to ¥ by Theorem A.5.2.

i1, We now prove part a for the real case, assuming that Y is closed and
that ¥ C X properly.

Let £ be the family of all continuous linear functions K : Z — R such that
YCZ K=LonY,and [K| =|L|. From Lemma A.8.2, £ is non-trivial.
We order L by setting K < K; if ZC 7y and Ky = K on Z. From the Zorn
lemma (Section 2.6.1), i.e., the axiom of choice, there is a maximal element
K : 7 — R and we easily check that 7 = X.

1. Let W be a complex vector space. If K : W — C is real linear then K
is complex linear if and only if K (ix) = iK(z). Let L : ¥ — C be complex
linear, as in part a. Set Ly = Re L, Ly = Im I, and note that L is real linear.
Thus, L{iy) = tL{y) on Y, and, using this fact, we compute that

YycY, Lo(y)=—Li(iy).

Because of part ii we can extend [y to K7 an X, considered as a real vector
space, such that || Ly || = [[K1]]. Set K(z) = Ky(z) — iK1{iz) on X.
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Similar computations show that K has the desired properties.

b. Part b is a consequence of part a. Indeed, define L,(y + rz) = r, where
y+rz, fory € Y and r € R, is a typical element of the closed linear subspace
generated by Y and z. Note that

= inf
a ;gY\IZ+yII>0

and 1
[1x(y +72)| < <lly + 72

Thus, we apply part a directly.
]

Remark. The Hahn-Banach theorem allows us to assert that if {z, : n =
1,...} € X, a Banach space, then span {z,} = X if end only if, whenever
L(z,) =0 for all n for any given L € X', we con conclude that L = 0.

By (A.8), the equivalent assertion for a Hilbert space I is that 8pat {z,}
= H if and only if, whenever (y,zn) =0 for all n and any given y € H, we
can conclude that y = 0.

Example A.8.4. LP-duality

a.Let 1 <p < oo,let 1/p+1/g = 1, and let u be a o-finite measure on
R. Then, (L% (R)) = L{(R), where g : L — C is well-defined by g(f) =
Ja F(®)g(t) du(t) for all f € LA(R), see Theorem 5.5.5. In particular, the
Hilbert space H = L;(R) has the property that (L3 (R))’ = L2(R}).

b. Let (R, .4, 1) be a measure space. Then, according to Theorem 5.5.7,
{LF(R)) is the space of complex valued finitely additive bounded set func-
tions on A4, see also Example A.11.3 as well as [146], part I, Chapter IV,
Section 8.

Example A.8.5. Sufficiently many elements in X’
Let X be a normed vector space, and choose z,y € X, = =4 y. By the Hahn—
Banach theorem we see that there is L € X’ such that L{z) # L{y). In fact,
let ¥ be the linear subspace generated by z—y, define K{r(z—y)) = r|lz—y|,
observe that | K| = 1, and use Theorem A.8.3.

The contrapositive equivalent assertion for x € X is the following:

VIeX, Lz)=0=z=0

The following restatement of Theorem A.7.1 does not require the Hahn—
Banach theorem, but it does use the terminology defined in this section.

Theorem A.8.6. Uniform Boundedness Principle for Banach spaces
Let X be ¢ Banach space, let' Y be a normed vector space, and let £ be a set
of continuous linear functions X — Y. Assume that

VeeX, 30, »0suchthatVDelL, jLiz)|<C,.
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Then,
JC >0such thatVLe L, |L|<C. (A.9)

Corollary A.8.7. Let X be a Banach space, let Y be a normed vector space,
and let {L,:n=1,...} be a sequence of continuous linear funclions X — Y.
Assume

Vee X, dL{x) eY such that lim ||L,{x) — L{z)| = 0.

Then, L1 X — Y is a continuous linear function.

Corollary A.8.8. Let X be a Banach space and let {y,: k=1,...} C X,
y € X'. The following are equivalent.

Q. SUPg>1 Ukl < oo and yr — y on a dense subset of X.

b. yy — y uniformly on each compact subset of X.

e VzeX, yulz)— ylx).

A typical application of Theorem A.8.6 is for the eage Y = Cand £ C X'.

Theorems A.7.1 and A.8.6, as well as Corollaries A.8.7 and A.8.8, can be
formulated in somewhat different settings, e.g., [134], page 83, [393], pages
43-46. Corollary A.8.7 is a useful form of the Banach—Steinhaus theorem.
BANACH and STEINHAUS' original assertion in 1927 is more general, see [19],
pages T9-80.

Remark. Given the setting but not the assumption of Theorem A.8.6. Then,
the Uniform Boundedness Principle is the dichotomous assertion: Either (A.9)
holds or there is a non-empty set Z C X for which Z = X and

VrxeZ, sup|Liz)]=oo.
LeLl

Z 1s also the intersection of a countable family of open sets.

Example A.8.9. Computation of ||L|j

a.i. Let X and YV be normed vector spaces, let Z C X be a linear subspace,
and let L : Z — Y be s non-zero linear function. The quantity ||L} defined
by (A.7) can also be written as

120 = sup{IL ()] : o] = 1,5 € 2} (A10)
and
(@i
o =sup { B o 24 10y} (A1)

a.ii. We shall verify the assertions of part a.t. f x € Z\ {0}, then

-1 )

<sup{lL(z)]: [zl =1,2 € Z};
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and, if z € Z, ||z] =1, then

) 2o
IE@ =" SS“p{ o EZ\{O}}

Thus, the right sides of {A.10) and (A.11) are equal.

Next, label either of these suprema as r > 0, and let || L|} be defined by
(A.7). For any r > ¢ > 0, we can choose y € Z \ {0} such that (r — &)||yl] <
|1 Z{v)| by (A.11). Thus, (r —¢) < ||L|| and so r < {L].

We shall assume r < ||L| and obtain a contradiction. Since ||Ll| — r =
p > 0 we have r < |[L|| — p/2 so that

| L)l <
{Ed|
ie., |L(x)| < (JL|| — p/2)|iz|]. This contradicts the definition of ||L| as the
smallest constant € for which (A.7) holds.
b. The following situation frequently arises and the result is useful. Let

X be a Banach space over C, let Z C X be o dense linear subspace, and let
L:Z — C be a linear function for which

Ve Z\ {0},

r<iz)-2,

r= sup{llli( ”)F ‘T E Z\{D}}
Then, L € X’ and |L|| = r. The proof is not difficult and first requires
proving that L is a well-defined linear function X — C. The hypotheses to
the claim can also be weakened.

c.Let X =Candlet Z=C\{2€C:|z| =1} Let L € X"\ {0}. Note
that with || L|| defined by {A.7), we have

I
1z = sp O gy
veznor ol 7 yez =1

since {y ¢ Z : |yl =1} =&

Example A.8.10. Hilbert—Schmidt operators and Schur lemma
a.i. Let (X, A, ) be a o-finite measure space, and let p % p be the corre-
sponding product measureon X x X. ff K € L X x X), then we define
the operator L as

o

L@ = [ Kniw) duw).
It is not difficult to prove that L € £{L2 (X)), the space of continuous linear

functions L2(X) — L%(X), where L? (X ) is given the L?-norm, see Appendix
A10.In fact one makes the estlmate

1] < ]X /X K (2,9 dp(z)dp(y),
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using the definition of |L||. L is a Hilbert-Schmidt integral operator.

a.#i. A natural generalization of the notion of Hilbert-Schmidt integral
operators are Hilbert-Schmidt operators acting on a separable Hilbert space
H. We say that A € £(H}, the space of continuous linear functions on H,
is a Hilbert-Schmidt operator if there exists an ONB {ep tn=1,...} for H
such that

> lA(en)lf?* < oo
n=1

We define the Hilbert-Schmidt norm of A to be

oo 1/2
s = (z |A(en>n2) |

n=1

b.i. We have seen versions of the Schur lemma in Theorem 6.2.1 and
Theorem A.7.3. In this realm of ideas, SCHUR proved the following result. If
{mn : m,n € Z} is a double sequence of compler numbers with the proper-
ties,
Z lemnl < C1, independent of m
nei

and
Z |emn] < Ca, independent of n,

meZ

then the linear operator L defined by the matriz, (Cmn)mnez, @5 an element
of L(E*(Z)). In fact,
1L)12 < C1Cs.

b.i4. Using the Schur lemma from part 4.4 and the Fubini theorem, we
shall prove that L € £(L2(X)), where the hypothesis on K from part g is
replaced by the conditions,

31 > 0 such that Ve X, f K (z,u)| duly) < Gy
x

and
3C5 > 0 such that Vy € X, / K (z,y)| du(z) < Cy.
X

The proof is based on the following calculation for f, g € Li(X ).
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(]X]XIK(:E,?;)IIJ“(w)E!g(y}I d,u(m)du(y))z
<

(/X AK(%,QNU(I)P d#(m)dﬂ(y)) (/x LK(z,y)llg(y)IZ du(y)d,u,(x))

= ([ [ m@lau] 17 aue) )
([ | [ e )| o dut)) < Crcal Bl

The following result depends on the compactness criteria in terms of sets
being totally bounded {Appendix A.5) as well as the Uniform Boundedness
Principle.

Theorem A.8.11. Compact subsets of a Banach space
Let X be a Banach space. A set Y C X is compact in X o and only if for
every sequence of linear functionals Ly, X — C, for which

VeeX, Ly(z)-—0, {A.12)

we have
L, = 0 uniformly on Y. {A.13)

Proof. We prove the necessary conditions for compactness, which only require
X to be a normed vector space. By the Uniform Boundedness Principle,
(A.12) implies that

I Msuch that Vn eN, ||L,]| €M,

and, in particular, each L, € X"
Since Y is compact and, hence, totally bounded, we have

Ye>0,3y1,...,¥m € Y such that
g

VyeY, 3y €{¥1,. . %t for which |ly — gyl < 53

By hypothesis,
IN=N()such that V> Nand Vi =1,...,m, [|L.(yx)] < %
Thus,
VnzNandVyeY, [La@)ll < |Ln@ig)ll + 1 Ln{y — g3l
cEimt
2 oM
This is the desired uniform convergencein Y.
|

See [267], pages 300-301, for a proof of the sufficient conditions, of,,
the Arzeld—Ascoli {Theorem A.4.3) and Kolmogorov compactness {Theorem
6.6.1) theorems.
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A.9 The weak and weak * topologies

Let X be a normed vector space. X’ is a Banach space normed by
Vo' e X', |lo'|| =sup{|a’(z)] : =] <1} (A.14)

As such, X' is the dual of X. We then consider (X') = X", normed anal-
ogously, noting that X’ is a Banach space and that X can be embedded
isometrically and algebraically isomorphically onto a linear subspace of X",
The mapping defining this isomorphism is given by

VezeX, z(z)=d4(z).

Tt should be pointed out that the proof that the natural mapping X —
(X")*, & — Ly, defined by L.(z'} = 2'{x), is injective requires the Hahn—
Banach theorem in the form of Example A.8.5. ({X)* is the space of linear
functions (functionals) X’ — C.)

X is reflezive if X = X" under this canonical mapping,.

Theorem A.9.1. The norm in terms of the dual space
Let X be o normed vector space, and let

B ={z'cX":|z'| <1}.
Then,
Ve X, |z|=sup{lz'(z):2' € B'}.
In particular, for each fired © € X, the linear functional L : X' — C,

z' v 2'(z), is continuous so that Ly € X" and | L.l = ||=||.

Proof. Let x € X. It is a consequence of the Hahn—Banach theorem (Theorem
A.8.3) that
4y’ € B’ such that ¢'(z) = ||z

Also,
Va' e B, |o'{z)] < |l=l| |21 <l -
Thus,
2l = y'{z) = |y (z)] < sup{la'(z)| : 2" € B} < |,

and we have the result.

Definition A.9.2. The weak and weak * topologies
Let X be a normed vector space.

The weak topology on X, dencted by o(X, X'), has a basis at 0 € X given
by sets of the form

{.TGX: [CL’;(:E)[ < &, jzl,...,n},
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where ¢ > 0 and {zf,...,=/,} is an arbitrary finite subset of X’. Similarly, we
define o{ X', X"). See [451], pages 149, 151-154, 227231, for a clear rationale
and exposition of the weak topology.

The weak * topology on X' denoted by o{X’, X), is defined analogously
with corresponding sets

{'eX |2 (z)l<e, =1,...,n},

where e > 0 and z; € X, j =1,...,n. Clearly, (X', X) is generally weaker
than o(X", X"), Le., o(X', X) Co(X', X").

The following theorem is a consequence of the Hahn—Banach theorem, a
finite dimensional algebraic result, and the definitions of the weak and weak
* topologies, see [386], pages 31-33, for a most efficient proof. It is also true,

with analogous proof, for Hausdorff locally convex topological vector spaces
(LCTVSs). '

Theorem A.9.3. Weak and weak * dual spaces

Let X be a normed vector space with dual space X'.
a. The dual space of X taken with the weak topology o (X, X') is X'.
b. The dual space of X' taken with the weak * topology o(X', X) is X.

K C X, a vector space, is convex if, for each z,y € K and 0 <r <1,
re+(1—rjye K.
An important application of Theorem A 8.3 is the following fact.

Theorem A.9.4. Equivalent norm and weak closures
Let X be a normed vector space and let K C X be convex. Then, K has the
same norm end o(X, X'} closure.

BANACH proved the following result for the case of separable spaces in
1932 [19], Chapter VIII, Theorem 3. The general version was obtained by
LEONIDAS ALAOGLU in 1940 [3].

Theorem A.9.5. Banach—Alaoglu theorem
Let X be a normed vector space. Then, B' is weak * compact.

Proof. For each r € X define
Dy ={zeC: |z <z}

Clearly, B" C D =1],.x Dz. Since the product of compact spaces is compact
(this statement is equivalent to the axiom of choice and it is called the Ty-
ehonov theorem) and since it is easy to check that B’ is closed in D, B' is a
compact subset of D,

It is immediate from definition that the induced product topology on
B’ is its weak * topology. (For the definition of the product topology see,
e.g., [271].) .

]
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In this regard we note the following fact.

Theorem A.9.6. Characterization of weak * compactness
Let X be a Banach space. Y C X' is weak * compact if and only if Y is weak
* closed and norm bounded.

Proof. The sufficient: condition for weak * compactness follows from Thecrem
A9.5.

For the necessary condition we must verily that weak * boundedness im-
plies norm boundedness (since weak * compactness yields weak * bounded-
ness). This follows from Theorem A.7.1 or Theorem A.8.6, noting that X is
complete.

O

Since weak * boundedness implies norm boundedness in a Banach space,
we see that every weak * convergent sequence is norm bounded,

Remark. We require X to be complete in Theorem A.9.6. For a counter-
example let X be the vector space of ali finite sequences of complex numbers
normed by l||z|| = sup{lz,aj}, z = {zn : n = 1,.. .} Set 2/ (z) = n|z,| and
Y={0}u{z,:n=1,...} € X" 2/, - 0in o(X’, X}, whereas ||z}, = n.
The situation is corrected by the following result: Let X be a normed vector
space and let Y C X' be weak * compact; Y is novm bounded if and only if
the weak * closure of the smallest convex set containing Y 1s weak * compact,

A useful result, e.g., [32], page 141, concerning weak * closures is the
Krein-Smulian theorem: Let X be a Banach space and let K € X’ be convex;
by definition, o net {z,} C X' converges to 0 in ihe Krein-Smulion topology
if z5, — 0 uniformly on compact sets of X { [271], page 65); then the Krein—
Smulian and weak * closures of K are identical.

Note, of course, that the finite subsets of X are compact.

Example A.9.7. A weak * closure of characteristic functions
Define ¥ to be the space of functions f : [0,1] — [0,1] having the form
f = 14, where the subset A C [0, 1] is a finite disjoint union of intervals. The
weak * closure of ¥, as a subset of Z2{[0,1]), is

{feLR(0,1):0<f <1}

Theorem A.9.8. Sequential weak * compactness
Let X be a separable normed vector space. Then, B’ is sequentially compact
in the o(X', X} topology, cf., Theorem A.9.5.

Proof. Let {z), : k =1,...} C B' and let {z, : n = 1,...} be a countable
dense subset of X. By the expected diagonal argument, there is a subsequence
{ar, :d=1,...} S{z} : k=1,...} such that

VneN, lim 2 (z,) = 5'(z,).

K immde )
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For r € X, let x,,, — , so that

: /
p]i»ngo xl’cj (IP)

exists uniformly in j. We complete the proof by the Moore—-Smith theorem.

O

Note that a compact topological space is metrizable if and only if it has
a countable basis. Thus, if a normed vector space X is separable, then B’
with the weak * topology is metrizable (by definition of the weak * topol-
ogy). However, X' is never metrizable in its weak * topology if X is infinite
dimensional.

If X is a normed vector space, then, as noted at the beginning of this
section, X' is a Banach space with the norm defined by (A.14).

Convergence criteria, compatible with the weak topology, require nets.
However, by definition, a sequence {zp:n=1,...} C X convergesto 0 ¢ X
if for every weak neighborhood I7 of {}, there is Nir such that z, € U for all
n > Npr. Thus, by the definition of U, we not only have

|zn| — 0 = &, — 0in (X, X'),
but we also have the following satisfying result, cf., Section 6.3.

Theorem A.9.9. Sequential weak convergence
Let X be a normed vector space, and given a sequence {z, :n=1,...} C X.
Then, x, — 0 in the weak topology o(X, X"} if and only if
V&'e X',  lim z'(z,) =0.
T+ 00

An immediate corollary of the Uniform Boundedness Principle {Theorem
A.8.6) for the Banach space X’ is the following result.

Theorem A.9.10. Boundedness of weakly convergent sequences
Let X be a normed vector spuce and assume xn, — z in o(X,X’). Then,
{fznll s n=1,...} is bounded.

Using Theorem A.9.8 we can prove the following “converse” to Theorern
A.9.10.

Theorem A.9.11. Weak convergence of norm bounded sequences
Let X be o reflexive Banach space and let {z, : n==1,...} be a norm bounded
sequence in X, Then, there s a subsequence which converges to some x € X
in the o(X, X'} topology, of., Theorem 6.5.5.

If “subsequence” is replaced by “subnet” in Thecrem A.9.11 the result
is immediate from the Banach—Alaoglu theorem. Tt is interesting to compare
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this result with Theorem 6.3.2 noting that L} ([0, 1]) is not reflexive. Be-
cause of Theorem A.9.11 it is easy to check that reflexive Banach spaces are
sequentially weakly complete.

By Theorem A.9.3 and since Theorem A.8.35 {s valid for Hausdorff locally
convex topological vector spaces, we obtain the following result.

Theorem A.9.12. Hahn—Banach in the weak * setting
Let X be a normed vector space and let Y C X' be a o(X', X) closed linear
subspace. If y' € X'\Y, then there is x € X such that y'{z) # 0 and

va'eY, o'(z)=0

A .10 Linear maps

If X and ¥ are Banach spaces, £(X,Y") denotes the space of comtimious linear
functions X — V. If X =Y we write £{X).

Proposition A.10.1. If X and Y are Banach spaces over F =R orF =
(X a normed vector space is sufficient), then £{X,Y) is a Banach space over
F where L = ¢1 L1 -+ caLy is defined by L(x) = 1 L1 {(2) +eala(x), . € X and
cy,cp € F, and where || L is defined by (A.7).

By Theorem A.5.2 we have the following result.

Proposition A.10.2. a. Let X and Y be Buonach spaces and let L &
L(X.Y). Then, L is uniformly continuous.

b. Let X and Y be Banach spaces and let Z C X be a linear subspace of
X.IfL e L{Z,Y), then L has a unigue continuous linear extension to Z.

Parts a and b of the following result are the Banach open mapping theorem
and Banach closed graph theorem, respectively.

Theorem A.10.3. Banach open mapping and closed graph theorems
a. Let L € L(X,Y) be bijective. Then, L' € L(X,Y).
b, Let X and Y be Banach spaces and let L1 X — Y be linear. Assume
that
|z — 2| — 0 and [L(zy) —vy| —0 (A.15)

imply y = L{z). Then, L € L{X,Y).

The proof of part ¢ depends on the Baire category theorem. Part b is clear
from part @ by applying part o to the setting

X xL(X)— X
(z, L(z)) = =,

where the norm on X x L{X) is given by ||(z, L(x)}|| = liz||+| L(z}||. Criterion
(A.15) is used to check that X x L(X) is complete.
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Example A.10.4. What the Banach closed graph theorem asserts
The Banach closed graph theorem does not say that if X x L{X) is closed
in X x Y then L is continuous. It asserts the continuity of L if each (z,y) €
X x L{X) C X xY can be approximated by {(zn,L(z,)) :n=1,...}, for
some sequence {z,} C X.

Assume {ro} € X and {yo} € Y are Hamel bases with [z4f < 1,
sup |lyal| = oc. Taking card X = card ¥ we define L(z,) = yq, and extend
L linearly to all of X. Then, L is a linear surjection and X x L(X) =X x Y,
but X x L(X) does not satisty (A.15}. Clearly, L is not continuous.

Example A.10.5. Discontinuous identity mappings on £*(N)
We shall put two norms on £*°(N) so that £°°(N) is a Banach space for each
norm but such that neither identity mapping £°°(N) — £°(N) is continuous.
Choose || ... |/eo for the first norm. To define the second norm first observe
that

card £ (N) = card £°°(N). (A.16)

To prove (A.16) consider the injection

£2°(N) — £4(N)
{zp:n=1,.. = {z,/2":n=1,.. .}

Thus, card £2°(N) < card £1(N). On the other hand, card £*(N) < card £°(N)
since £1(N) C £°(N). (A.16) follows from the Schréder-Bernstein theorem,
e.g., Problem 1.6. Consequently, if H, is a Hamel basis for {7(N), then
card H., = card Hj, and so we choose any bijection b : H, — H;. We
extend b by linearity to a bijection L : £2°(N) — £1(N). By Theorem A.10.3q,
the non-separability of £5°(N), and the separability of £1(N), we see that
L ¢ L), ().
The second norm on £°(N} is then defined by

=l = | ()1
It is eagy to check that £°°({N) with this norm is complete.

The following was given by LENNART CARLESON with regard to an inter-
polation problem [87].

Theorem A.10.6. Carleson open mapping theorem
Let X andY be Banach spaces with norms || ... [x and | ... ||y, respectively.
Assume Y CX and ||... |y 2. . llx onY. If

dM>0and3I {z, :n=1,...} CY such that,
va' e X', ||| € Msupla'(z,)],
nel

then X =Y and ||... ||y < M| ... |x.
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Let X and Y be Banach spaces. If L € £{X,Y), then the adjeint, I/, of
L is the element of £(Y7, X) defined by

VeeXandVy €Y', (I'@)(z) =y (L),

L' is an open mapping if L'(T) € X' is open for every open set U C Y7, ie,,
if
JC>0suchthatvVy €Y', ||¢|lv: < CIL (%) x

Theorem A.10.7. Surjectivity consequences of the Banach open
mapping theorem

Let X and Y be Banach spaces and assume L € L(X,|Y) is injective and
L(X) =Y. The following are equivalent:

a. LX) =Y,
b. L' is an open mapping,
c. (Y)Y =X

Part a of the following result is true when X and Y are normed vec-
tor spaces. As in Theorem A.10.7, it depends on the Banach open mapping
theorem.

Theorem A.10.8, Injectivity and surjectivity duality
Let X and Y be Banach spaces and let L € L(X,Y).

a. L'(Y") = X' <= L1 exists and L™ € L{L(X), X).

b. LX) =Y < (L)1 exists and (L)' € L(L/(Y'),Y"). Further, if
LY exists then L™ € L(L{X), X).

A.11 Embeddings of dual spaces

Let By C By, where By and By are normed vector spaces, and let Id : By —
By be the identity mapping with adjoint Id’ : B, — Bj acting between the
dual Banach spaces. By definition,

Yz € By and Yy € BL’;.’ (Id’(y))(ﬂ’,‘) = y($)>

ie, Id'(y) =y on B: C Bs.

Assume Td, and hence 7d', are continuous. Note that if y € Bj, then y|g,,
the restriction of y to By, is an element of BY. To see this first note that since
By € By and y € By, then y|p, is linear on By. y|p, is also continucus on
By because of the continuity of Id. In fact, since y is continuous on By with
the induced topology from Bs, then it is continuous on B; with its given
nerm convergence because this latter topology is stronger {finer) than the B
criterion. ( Continuity of a function for o given topology on its domain wnplies
continuity for any stronger topology on that domain.)
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Definition A.11.1. Embedding of dual spaces

B, is embedded in B{, in which case we write B C BY, if Id' is a continuous
injection. This means that whenever Id'(y) = 0 € Bi, then y = 0, ie,
y(z) =0 for all z € By.

‘With the above assumptions, we further assume that B, = By. Lety € B
have the property that Id'(y) = 0 € B]. Suppose z € By and lim, s ||Zn =
z|ls; = 0, where {z,} C Bj. Then, limy oo ¥(2r) = y(z), and y{z,) =
(Id'(y))(zn) = 0. Thus, y(x) = 0, and so y € B} is the O-element. Hence, Id’
is a continuous injection. Id’ is also the identity function, i.e., for all y € B,
Id'(y) = y on a dense linear subspace of Bs.

We can summarize what has been said by the following embedding theo-
rem.

Theorem A.11.2. Embedding theorem
Let By and By be normed vector spaces. If By C By in the sense that the
identity mapping Id 1 By — By is conlinuous, and if By = By, then B, C Bj.

Example A.11.3. Cy(R), Mp(R), and duality

a. Let Cy(R) be the Banach space of continuous bounded functions on R
taken with the L®-norm ||...loo; and let Co(IR) be the closed linear subspace
of Cy (R) whose elements f satisfy the condition that limp)—, f(t) = 0. Recall
from Theorem 7.2.7 (RRT) that (Co(R))" = Mu(R).

Cy(R) is a closed linear subspace of L>{R), and so it is natural to describe
the relation between (Cy(R})" and the dual space of L°(R), see Theorem
5.5.7. To this end, let A be the algebra generated by the closed subsets of R,
Then, let FR(X) C F(X), defined before Theorem 5.5.7, be the set of those
elements v € F(X) for which |v| is regular in the sense of Defnition 2.5.12.
It is not difficult to prove that (C3(R))’ = FR(X), see [146], Part 1, Chapter
IV, Section 6.

b. Since the continuous identity mapping Id : Co(R) — Cp(R) is not
dense, we can not conclude that (Cy(R)) C My(R), as is apparent from the
characterizations of (Co(R)) and (Cy(R)), cf.,, Theorem A.11.2.

. The characterizations of (Ch(R)) and (Cp(R)) do imply, however, that

My(R) C (Ch(R)Y'. (A.17)

In this regard, if p € (Co(R})’, then u extends to an element ., & (Cy{R})’
by the Hahn~Banach theorem. Of course, there is no A priori guarantee of a
unique extension.

On the other hand, and without invoking the characterization of (Cy(R})’,
we can see the validity of (A.17) in the following way.

Let u € My(R). If f € Cy(R) we can choose {fn} C Co(R) for which
limy o0 frn = [ pointwise on R and sup,, || falleo = ||/l < o0. Then, we
apply LDC for LII#E(R)’ which allows us to assert that f ¢ Lllm(R} and
lim, oo ||fa = fllt = 0. The integral p(f) is well defined, i.e., it is inde-
pendent of the sequence {f,} € Cu(R). Further, p : Cp(R) — C is linear. To
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prove the continuity of g on Cp(R), let f € Cy(R), let & > 0, and choose {f,,}
as above, Then,

AN > Osuch that Ve > N, |u(f — fu)l <&

and so, for such n,

()] <&+ [u(fp)l < e+ uliallfloo:

This is true for all € > 0, and so p € (Cp{R})’. We designate i so defined on
Cy(R) by p*.

The inclusion (A.17) is accomplished by the mapping p — g*. The fact
that many extensions i, of y exist does not contradict (A.17). In fact, v, =
e — ¢+ € (Co{R))’ vanishes on C(R); and if v, is not identically 0 on Cy(R},
then p. is not countably additive on B(R) and so it does not correspond to
an element of M (R).

A.12 Hilbert spaces

Definition A.12.1. Orthonormal set and orthonormal basis (ONB)

a. Let H be a Hilbert space. Elements x,y € H are orthogonel if {z,y) =
0; and this property is denoted by = L y. An element z € H is orthogonal to
the set S C H,denoted by = | 8, if {m,y} =0forally e 5. Aset §C His
an orthogonal set if x L yfor all z,y € § for whichz # 4. Aset S C H is an
orthonormal set if it is orthogonal and if ||z|| =1 for each z € S.

b. A countable orthonormal set § = {z,, : n =1,...} is an orthonormal
basis (ONB) for H if

VYreH, I{e,:n=1,...} C Csuch that szcnmn in H.

n=1

Proposition A.12.2. Let § = {z.} be an orthonormal set in a separable
Hilbert space H. Then, § is a countable set.

Proof. By separability, let 2 ={y, : n=1,...} be a countable dense subset
of H. Since § is orthonormal, we can agsert that

Y @, @ for which @ # 8, ||Jze — 25| = V2. (A.18)
Using the density, we have

2
Ve, dn=n(a) ¢ N, such that [zq — Yn(m| < mg (A.19)
We are forced into choosing a different n{c) for each c, for, otherwise, if 4,109

corresponds to both z, and xg in the sense of {A.19), then
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7o — sl < 1Za = Yawll + W@ — 25l < V2,

and this contradicts (A.18). Thus, (A.19) gives rise to an injective mapping
S — D, and, hence, S is countable,
C

Example A.12.3. Hilbert spaces and ONBs

a. H = L*(Ty) is a Hilbert space with inner product defined by (F,G) =
J1,, F(2)G(z) dz, where Taq = R/(20Z), F and G are 202-periodic on R,
and me F(z) dz is defined as the Lebesgue integral 55 ffﬂ F{x) dz. The

sequence {e~™"*/ % n € 7} is an ONB for L*(Tyg), e.g., Proposition B.8.1.
b. I = £2(7) is defined to be the vector space of all sequences f : Z% — C
with the property that

1/2
| Filezqzey = (Z |f[n]I2) < oa.

neZe

With this norm, £2(Z%) is a Hilbert space, and its inner product is given by

Vg @Y, (f,9)= Y. flnlgll

nefd
Let uy, € £2(Z%) be defined by u,[m] = §(m, n), for m,n € Z¢, where

1,if m=mn,
&, m) =
0,if m#n.

It is easy to check that the sequence {u,} is an ONB for £2(29).

c. H = L*(R) is a Hilbert space with inner product defined by (f, )
Jo f(B)g(t) dt. The Hermite functions, hn{z) = ¢ ™ Hn(2/7a), n = 0,.
where

Yn=0,.., Hic)=(-1)"e" /den )
are an ONB for L*(R), see, e.g., [490], [35], and Remark 2.4.11 in [39]. The
concept of a multiresolution analysis in wavelet theory leads to the construc-
tion of many other ONBs for L%(R), e.g., [114], [338], cf., [461].

d. H = PWq = {f € L*R) : supp f C [-£2,42]} is a closed linear
subspace of L2(R), and is the so-called Paley—Wiener space of {2-bandlimited
functions. f designates the Fourier transform of f, see Appendix B. PWp
is a Hilbert space with inner product induced from L*{R). The sequence
{(\/——21——5)7',”/(29) (dorga) : n € Z} is an ONB for PWy, where 7,,(f)(y) = fly—z)
and where
sin(2m(2t)

dQ'n’Q(t} = Tt
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In light of our mention of multiresolution in part ¢, we note that PWy, can
be considered as part of a multiresolution analysis of Z?(R) for the so-called
Shannon wavelet system, e.g., [114], [338], [108], [109], cf. [461]

The following is an immediate; useful consequence of the Schwarz inequal-
ity.
Proposition A.12.4. Continuity of the inner product
Let H be a Hilbert space. The inner product is continuous on H x H, i.e.,

if {zn :n=1,...} €I convergestox € H end {y, :n=1,..} CH
converges to y € H, then

ﬂli_,ngo<$”’ Un) = {Z, ).

Theorem A.12.5. Consequences of orthonormality
Let H be o Hilbert space and let {x,, : n=1,...} be an orthonormal sequence.

a. Bessel inequality. The mapping
L:H — £*(N)
A20
v (v} (A.20)

is well-defined, linear, and continuous; in fact

VyeH, Y [z < [lyl®

n=1

b. For eachy € H, Y (y,%n)zs converges in H.
C. Y. cnTy converges in H if and only ifc={c,:n=1,...} € £2(N).
d. If y = coxyn converges in H, then each ¢, = {y, T,).

Proof. i. Let y € O, let F C N be finite, and suppose {c, : n € F} C C.
Using orthonormality, two direct calculations yield

2
Z Cnnl|| = Z len|? (A.21)
nek ncr
and 9
0<lly—> (wmaa|| =lvl®— > =) (A.22}
ner nel

#. The Bessel inequality (part o) is immediate from (A.22). In particular,
{{y,Tn)} € £2(N). Since H is complete, to prove part b we need only show

that .
{sn}= {Z(y,:ﬁn)mn} , N>0,

n=1
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is a Clauchy sequence in H. This is a consequence of {A.21) and the fact that
{{y, )} € £3(N), which, in turn, was a consequence of part a. Part ¢ also
follows from (A.21).

ii4. To prove part d, we use the orthonormality and the continuity of inner
products {(Proposition A.12.4) to compute

(y,0n) = lim <Z cmscm,wn>=cn- 0

]

The following result is also elementary to verify. One efficient route is to
prove the implications: a implies b implies ¢ implies d implies e implies a.

Theorem A.12.6. Parseval formula and ONB
Let H be o Hilbert space and let {xn 1 n=1,...} be an orthonormal sequence.
The following are equivalent.

a. {z,} is an ONB for H.

b. Parseval formula.

o0
Vo,ye H, {(z,y) Za::vﬂ

c. The mapping L of (4.20) (in Theorem A.12.5a) is a linear surjective
isometry, and, in fact,

1/2
VyeH, |yll= (Zly,mn) :

d. span {z,} =H.
e. If (y,zn) =0 for each n €N, then y =0.

Because of Example A.12.3a, the coeflicients {y, z,) for an ONB {z,} C
IH are called the Fourier coefficients of y € H, cf,, Definition B.5.1.

Theorem A.12.7. Hilbert space Fourier series
Let H be o Hilbert space and let {x, :n=1,...} be an ONB for H. Then,

YyeH, y= Z(y,mﬂ)mn in H.

Proof. It y € H, then > {y,zn)z, = x in H for some z € H by Theorem
A.12.5b. Hence,
Yne Zdv <$: I'n) = (y:wn)

by Theorem A.12.5d. The result follows by Theorem A.12.6, using either the
equivalence of parts @ and ¢ or of parts a and e.
!
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Remark. a. By the definition of an ONB, if H contains an ONB, then H
is separable. The converse is also true: If H is o separable Hilbert space,
then H contains an ONB. The proof of the converse has four elementary
steps. First, if § = {x, : n =1,...} is a countable dense subset of H, then
span {z,} = H. Next, we choose a linearly independent subset {y.} of {z,},
which also has the property that §pan {y,} = H. This can be accomplished
both constructively and iteratively by throwing-out those x, which are linear
combinations of finite sets {z; : j € F' and § # n}. Third, the Gram-Schmidt
orthogonalization procedure, e.g., [194}, pages 21-22, constructs {u, } in terms
of {yn} with the properties that {u,} is orthonormal and 5pan {u,} = H.
Finally, we invoke Theorem A.12.6 to complete the proof.

b. Let X be a Banach space over C. A sequence {z, :n=1,..} C X
is a Schauder basis for X if each z € X has a unique representation z =
Yo en{T)n, where each ¢, (x) € C and where the series converges in X in
the ordinary sense that

N
Jn > et =

If {z,} is a Schauder basis for X and if we consider {c.(z)} as a sequence
of mappings ¢, : X — C, z — ¢,(z), then each ¢, € X', e.g., [430], page
20. The situation in part ¢ leads to the question (the basis problem), posed
by BANACH in 1932 [19], of whether or not every separable Banach space
containg a Schauder basis. Using Walsh functions and lacunary Fourier series,
PER ENFLO proved in 1973 that there are separable Banach spaces having
no Schauder basis [154], see [406], especially Sections 1.1 and 5.6.

Definition A.12.8. Direct sum and orthogonal complement
et. Let B be a Banach space, and let X, ¥ C B be linear subspaces of B for
which XNY ={0}and X +Y = {z+y:z € X,y € Y} = B. We denote
this situation by

B=XaY,

and B is the direct sum of X and Y.

b. Suppose B = X &Y. Let 2 € B and assume z = x1+y1 = T2+y2, where
z; € X and y; € Y. Then, 21 —z2 = yo — 1. Thus, &1 — 22, 2 —1h € X NY
and so x1 == xy and y; = yo. Therefore, if B =X &Y, then each z € B has
a unigue representation z =x 4y for somex € X andy €Y.

c. Let H be a Hilbert space, and let X C H be a subset of H. The
orthagonal complement X+ of X is theset {y€ H:Vz € X,z L y}.

d. Let X be a closed linear subspace of H. It is not difficult to prove
that for each z € H there are unigue elements z € X and y € X+ such that
z = x +y. The proof requires the following two results:

i. For each z € H there is a unique element ¢ € X such that

2 —af) = nf{jlz— v : w € X};
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i. T z€ H and © € X, then {z — y,w} = 0 for all w € X if and only if
|z — || = inf{{|z — uf : u € X}.

e. From part d, we see that if X # {0} is a closed linear subspace of H,
then X1 is a closed lincar subspace of H,

H=X®X",

and (X))t = X. We refer to X @ X+ as an orthogonal complement direct
sum.

A.13 Operators on Hilbert spaces

In the case of Hilbert spaces Hy and Hs over F =R or F = C, we write
Vaeec HyandVye Hyy, {(L{x),vm =z, L' () (A.23)

to define the adjoint L' of L € £(H;, Ha). The adjoint was defined for Banach
spaces after Theorem A.10.6. In (A.23) we have used the fact that Hilbert
spaces H have the property that H' = I of (A.8), cf., Example A.8.4b.

We shall now make use of the orthogonal complement (Definition A.12.8)
and of the range and kernel of an operator L € £{H1, Hz). The range of I,
also called the image of L, is defined as R(L) = {Lz : x € Hy} C Hz; and
the kernel of L, also called the null space of L, is defined as the closed linear
subspace ker L = {x € Hy : Lz = 0 € H,}.

Theorem A.13.1. Kernel and range properties for Hilbert space op-
erators
Let Hy and Hy be Hilbert spaces over F =R orF = C, and let L € £{H;, Hy).
a. I/(Hs) = Hy if and only if L™ ewists and L™* € L(L{H,), H;).
b. L{Hy) = Hy if and only if (LY exists and (/)% ¢ L{L/'(Hy), Hy).
Further, if L™ exists, then it is in L{L{Hy), Hy).
e. If L7 exists and L= € L(H,, Hy), then (L))~ € L(Hy, Hy) and

(L.')ul — (Lwl)f.

d. ker L = (R(IN)L, ker I/ = (R{L))*, R{L) = (ker L)+, and R(L') =
(ker L)1,

Let H be a Hilbert space over C and let X # {0} be a closed linear
subspace of H. P : H — H is the orthogonal profection onto X if

VeecXandVyec XY, Pty ==z

The orthogonal projection onto X is an element of L{H) and, in fact, |P|| =
1. L € L(H) is self-adjoint or Hermitian if L' = L. The orthogonal projections
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of H are the building blocks for the theory of self-adjoint operators in the
sense that every L € L(H) is the limit in norm of a sequence of linear
combinations of orthogonal projections, see [194].

An elementary calculation yields the following result.

Proposition A.13.2. Let H be a Hilbert space over C. P € L(H) is an
orthogonal projection onto some closed linear subspace of H if and only i P
is self-adjoint and P? = P,

Let X C H\ {0} be a closed linear subspace of the Hilbert space H over
C, and let L € £(H). X is an L-invariant subspace if L(X) C X. There is
the following relationship between invariant subspaces and orthogonal pro-
jections.

Theorem A.13.3. Invariant subspaces and orthogonal projections
Let X C H\ {0} be a closed linear subspace of the Hilbert space H over C,
and let I € L(H). X is L-invariant if and only if LP = PLP, where P is
the orthogonal projection onto X.

Remark. The invariant subspace problem is to determine whether or not,
for any given Hilbert space H over C, every L € £{H) has a non-trivial I-
invariant subspace. There i a spectacular positive solution due to VICTOR
LomMONOSOV, which is even valid for Banach spaces for the case of compact
operators. (Compact operators I € L(H} are those for which any sequence
{z, :n=1,...} C H of unit norm elements has the property that {L(z,) :
n == 1.} has a convergent subsequence in H.} There has been progress
since LOMONOSOV but the general problem is open, see [359].

Remark. It is elementary to check that L € L(H)} is self-adjoint if and
only if {(L(z),z) € R for all z € H. One direction is immediate: L' = L
implies (L{z),z) = {z, L(x)) = (L(x),s). Conversely, {L(z),z) € R implies
(L{z+ey),ztey) = {z+ey, L{z+oy)) for all 2,y € H and ¢ € C; and using
the hypothesis again on this equality we can calculate that ITm {eL(y),z} =
T {cy, L(z)), which in turn gives L' = L by considering ¢ = 1 and e = 1.

We shall say that L € L{H) is positive if (L{x),z) > 0 for all z € H.
By the above observation we see that if H is a complez Hilbert space and
L € L(H) is positive, then L self-adjoint.

Let Hy, Hy be Hilbert spaces over C. U € £{H, Ho} is an isometry if
() e, = x|z, for all @ € Hy. f H = Hy = Hy and U € L{H) is a
surjective isometry, then U is a unitary operator.

Proposition A.13.4. Let Hy and Hy be Hilbert spaces over C, and let U €
L{H;, Ha).

a. The following are equivalent:

i. U 1s an isometry;

#. U 45 the identity mapping I'd on Hy;
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i Yo,y € Hy, (U@),Uy)) a, = (z, ) B,

Further, if U is a surjective isometry then U'U is the identity mopping Id on
H,.

b. Let H = Hy = Hy. U € £{H) is unitary if and only if U™ exists on H
and U~Y = U’'. Thus, unitary operators U are characterized by the property
that

UU = Id=U'U.

Example A.13.5, Unitary operators

The Fourier transform mapping F on Lfnd(]R‘id), the DFT mapping Fn on
L%(Zx), and the Hilbert transform mapping H on L*(R) are all umitary
operators, see Appendix B.

A .14 Potpourri and titillation

1. At the beginning of the Preface we referred to this book as a paean to 20th
century real analysis. This development of real variables, measure theory, and
integration theory was one of several interleaving intellectual threads through
the century. One such journey is the theory of frames.

With Theorem A.12.6 as a backdrop we make the following definition,
which, at first blush, may seem to be an effete generalization of an ONB. Let
H be a separable Hilbert space. A sequence {z, :n=1,...} C H is a frame
for H if there are A, B > 0 such that

VoeH,  Ale|® <) ez < Bl

n=1

The constants A and B are frame bounds, and a frame is tight if A = B. A
Trame is an exact frame if it is no longer a frame whenever any of its elements
is removed. The following is the basic decomposition theorem for frames.

Theorem A.l4.1. Frame decomposition
Let {z,, :n=1,...} C H be a frame for H, and define the mapping

S:H—H

oo
T Z(a:, T e
n=1

Then, S is a continuous bijection onto H, and

o0 o

VeeH, z=3% (5,5 (an))zn =Y {(x,2.)S  (zn). (A.24)

n=1 n=1
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In Theorem A.14.1, the assertion that S is a continuous bijection onto H
implies §~% : H — H is continuous by Theorem A.10.3. Generally, we refer
o any continuous bijection L : Hf — H as a topological isomorphism, see [45],
Chapters 3 and 7.

Expositions of the theory of frames are found in [503], [114], [45], and [102].
The theory was explicitly formulated by Ricaarp J. DUFFIN (1909-1996)
and ALBERT CHARLES SCHAEFFER (1952) [143]. What is truly remarkable
is the genuine applicability of the theory of frames in addressing sampling
problems, erasure problems associated with the internet, quantization prob-
lems arising in audio, image processing problems, and a host of other prob-
lems, e.g., see [98], [99], [311], [452]. A reason for this applicability is the
effectiveness of frames in providing numerically stable, robust, and gener-
ally “inexpensive” decompositions; and this reason is due to the fact that
frames are generally not ONBs or even Schauder bases, even though there
are representations such as (A.24}).

In order to describe some of the early developments of frames, we first
expand on the definition of a Schauder basis in the setting of a separable
Hilbert space H. A Schauder basis {z, : n=1,...} for H is an unconditional
basis for H if

3C > 0 such that ¥ F C N, where card F' < co,
and Vb,,c, € C, where n € F and |bn) < |eal,

Z bz, Z cnZnll.

nel neF

<C

An unconditional basis is a bounded unconditional basis for H if
JA,B >0 such that YneN, A<|z,|<B.

Finally, a Schauder basis {z, : n=1,...} for H is a Riesz basis for H if there
is a topological isomorphisin on H mapping {zn : n =1,...} onta an ONB
for H.

In 1936 KOTHBE [292] proved that bounded unconditional bases are exact
frames, and the converse is straightforward. Also, the category of Riesz bases
is precisely that of exact frames. Thus, the following three notions are equiva-
lent: Riesz bases, exact frames, and bounded unconditional bases. Besides the
article by DUFFIN and SCHAEFFER, BARU's characterization of Riesz bases
(1951) [26] is fundamental in this realm of ideas. From our point of view, her
worl has all the more impact because it was motivated in part by her early
research, with others in the Russian school, in analyzing RIEMANN’s sets of
uniqueness for trigonometric series, see Section 3.8.4.

From a functional analytic point of view, in 1921 VITALI [473] proved that
#{x,:n=1,...} is a tight frame with A = B =1 and with ||z,|| = 1 for
all n, then {z, : n=1,...} is an ONB. Actually, VITALIs result is stronger
for the setting H = L?([a,b]) in which he dealt.
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Frames have alzo been studied in terms of the celebrated Naimark dilation
theorem (1943), a special cage of which asserts that any frame can be obtained
by “compression” from a basis. The rank 1 case of NAIMARK's theorem is the
previous assertion for tight frames. The finite decomposition rank 1 case of
NAIMARK's theorem antedates NAIMARK’s paper, and it is due to HADWIGER
(1940) and GasToN JuLia (1942). This is particularly interesting in light
of modern applications of finite unit norm tight frames in communications
theory. In this context, we mention CHANDLER DAvIS’ use of Walsh functions
to give explicit constructions of dilations [121]. DAvis [122] also provides an
in-depth perspective of the results referred to in this paragraph.

Other applications of NAIMARK’s theorem in the context of frames in-
clude feasibility issues for von Neumann measurements in quantum signal
processing.

The general theory of frames was inspired by the study of non-harmonic
Fourier series and Fourier frames. Just as we define Fourier series in Example
3.3.4 and Appendix B, we define non-harmonic Fourier series to be of the
form 3,4 caen, where A C R is countable and ey = e~27®*, Typically, we
investigate the elements of Z?([—R, R]) which can be represented in L?-norm
by such series in a manner analogous to Theorem A.14.1. As such, Fourier
frames can be thought of as going back to DINT (1880) and his book on Fourier
series [136], pages 190 ff. There he gives Fourier expansions in terms of the
set {ex : A € A} of harmonics, where each A is a solution of the equation

z cos(wz) + asin(rz) = 0. (A.25)

Equation (A.25) was chosen because of a problem in mathematical physics
from RIEMANN's and later RIEMANN-WEBER's classical treatise [374], pages
158-167. DINIT returned to this topic in 1917, just before his death, with a
significant generalization including Fourler frames that are not ONBs [137].

The inequalities defining a Fourier frame {ey : A € A} for L%(|—R, R])
(of which our definition of a frame is a natural generalization) were explic-
itly written by PALEY and WIENER [353], page 115, inequalities (30.56). The
book by PALEY and WIENER (1934}, and to a lesser extent a stability theorem
by (G. D. BIRKHOFF (1917), had tremendous influence on mid-20th century
harmonic analysis. Although non-harmonic Fourier series expansions were de-
veloped, the major effort in the study of Fourler systems emanating from [353]
addressed completeness problems of sequences {e) : A € A} C L?([-R, R)),
i.e., on determining when the closed linear span of {ey : A € A} is all of
L%([—R, R]). This culminated in the profound work of BEURLING and MALLI-
AVIN in 1962 and 1966 [59], [60], [286], see [43], Chapter 1, for a technical
overview.

A landmark on the road to the results of BEURLING and MALLIAVIN is the
article by DUFFIN and SHARFFER. In retrospect, their paper was underappre-
ciated when it appeared in 1952. The authors defined Fourier frames as well
as the general notion of a frame for a Hilbert space H. They emphasized that
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frames {z, : n = 1,...} C H provide discrete representations & = oo | ¢np
in norm, as opposed to the previous emphasis on completeness. These discrete
representations for Fourier frames provide a natural setting for non-uniform
sampling, e.g., [43], Chapter 1, [223], [500], [165], [216]. DUFFIN and SHAEF-
FER understood that the Paley-Wiener theory for Fourier systems is equiva-
lent to the theory of exact Fourier frames. (We noted above that PALEY and
WIENER used precisely the inequalities defining Fourier frames.} DUFFIN and
SHAEFFER also knew that generally they were dealing with overcomplete sys-
tems, a useful feature in noise reduction problems and the other applications
we have mentioned.

The next step on this path created by DUFFIN and SHAEFFER is the article
by DAUBECHIES, (FROSSMANN, and MEYER [115]. From the point of view of
the affine and Heisenberg groups, and inspired by DUFFIN and SHAEFFER,
this article establishes the basic theary of wavelet and Gabor frames. About
1990, DUFFIN expressed satisfactory surprise to one of the authors that the
theory of frames had risen like a phoenix almost 40 years after its creation.






