_Z}?f'jr‘mﬁm a,m.z,t‘" M&p&-‘}«n /4,4@/?’57\5 '

CEZ% 5 é%éf“c@f’?y ¢ and .
B Fourier analysis Wﬁ Sk Cza ) q
/

B.1 Fourier transforms

Throughout the text of this book there are many examples and problems
dealing with the notion of Fourier series and Fourier transforms, see, e.g.,
Examples 3.3.4, 3.6.8, 4.4.7, 45.7, and Problems 3.14, 3.28, 4.5, 4.17, 4.44,
5.20. In this appendix we give a brief outline of the basic elementary theory
of classical Fourier analysis. There are many excellent texts and expositions
including [39], [66], [268], [289], [437], [509], (151], [262], [455], [27].

Definition B.1.1. Fourier transform on L. (R}
a. The Fourier transform of f € L} (R) is the function F' defined as
= / Fflae =y feR=R. (B.1)
R

Notationally, we write the pairing between the functions f and F in the
following way: A
F=Fr

The space of Fourier transforms of L2 (R) functions is denoted by A(R), i.e.,
ARY={F:R>C:3felLl L {R) such that f = F}.

b. Let f € L} (R). The Fourier transform inversion formula is
£@) = [ Pt de.
i®

We use the notation, F = f, to denote this inversion. See [39], pages 2-3, for
a formal intuitive derivation of the Fourier transform inversion formula by
means of a form of the uncertainty principle. The Jordan pointwise inversion
formulae gives an explicit theorem. Also, see Thecrem B.3.7.

Theorem B.1.2. Jordan inversion formula
Let f e LL(R). Assume that f € BV {[zo — €,z0 +£|), for some zo € R and
g > 0. Then,

f($0+) + f( — lim f f 27|‘sz df

2 M-—roo
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Example B.1.3. f € L. (R) does not imply f € L1 (R)
Let .
flz) = H(z)e e,

where 7 > 0 and H is the Heaviside function, i.e., H = 1jg . Then,

7O = 5rp e # (B,

Theorem B.1.4, Algebraic properties of Fourier transforms
a. Let f1,f2 € LL (R), and assume c1,c € C. Then,

VEER, (cifi+eafa)(€) = cfi(6) +eafa®).
b. Let f € L. (R) and assume F = f € L}R(I@) Then,
VezeR, F(x)=f(-z).

c. Let f € LY (R). Then,

veeR Fo=F©.
For a fixed v € R we set

ey {.’E) — eQm’:c'y.

For a fixed ¢t € R and for a given function f : R — C, the translation operator
7y is defined as

n(f)@) = flz —1),

and, for a fixed A € R\ {0} and for a given function f:R — C, the dilation
operator is defined by the dilation formula,

alz) = Af(Az).

Example B.1.5. Dilation and the Poisson function
If f(z) =e 2=l r > 0, then

A 1 1 1 EN
&) = ;Plfr(ﬁ) RNy € L (R),

where P(¢) = 1/(n(1 + £2)) is the Poisson function.

Proposition B.1.6. Let f € L1 (R), lett € R, let~ € R, and let A ¢ R\{0}.
Then, .

(70 =m0,
i (r(£))(€) = ee(§)F (),
i, (£)°(6) = (VIFE/N.-
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In the following result we shall assume the existence of a pair (f, F') of
functions, such that . 3
F=f and f=PF. (B.2)

We shall not be concerned with correct mathematical hypotheses for asserting
the existence of the Fourier transform or of the inversion formula.

Proposition B.1.7. Assume there exists a pair (. F) of functions which
satisfies (B.2).
a. [ is real if and only if

F(§) = F(=¢).

In this cose,

Fig) = /Rf(m) cos{2nzt) dz — E/Rf{:r:) sin(2mzg) dx

and

f{z) = 2Re fo B F(£)e?miet ge,

b. f is real and even if and only if F' is real and even. In this case,

Fig) = 2/000 fx) cos(2rzg) da

and

flx)y =2 /000 F(&) cos(2nzE) dE.

c. [ is real and odd if and only if F' is odd and imaginary. In this case,

F(&)=—-2¢ /000 flzysin{2mzf) dx

and

flzy=2¢ /DDO F(&)sin{2mxf) dE.

Example B.1.8, The Gaussian

Let fi{z) = e‘”"”z, 7 > 0. We could calculate f by means of contour integrals,
but we choose a real, and by now classical approach [168], page 476. By
definition of f , which is real and even, we have

(FY (&) = —2ri fm e eI g, (B.3)

Noting that
2 (e_mmz) = OrrzeTE

ax
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we rewrite (B.3) as

(f)’(g) = —271"1‘.'/%(5"‘"“"332}’6—2#73:35 dx

3 R R
_ [8 AT o izt

T
271'{

oo " .
—/‘e*"”'” (—2mig)e” 8 dg
—w I

&

Thus, f is a solution of the differential equation,

271'5
T

Fig) = B(); (B.4)

and (B.4) is solved by elementary means with solution
F(g) = Ce ™/,
Taking £ = 0 and using the definition of the Fourier transform, we see

that
C= j e g,
R

In order to calculate C' we first evaluate ¢ = fooo e du.

o0 [o.=)
ﬁ:/ 4@[ et dt
2 w2
j‘/ Hﬂ@ﬁ—/ j e~ rdrdd
gy —
_4L du = 4

Thus, a = 4 and so
j e dy = Nz
R
Consequently,

1

1 2
C:/e*”mzdt:—fe"“ du = —=.
R vTT IR VT

Therefore, we have shown that
. 1 2
_ —wES Sy

We write
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G(z) = —\/1—%6:”2

so that if A > 0, then
2
(GA() = s,

In particular,
1 “
W(G\/ﬁ) = G wir

and hence (G )" = G . We refer to G as the Gauss function or Gaussian,
and note that f G(z)dz = 1.

B.2 Analytic properties of Fourier transforms

Theorem B.2.1. Boundedness and continuity of Fourier transforms
Assume f € L% (R).

a.v € R, |f@) < | flh.
- b.Ye>0,36 >0 such that V£ and V ¢, for which |{| < 4, we have

176+ 0) = F&)| <&, e, f is uniformly continuous.

Proof. a. Part ais immediate from the definition of Fourier transform.
b. First, we note that

e+ FOI< [ 1@ e <1] da.

Let gc(z) = |f{z)||e~?"**¢ —1|. Since lim¢ o g;(x) = 0 for all z € R, and
since ige(z)| < 2|f(x)|, we can use LDC to obtain

lim ) dz =0,
Yoy / 9c(a)

This limit holds independently of £, Consequently, we have
Ve >0, 3¢o > Osuch that V ¢ € (—=(o, ) and V€ R,  |f(e+O)—=F(O)] < e

This is the desired uniform continuity.
[}

The next result has essentially the same proof as the Riemann-Lebesgue
lemma for L (T), see Theorem 3.6.4.

Theorem B.2.2. Riemann-Lebesgue lemma for Ll (R)
Assume f ¢ L (R).

lim f(£)=0.

|§i—c0
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Theorem B.2.3. Differentiation of Fourier transforms
a. Assume that ™ n > 1, emists everywhere and that

Flfoo) = ... = F" D (+o0) = 0.

Then, A
(FY(E) = 2mig) ().
b. Assume that x™ f(z) € L1 (R), for somen > 1. Then, z* f(z) € L} (R),
k=1,...,n—1, (f)’,...,(f)(”) exist everywhere, and
Vk:(},...,n, ((—2ﬂz)kf()) A(&) :f(k)(g)

Proof. a. In the statement of the theorem, f(+o0) = 0 denotes the facts that
limg.t oo F{z) = 0. Using integration by parts (Theorem 4.6.3) we compute

T

T
{n) DAL E do — (n—1)7,\ ~27izk
[ 1P@e e da Dt

T
+27ri§/ FOD(g)em2minE gy,
-5

Iterating this procedure we obtain that
n—1

Z (ng)j f[’”'“(j‘Fl)) (z)e*i’«ﬂiwi T

-5

e
/ f('n) (I)Bfkm'wg dr —
-8

=0

T .
+ (2mig)™ f_ ) Fx)e= 28 dp,

Letting 5,7 — oo, the right hand side converges to (2mig)” f (€) and the
result is proved. R
b. Without loss of generality we assume that n = 1 and we fix £ € R.

Then,
£ _F ] —2mimd __
f(€+ G) f(g) —_ / f(m)ew%mmg (e 1) der.
¢ R ¢
If we denote the integrand on the right hand side by f(x, ()}, then we have

[f e, Q)] < dmlaf ()],

which follows from the inequality

e—-27ri:r§ -1

¢

' < 4|zl

Moreover, we have that

lim f(, ¢) = —2mizf (z)e =",
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Thus, we can use LDC to assert that

oy FEHO 1O

Jim R = /]R(—Qﬂ"z‘:ﬂ:)f(ﬂ:)e_meE dz.

Example B.2.4. The role of absolute continuity

a. We recall from Section 4.6 that the facts that f is differentiable m-a.e. and
that f, 7' € LL (R} do not imply that f! is absolutely continuous. Therefore,
it i3 not necessarily true that

VEER, (f)Y(e) = 2mitf(¢). (B.5)

Consider the Cantor function Cp associated with the usual Cantor set (7, see
Example 1.3.17. Let

flz) = Cale+1)1_1,9 + (1 —Co(z)ip,y.

Clearly, f is a continuous compactly supported function of bounded variation
on R for which f/ = 0 m-a.e.. In particular, £, f’ € L} (R) and (B.5) fails,
cf., Theorem 4.6.8,

b. In obtaining the formula

fm £ (@)e T g = (2mig)"F(€), (B.6)

we use a subtle fact that everywhere differentiability of f*~1 allows us to
deduce it is absolutely continuous, see Theorem 4.6.7.

Equation (B.6) is also valid, without the aforementioned subtlety, if the
hypotheses, that £~ is everywhere differentiable and f® e L (R), are
replaced by the hypothesis that f™ be piecewise continuous.

c. The assumption in Theorem B.2.3 that f({£co) = ... = f® V(too) =
0 is not necessary. For simplicity, let n = 1, and assume that f, f' € LL (R)
and that f is absolutely continuous. For fixed ¢ € R and ¢ € C, set F(z) =
c+ [ f(t) dt. By FTC-1, F is absolutely continuous and F' = f’ m-a.e.
Since f is absolutely continuous, we have f = F + C on [o,00), for some
C € €, and consequently,

Vz€&la,oc), flz)=F(a) —O—C-l—/m F() dt.
Therefore, f(a) = F(a) + C and
f@)- i = [ rod

This observation, combined with the fact that f' ¢ L. (R), impiies that
limg, 4o f{z) exist. Moreover, since f € L1 (R), lim,_, 1o f(z) = 0.

m
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Example B.2.5. C5(R)\ AR) # ¢
Theorems B.2.1 and B.2.2 allow us to conclude that A(R) C Cp(R). It is not
difficult to see that the inclusion is proper. Indeed, let F' be defined as

1 -
Fle) = T HE>e,
fo<e<e,

e’

on [0,00) and as —F'(—§) on (—o0,0]. Then, F' & C’g(]ﬁ). The fact that F ¢
A(R) depends on the divergence of

oo 1
fe Elogle)
cf., [39], [195].

This function F is not an isolated example. In fact, A(R) is a set of first
category in Oo(]ﬁ). Even more, a Baire category argument can also be used
to show the existence of F & C,(R) for which F ¢ A(R). Explicit examples
of such functions are more difficult to construct, but it is possible to do, e.g.,
define the butterfly function,

| Lsin(2mdng), if o <] < o,
B{E)*{o, if€=0or ¢ > 1,

see [224].

B.3 Approximate identities
In Problem 3.5 we defined the convolution f* g of f,g € L. (R) to be

T) = T —1)dt = T — dt.
fra@) = [ Foate =1 de = [ fo =)o) s
Proposition B.3.1. Let f,g ¢ L} (R). Then, f+gc L} (R) and

(F *9)°(€) = F(&)ae).

Proof. The assertion that f % g € L1 (R) is part of Problem 3.5. Thus, we
can use the Fubini-Tonelli theorems {Theorem 3.7.5 and Theorem 3.7.8) to
compite

70r©) = [ [ 1o~ ta0e deda
= / f F(z — £)g(t)e2milE=tE g 2mite gy gy
RJVR

= /}R (fm Flz —t)e~2milz=2¢ dsc) g(t)e 2 gt
= [ Fewwe= i = foae).
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(|

This innocent proposition is actually a raison d’étre for transform meth-
ods, generally, and for the Fourier transform, in particular, see [39].

The following notion is critical in approximating § € M,(R), and for
providing examples in applications including signal processing and spectral
estimation.

Definition B.3.2. Approximate identity
An approzimate identity is a family {Ky : A > 0} € L, (R) of functions
with the properties:
1. YA >0, fRK(,\)(LL’) dr =1,
. 3 M > 0such that VA > 0, [Kuyll €M,
7. ¥4 >0, limy.e f|93\25 |K{)\}($)| d =10,
cf., Problem 3.28¢.

Proposition B.3.3. Let K € L (R) have the property that [, K(z) dz = 1.
Then, the family, {Kx : Kx(z) = AK{Az), A > 0} C LL.(R), of dilations of

K 1is an approzimate identity.

Example B.3.4. Approximate identities
a. The Fejér function W is defined as

1 [sin(z/2) ?
cf., Problem 3.28. The Fejér function W is non-negative and [, W (z) dx = 1.
Thus, the Fejér kernel {W : A > 0} € L1 (R), defined as the family of
dilations of W, is an approximate identity. LIpOT FEIER’s name at birth was
Weisz, whence W. (In Hungarian, “white” is “fehér”.)
b. The Dirichlet function D is the function

 sin(x)
T
Although [p D(t) dt = 1, we have D ¢ L} (R), and so the Dirichlet kernel
{Dy : A > 0} is not an approximate identity.
c. The Poisson function, defined in Example B.1.5, is
1
(14 z2)’
and it satisfies fp P(x) dz = 1. Thus, the Poisson kernel {Py : A > 0} C
L1l (R) is an approximate identity.
d. The Gauss function defined in Example B.1.8 is

D(z)

P(xz) =

1
G(E) = ﬁe_wz.
G is positive and f, G(x) dz = 1; and, thus, the Gauss kernel {G : X >
0} € L},(R) is an approximate identity.



500 B Fourier analysis
Theorem B.3.5. Approximation and uniqueness
Let f € LL (R).
a. If {Ky : A > 0} C Ly (R) is an approzimate identity, then

Jim |f = fx Koyl =0,

b. We have
. A/ ZW{‘EI i 2wzt
i | [re)- / o (1—7) Ferem ge| ds — 0.

c. Iff: 0 on I@, then f s the 0 funclion.

Proof. a. We use the fact that [p Koyy(z) dz =1 to compute

1f— e Koyl = fR ‘ fm Kool () di - fR Kpy(t)f (@ — 1) dt| da

< [ 1Koy ( [ 150) - s~ 1) de)

Let £ > 0. Using the result from Problem 3.14b, there is § > ( with the
property that

v It < 4, / F(2) — fla—1)] do < =,
R M
where [[Ky|l1 £ M. Therefore, we have the estimate
£
“f*f*K()\)ngzani/ oo (O] dt+ =5 Koy (t)f dt
]38 [t]<d

SQHﬂEl] (Koo(t)] dt +e.
[t}>5

Consequently, by the definition of approximate identity, we have
m f|f-f*K <e.
Jim If=F*Knlhi<e

Since = was arbitrary, the proof of part a is complete.
b. Tt is not difficult to calculate that the Fejér kernel satisfies

Aam 2’.’I'|€| Drizk
= [ (1)

see, e.g., [39]. Then, by the definition of convolution and an application of
the Fubini~Tonelli thecrems, we compute
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A2 R )
F+Wy(z) = f_)\/z (1 — ?j&l‘ﬂ) f(g)e%mmg de.

Since {W,} is an approximate identity, part b follows from part a.
c. Part ¢ is immediate from part b.
[}

Proposition B.3.6. Let f € Ly7(R) be continuous on R. If {Kpy @ A >
0} C L1 (R) is an approzimate identity, then

Ve cR, Ahm f#* Kpy(x) = f(z).
T f & LL(R) and §f € LL(R), we can use Theorem B.3.5 to obtain
the following pointwise inversion theorem. What we explicitly mean in its
statement is that if f € L1 (R) and f € L},(R), then the formula in (B.7)

is true m-a.e.; and that if f is continuous then (B.7) is true for all z € R.
Compare the proof of Theorem B.3.7 with that in [39], pages 38-39.

Theorem B.3.7. Inversion formula for LL,(R) N A(R)
Let f € LL (R) M A(R). Then,

VzeR, flz)= [ fe)e ¢ de. (B.7)
R

Proof. The statement of the theorem follows from two observations. First,
if {K;) A > 0} C LL(R) is an approximate identity, then there exists a
subsequence {A, : % =1,...} such that

lim f* Ky y=f m-ae
=00

This fact is a consequence_of Theorem B.3.5a. Second, assume that f €
LY (R}, that (Kq)" € L;,(R), and
VzeR, Kplz)= f@ (Kpy) (€)e27¢ de.

Then,
= {.

o0

A—oo

lim ”fﬁf(é)eaQ’”'“”E dé — f x Koy(z)

0

Remark. It follows from the first observation in the proof of Theorem B.3.7
that, if f € L. (R), then there exists a sequence {\, : n =1,...} C (0, 00}
guch that

lim
An—00 —An/2nw

An /2w
(1-

T Foemst e = 1) meae

Tt turns out that A, can be replaced by A in the above, and that the conver-
gence m-g.e. can be enlarged to include all z in the Lebesgue sef for f, see,
e.g., [195], as well ag Example 4.4.7, Definition 8.4.8, and Section 8.8.4.
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B.4 The L? (R) theory of Fourier transforms

We have defined the Fourier transform for functions f € L1,(R). Now our
goal is to extend this transform to the space L2, (R). Clearly, LZ,(R) € LI (R)
and so we cannot use the formula (B.1), as the function under the integral
sign may not be integrable.

Lemma B.4.1. Let f € C.(R). Then, f € L2,(R) and

i1z = 1 Fll2-

Proof. Let F(t) = f(—t). Clearly, f € A(I@), since C.(R) € L1,(R). Define
g = f*f. Thus, g is continuous, g € LL (R) N L (R}, and

g(0) = I £]l3-

Moreover, using the Fubini theorem and the translation invariance of Le-
besgue measure, we have

veeR 4 =1/

By Proposition B.3.6 and since g is continuous, we deduce that

A 2w
4(0) = lim @ Mﬂumwe

A—r00 —M\2n

Finally, the Levi-Lebesgue theorem allows us to assert that fe L2 (I@) and
that

1713 = 9(0) = I £13.

Theorem B.4.2. Plancherel theorem _
There is a unique linear bijection F : L2 w(R) — L2 (R) with the properties:

6.V f € LL(R)NLZ(R) and V£ € R, (&) = F(F)(E);
b. ¥ f € L (R), [fllz = [F(F)lle-

Proof. 4. We first define the action of the operator 7 on C.(R) b
F(f) =1

It follows from Lemma B.4.1 that, for f € C.(R), F(f) € LZ,(R).
#. Next, we shall prove that 7 (C.(R)) C A(R)NLZ (R) is a dense subspace
of L2,(R ( ). Indeed, let g € L2 {}R) and suppose that

Weqw,éﬂm@%=& (B.5)
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If f € C.(R), then the function 7, (f){z) = f(z —u) is also an element of
C.(R), and so (B.8) implies that

¥ feC(R)andVucR, fm F(&)g(E)e 2 8 d¢ =0, (B.9)

By the Hélder inequality, fg & L,ln(]ﬁ), and so (B.9) allows us to invoke the
uniqueness theorem (Theorem B.3.5¢) to conclude that f§ = 0 m-a.e. for
each f € C.(R).

Note that

VieCR)andV e R, ¢ f(x) € C.(R).
Thus, F(C.(R)) is translation invariant, Le.,
Ve Cu(R)andVE e R, 7,(f) € FIC(R)).

TFrom this we conclude that, for each & € I@., there is f € C.(R) for which
if| > 0 on some interval centered about &. To verify this claim, suppose
there is £p such that for each f € C.(R) aund for each interval I centered at
¢, 7 has a zero in I. Consequently, f(&) = 0 for each f € C.(R). By the
translation invariance of F{C.(R)), m( f) € F(CL(R)) for each 5y € R, and so

VieCRandVneR, =,(f)(&)=0,

ie, f=0onR for each f € C.{R). This contradicts Theorem B.3.5¢, and
the claim ig proved.

Therefore, if we assume (B.8) we can conciude that ¢ = 0 m-a.e. Conse-
quently, by the Hahn-Banach theorem (Theorem A.8.3) and by the fact that
L2 (R) is its own dual, we have that F(C.(R)) is dense in L2, (R).

i, We have shown that F is a continuous linear injection C,{R) —
12 (R), when C.(R) is endowed with the L2,(R) norm, and so  has a unique
linear injective extension to LZ (R)}. Also, F(C.(R)) is closed and dense in
L2, (I@) by Lemma B.4.1 and by part #. Thus, F is also surjective.

Property anow follows since C.(R) is dense in L1 (R}, when equipped with
LL (R) normy; and property b is an immediate consequence of the continuity
of F.

a

Notationally, because of Plancherel theorem, we refer to F{f) as the
Fourier transform of f € L2 (R). We often write

f=7.

Theorem B.4.3. Parseval formula
Let f,g € L2,(R). Then, the following formulas hold:
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f FH@)g(a) dz = f (&30 de (B.10)
R E

and

[ @@ dz = [ fra(-o) e (B.11)
Proof. Equation (B.10) is a consequence of Theorem B.4.2b and the fact that
415 = |f + 9 = |F — g* +ilf +igl* —ilf —ig].

Equation (B.11) can be proved similarly.
O

‘We shall refer to Theorems B.4.2 and B.4.3 as the Parseval-Plancherel
theoremn. PARSEVAL was a French engineer who gave a formal verification of
the Fourier series version of Theorem B.4.2b in 1799; his publication is dated
1805,

Example B.4.4. An idempotent problem in L (R) and L2 (R)
Consider the equation
f=Ff=*f (B.12)

a. If we ask whether {B.12) has a solution f € L. (R) \ {0}, the answez
is “no”. Tndeed, if there were such an f, then f = ( F )* so that f only takes
the values 0 or 1. If f =0 onj@, then f = 0 by Theorem B.3.5¢. If f =1on
R, then f ¢ L1 (R) since A(R} C Cp(R). If f takes both 0 and 1 values we
contradict the continuity of f .

b. If we ask whether (B.12) has a solution f & L2 (R} \ {0}, the answer is
“yes” . In fact, let f = 14 where m(A) < oo. We are using here the Parseval-
Plancherel theorem to assert the existence of f € L2 (R) for which f = 1 4.

See the related discussion in [39], Example 1.10.6 and Remark 3.10.13.

Fxample B.4.5. The Hilbert transform
a. Formally, the Hilbert transform H(f) of f : R — € is the convolution,

.1 F(=)
HF)(E) = lim = fwze 1) 4o,
The Hilbert transform opens the door to a large and profound area of har-
monic analysis associated with the theory, relevance, and importance of sin-
gular integrals, e.g., [435], [184], cf., [347] for a magnificent introduction.
b. As mentioned in Example A.13.5, H & £(L2 (R)), and H is a unitary
operator on L2, (R). Further, H o H = —Id on L2 (R), and

H=F la(H)F,

where o{H) (v} = —isgn (v).
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c. Let f : R — C satisfy supp (f) € [0,00), and define the unilateral
Laplace transform of f as L{f)(t) = [;~ f(z)e™™ dz. A formal calculation,
which is valid under mild hypotheses, shows that '

V>0, LILNE) = —mH(f)(-t).

See [39], Problem 2.57 for a role of A in signal processing as related to the
Paley—Wiener logarithmic integral theorem {353].

B.5 Fourier series

In Section 3.3 we defined the Fourier series of a function f € Ll (T), where
T =R/Z. We now elaborate.

Definition B.5.1. Fourier series
a. Let f € L. ([-12, 12)). The Fourier series of f is the series

Vac[-12,0), S(fE)=>) ene ™/ (B.13)
n€EZ

where the coefficients are defined as

1 ¢ inz/ 2
o win
cn—zgf_ﬂf(cc)e dz.
The ¢, are the Fourier coefficients of f.
b. If the sequence ¢ = {c, : n € Z} satisfies ) ., |ca| < oo, then the right
hand side of {B.13) is well defined, and we say it is the Fourier transform é
of {en 1 n € Z}.

In Definition B.5.1, instead of thinking about functions defined on a fi-
nite interval, we can think of functions f which are 22-periodic, Lebesgue
measurable functions which are integrable on all compact subsets of R, ie.,
locally integrable functions. The set of all locally integrable functions is de-
noted by Li {R), e.g., Section 5.5. If £2 > 0 and f € L} (R) is 2{2-periodic,

then we write f € L1(T2g). Top is identified with R/2{2Z. The LY-norm of
f € LY (Taq) is

1 Q
1flpiiraey = Ef |[f(z)]| d=.

-1

If f is a 202-periodic, Lebesgue measurable function, and f? ¢ LY (Tap),
then we write f € L%(T2q). The L?norm of f € L*(Tap) is

1 o 1/2
Hf”Lz(Tzﬂ) = (m /_D if($)|2 d$) .

By the Hélder inequality, L?(Tagn) € LY(Tzq), and we have
Vfe X (Tae), [Ifleimn €I |zeemen)-
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Definition B.5.2. Fourier transform on L!(Tzp)
If f € LY (Tan), its Fourier transform is the sequence f = {f(n) : n € Z},
where

2
VneZ, fln)= 2—19- ] Hf(m)e_“m/n dz.

In Appendix B.1, we defined the Fourier transform of f € L}, (R) to be
a function on B = R. Here we have two dual settings. First, for a sequence
¢ = {c, 1 n € Z} such that 3 |e,| < oo, the Fourier transform of ¢ is defined
on Tap. Second, for f € L*(Tap), the Fourier transform of f is defined on Z.
Mathematically, R and B are locally compact Abelian groups (LCAGSs) that
are dual, in a technical sense, to each other, see Appendix B.9 and Appendix
B.10. Similarly, the discrete LCAG Z is the dual group of the compact LCAG
T2n, and vice versa, e.g., [391], [151], [33].

We shall use the Riemann-Lebesgue lemma, Theorem 3.6.4, to verity
DirICHLET's fundamental theorem, which provides sufficient conditions on a
function f € LY{Taeq) so that S(f){z0) = f(zo) for a given point zp. The
following ingenious proof is due to PAUL CHERNOFF [100], cf., [313] and the
classical proof as found in [509]. The Dirichlet theorem for Fourier series
naturally preceded the analogous inversion theorem for Fourier transforms,
as formulated in Theorem B.1.2 and Section B.3.

Theorem B.5.3. Dirichlet theorem
If f € LYTap) and f is differentiable at zo, then S(f)(zo) = flza) in the
sense that
N
lm Z cne—-m‘,m:o/ﬂ - f(xg),

M, N—00
=M

where ¢ = {c, : n € L} is the sequence of Fourier coefficients of f.
Proof. 1. Without loss of generality, assume zq = 0 and f(zg) = 0. In fact, if
flza) # 0, then consider the function f — f(zp) instead of f, which is also

an element of L'{Tsp), and then translate this function to the origin.
it Since f(0} = 0 and f/(0) exists, we can verify that

o0 = =L —

is bounded in some interval centered at the origin. Lo see this note that
1
> e (/)3 (1)

and, hence, g{z) is close to —£2f(0}/(=4) in a neighborhood of the origin.
The boundedness near the origin, coupled with integrability of f on Tayp,
vields the integrability of g on Tog. Therefore, since f(z) = g(z)(e ™/ 2 1),

glz) = ff)
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we compute ¢, = dyy1—d,,, where d = {d,, : n € Z} is the sequence of Fourier
coefficients of g. Thus, the partial sum Ef:_ M cne” ™20/ 2 is the telescoping

series
N

Z (dny1 —dn) = dyp1 ~ denr

a=—nM

Consequently, we can apply the Riemann-Tebesgue lemma to to the sequence
of Fourier coefficients of g to obtain

N
lim emmine/ R — g,
M,N-—oa Z Cn

n=—>M

B

With regard to Theorem B.5.3, we can further assert that if f € BV, (R),
f is 202-periodic, and f is continuous on o closed subinterval I C Taq, then

N
Z Jf:‘(n}eﬁﬂ'inm/ﬂ

n=——N

converges uniformly to f on I, cf., [509], Volume I, pages 57-58. The Dirichlet
theorem and this version of it for intervals of continuity are often referred to
as the Dirichlet-Jordan fest.

B.6 The L'(T2g;) theory of Fourier series

Definition B.6.1. A(T2p) and A(Z)

a.If ¢ = {c, : n € Z} is a sequence such that > |¢,| < oo and if £2 > 0, then
& is an absolutely convergent Fourier series, and the space of such series is
denoted by A(T20). By definition, the norm of & € A(Tap) is

el aqragy = llellx = Z lenl.

neZ

We have the proper inclusions
A(Ta0) € C(Taq) C L®(Tan) € L (Taq) € L' (T20).

b. Let A(Z) be the space of all sequences ¢ = {c, : n € Z} such that
¢ € L' (T2p). The space £2(Z} of square-summable sequences (defined in
Section 5.5) is & subset of A{Z).

Example B.6.2. Trigonometric series
a. The Riemann-Lebesgue lemma asserts that if f € L}(T2gp), then
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lm ¢, =0,

n—too

where ¢ = {c, : n € Z} is the sequence of Fourier coefficients of f. On the
other hand, suppose we are give a trigonometric sexies 3 c,e~ 2™ for which
limy, 400 ¢ = 0. Then, it is not necessarily true that this series is the Fourier
series of some function f € L1(Tsp). Indeed, the trigonometric series,

i sin wn:c/Q

log(n)

converges pointwise for each x € R, but it is nof the Fourier series of an
element f € Ll(ng). This is an analogue of Example B.2.5.
b. Let {2 > 0. Then, the series,

— sin{mnz/(2)
Tg nlog{n) '

converges uniformly on R to a function f € C(Tap) \ A(Tag).

Remark. If f € L}(Typ) and if we let

SN(f Z cne—-rrmm/.fl

n=—N

where ¢ = {¢,, : n € Z} is the sequence of Fourier coefficients of f, then it is
known that the desirable statement,

j\lilpm 15w (f) — f”Ll(T2n) =4, (B.14)

is not true for all f € L1(T2e). On the other hand, a sequence {f, : n =
1,...} C LYTap) converges to f € L} (Tan) weakly, ie.,

Vo€ L®(Ta), lim - f (Ful@) — F@))g(a) dz =0,
cf., Definition 6.3.1, if and only if

fim [ (afa) — (@) do =0 (B.15)

n—od

for every Lebesgue measurable set A € Tagq. If we have weak convergence, or,
equivalently, (B.15), then it follows from Theorem 6.5.1 that (B.14) is true
for Sp(f) = fn If {fn : n € N} converges to f in measure.

Definition B.6.3. Convolution
a. Let f,g € L}(Ta0). The convolution of f and g, denoted by f * g, is
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1 2 1 4
Fro@ =55 [ He-vet)dy=55 [ Wty

cf., Problem 3.28. As with L} (R), see Problem 3.5, it is not difficult to prove
that f * g € L(T20) and

Vg€ L Taa),  If # 9l oremaey < N lormaa gl cocran-

b. 1 (T2p) is a commutative algebra talen with the operations of addition
and convolution, i.e., it is a complex vector space under addition, and con-
volution is distributive with respect to addition, as well as associative and
commutative. L1(Tap) is a commutative Banach algebra when normed by

H"'“Ll(TM?)'

Proposition B.6.4. Let f,g € L(Tap), with corresponding sequences ¢ =
{ecn :n e}, d={d, :n € Z} € A(Z) of Fourier coefficients. Then, the
sequence ¢+ d = {cpdp 1 1 € Z} € A{Z) is the sequence of Fourier coefficients
of f +g € L(Tag), ie,

Y :
YneZ, cpdn=-——= / fxg(x)e™m=/? dg.
22 J_p

Definition B.6.5. Approximate identity
An approzimate identity is a family {Ky : N = 1,...} € L}(Taq) of functions
with the properties:

VN =1,..., o [% Kn(z) do =1,

it. IM > 0such that VN =1,..., |[Kn|lzi(rn) < M,

i, ¥ & € (0, 2], MmN oo 55 fi<|my<n K ()| dz = 0.

The following theorem is the analogue for Fourier series of Theorem B.3.5
and Proposition B.3.6, see Problem 3.28.

Theorem B.6.6. Approximation and uniqueness
a. Let f € C(Tag), and let {Kn : N =1,...} € LY(T2p) be an approzimate
identity. Then,
Jm [ = o Kl e man) = 0.
—0Q

b. Let f € LY(Tap), ond let {Ky : N=1,...} C LNTag) be an approxi-
mate identity. Then,

Ali}}lm If = F*BEnllormg =0,
cf., Theorem B.3.5a.

c. Let f € LYTeg), and let ¢ = {c, : n € Z} be its sequence of Fourier
coefficients. If ¢, =0 for eacch n € Z, then f =0 m-a.e.
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B.7 The Stone—Weierstrass theorem

In 1904, FEJER proved the following fundamental approximation thecrem
using the fact that the Fejér kernel {Wy : N > 0}, defined in Problem 3.28,
is an approximate identity, without explicitly defining the general concept of
an approximate identity.

Theorem B.7.1. Fejér theorem
a. Let f € C(Tan). Then,

(L = Fx Wil oo a0y = 0. (B.16)
b. Let f € LP {Taqn), 1 <p < oc. Then,
Hf —fx WN”LP(']['zn) =0.

Theorem B.7.1 and the Weierstrass approximation theorem are concep-
tually closely related. We note that WEIERSTRASS' original proof (1885) also
used a convolution approximate identity argument [80], pages 269-273.

lim
N—oo

Theorem B.7.2. Welerstrass approximation theorem
Let [ :]e, 0] — C be a continuwous function. There is a sequence {Qn : N =
1,...} of polynomials for which

A f = Qg e = 0. (B.17)

Equation (B.17) can be derived from (B.16) in the following way. By
translation we can take f € C([—42, 2]). Next choose ¢ such that g(—{2) =
g(£2) where g(z) = f(z) ~ ¢ for z € [-12, £2]. In fact, let

- I-2)
202 '

Apply (B.16) to g considered as an element of C({Tap). Finally, uniformly
approximate the trigonometric polynomials g Wiy on [—2, £2] by polynomial
approximants of their Taylor series expansions.

A monumental journey in effective abstraction was undertaken by MAR-
sHALL H. Stong in 1937 [440], and has vesulted in the Stone-Weierstrass
theorem.

STONE's own works [441], [442] are a readable paradigm of the creative
inquiry required to formulate fundamental abstract ideas resulting from and
embedded in classical results.

Tn order to state a useful version of STONE’s theorem, let X be a locally
compact Hausdorff space, and note that the complex Banach space Co(X)
(defined in Section A.2) is also in algebra. This means that Cp(X) is not only
a vector space, but that it is closed under pointwise multiplication, and that
the commutative, associative, and distributive laws hold. A subset § € Cp(X)
is separating if

Vay,xe € X, 3 €8 such that fim) # flz).
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Theorem B.7.3. Stone—Weierstrass theorem
Let X be a locally compact Hausdor(f space, and let S C Co(X) be o separating
subalgebra with the following properties:
iLVfes fes,
i Ve e X, 3f €5 such that f(x) #0.
Then, S is dense in Co(X).

if X is compact we refer to [319], pages 11-12, for a brief proof based
on [441] by STONE, and to [229], pages 90-99, for a more complete treatment.

B.8 The L?*(T.p) theory of Fourier series

Recall that according to Definition A.12.1 an orthonormal basis for L?(Taq)
is an orthonormal sequence {e, : n € Z} C L*{Tyq) such that

Ve L2(T29), d{e, :n€Z} C Csuchthat f= chen in LZ(TQQ).

nci

In fact, L?(Ts0) is a Hilbert space with inner product defined in Example
A.12.3a, where the following result was also stated.

Proposition B.8.1. The sequence {e,(z) = e~/ . n € Z} C L*(Typ)
is an orthonormal basis for L2(Taq).

Theorem B.8.2 is a special case of Theorem A.12.6, once it is proved that
L*(T, @) is a Hilbert space. The following proof is self-contained.

Theorem B.8&.2. Parseval formula
Let f,g € L?(Tagn) with corresponding sequences ¢ = {c, :n € Z}, d = {d,, :
n € Z} of Fourier coefficients of f and g. Then, ¢,d € £*(Z) and

o —_— PR—
57 ) F@@ do= Y e

nef

and, in particular,

{2
7 | V@Fde= Y el

nez
Proof. We first observe that for any f € L?(Tsq) and for any N € N,
0 < —Sn{fisernny = 17200y — Z e,
In]<N

which implies

Yo el < 11220 (B.18)
|n|<N
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Further, if N > M, then

155 () — Sae{ Mooy = . leal’,

M<|n|<N

and so, by (B.18), {Sn(#): N € N} is a Cauchy sequence in L?(Tag). Thus,
S ce ™2/ converges to some h € L?(Tap) since L2(Taq) is complete.
Now, for any f € L?(T2q) and corresponding h we have, by Proposition
B.8.1, that

Iy]
55 U@ = h@)e=l? do

s i “ —mi(m—n)x/2

N—oo

|| <N
Therefore, f = h m-a.e. in Tap, or, in other words,

I&Enm Hf - SN(f)”L2(T29) = 0.
Using this fact, we obtain

(R LLp— 1 S
o ) f@u@de = Jim oo [ 5 (1) @)SRE)E) do
S B
T o —mi{m—n)wz/2
Jim Y7 emdns /ﬂ e dz
ml el <N

= tndn,

nef

where the last equality again follows from Proposition B.8.1.
[

The inequality (B.18) is called the Bessel inequality, cf., Theorem A.12.5a.
It implies that if f € L%(T2g), then the sequence ¢ = {¢, : n € Z} of Fourier
coefficients of f is square summable, i.e.,

2[%l2<oo.

nek

F. Riesz’ formulation of the Riesz-Fischer theorem completes the pleture as
follows, see Section 5.6.2.

Theorem B.8.3. 12(Z) — L*(T30)

There is a unique linear bijection F : 12(Z) — L*(Tagn) with the properties:
a. V¥ c€*Z), lcle@) = 1F(e)ma
b.V f € L?(Tap), F M) is the sequence of Fourier coefficients of f.
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B.9 Haar measure

An additive group G with a locally compact Hausdorff topology is a locally
compact group if the function G x G — G, (z,y) — = — ¥, is continuous.
For significant, classical treatises on locally compact groups, that were be-
gun in the 1930s, see [363] and [482] by PONTRYAGIN and ANDRE WEIL,
respectively.

A complex vector space X which is also a topological space is a topological
vector space if the functions Cx X — X, {¢,z) = ¢z, and X x X — X,
{z,4) — z + 1y, are continuous. Let X be a Iausdorff topological vector
space. K C X is absorbing if

VereX, Je>0 suchthat 0 <o)< = cxc K.

K C X is balanced if
el €1 = eK CK.

In both cases, ¢c € €.
A fundamental result in harmonic analysis is that if G s o locally compact
group then there is a Borel measure mg on G such that

VBeB(G)andVzc G, mg(B)=mg(B+z),

where B +x = {y+z : y € B}. In this case mg is a right Haar measure on
(7; and, when B + x i replaced by x -+ B, mg is a left Haar measure on G.
Thus, the crucial feature of translation invariance for Lebesgue measure on
the line extends to locally compact groups. If every right Haar measure is a
left Haar measure on a locally compact group (&, and vice-versa, then & is
unimodular. Every compact group and every locally compact Abelian group
(LCAG) is unimodular.

‘We shall prove the existence of a Haar measure on G compact and Abelian
using the Markov—Kakutani fixed point theorem, which we shall also prove. It
is easy to show that there is only one such mg which ensures that mg(G) =1
for G compact, see Theorem B.9.3.

Theorem B.9.1. Markov—Kakutani fixed point theorem
Let X be a Hausdorff topological vector space, take a compact and conver set
K C X, and let {To} be a family of continuous linear maps T, 1 X —» X
which satisfies

Ya, TJ(K)CK

and
Vo, ThooTg=TgoT,. (B.19)

Then, there is k € K such that

Vo, Tuk)=k.
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Proof. Let
Id+To+...+T771

n

T —

where Id : X — X is the identity map and T7 is the composition Tyo...0T,,

7 times. Clearly, each Téﬂ) : X — X is continuous and linear. We write
T = {T7} and let 7" be the set of finite products, under composition, of
elements from 7. Note that for each v € T, u(K) € K. This follows by
the convexity of K. Thus, u o v{K) C u(K) for u,v € 7. Further, because
of (B.19), uov = vou for u,v € T; and hence v o u{K) C »(K) implies
uow(K) Cv(K).

Let K = ({u(K) : u & T} and note that

YuveT, wlE)NuK)#Db
in fact,
vou{K)=uov(K)Nuov(K) CulK)Nuov(K)Cu(K)Nnuv(K).

Since K is compact, u(K') is compact for each 1 € T'. Consequently, because
w(K) No(K) # 0 for u,v € T, since each u(K) C K, and because K is
compact, there is k € K such that for allw € T, k € u(K). Therefore, &k € K.

In particular, for each o and n, k € Té”}(K ), so that there is ¢t € K
(depending on o and n) such that T (£) = k. Thus,

_ Tal) +.. + T2(2)

Tﬂ(k) n 1
and, hence,
t  Tr() '
Tolk)—k=—— = B.2
®) T (8.20)

since T™ {t) = k.
Note that the function K x K — X, (s,t) — s —t, takes K x K into a
compact set E.
Because of (B.20) and the fact that T (¢) € K we have
o) —t

To(k) — k= ==

clp (B.21)
i n

We shall show
~ (1
N (—E) = {0}, (B.22)
n=1 n
so that since (B.21) is true for each n, T,(k) — k = 0, and we are done.

Let V C U be a balanced set for which 0 € int V. By the definition of a
topological vector space there is a balanced and absorbing open set W C X
containing 0, such that W+ W C V. {x+W : x € X} is an open cover of F
so that by the compactness there are points x;, ¢ = 1,...,m, such that
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BC @+ W)
gu=]
Since W is absorbing, we have rz; € W for ¢ = 1,...,m and for some
€ (0,1]. Therefore,
MEN(z; -WHCWHrW, i=1,...,m. (B.23)

Because the right-hand side of (B.23) is independent of 1,

rE = Ur(Eﬂ(wi+W))§W+rW

i=1

Thus, F C {1/7)V, noting that W ++W CW 4+ W CV; and so, if 1/n < r,
then 1 1
SEC-VCLV =V
n nr r
Consequently, (No—,(1/n)E C V; so that since X is Hausdorff and V is
arbitrary we have {B.22).
0

Theorem B.9.2. Existence of Haar measure
Let G be a compact Abelian group. Then, there is a Haar measure mg on G,

Proof. Let M1(G} = {u € Mp(@) : |||z £ 1}. By the Banach-Alaoglu
theorem, M;(G) is weak * compact in My(G). Let M (G) = {n € Mi(G) :
p(ly =1}

Note that p is positive if p € M, i’“ {(); to prove this we assume the opposite
and obtain a contradiction using the fact that ||u||, = p(1), e.g., [69], page
101,

If My(() is taken with the weak * topology, then the map My(G) — C,
p— p{1), is continuous. Hence, {p € Mp(G) : p(1) = 1} is weak * closed.
Thus, M (Q) is weak * compact. It is easy to check that M (G) is convex.
TFor z € G and u € Mp((F@) we define the translation 7, {u) as

e (a)(f) = ] Fly— ) du(y),

where f € C(@). Then, for each z € G we define the map 7, : My{G) —
My(G@), p+— 72(1). Note that T, is continuous with the weak * topology on
both domain and range, linear, and

Ve, y € G, Tpoly =Ty =TyoTy,

since (¢ is Abelian.
It is also elementary to check that, for each z € G,
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T.(M{(G)) € My (G).

Therefore, by Theorem B.9.1, there is mg € Ml'" (@) such that 7 (mg) = me,
for all z € G, the required translation invariance. Further, |mgli = 1,
mga(1l) = 1, and mg is positive.

|

Remark. The question of existence of Haar measures goes back to SOPHUS
LiE. The Hungarian mathematician ALFRED HAAR (1933) [203] proved the
existence of translation invariant measures on separable compact groups. As
a matter of fact, HAAR credits ADOLF ITURWITZ for a remark in [242], which
is essential for proving the existence of a Haar measure on a Lie group,
see [203]. Existence of a Haar measure on a general locally compact group
was first proved by ANDRE WHIL [482] and, later the same year, by HENRI
CARTAN [93].

Besides the existence, it is natural to ask about the uniqueness of Haar
measure on locally compact groups. This question was first answered by vON
NEUMANN for compact groups [476]. VON NEUMANN later extended his own
result to second countable locally compact groups [477] (employing a different
technique). Here we prove the uniqueness of Haar measure in the simple
context of a LLCAG. We follow the proof of [391], see also [70], [318], [344],
[403], and [482]. For a short proof in the non-Abelian case, which uses a
notion of an approximate identity, we refer the reader to [255].

Theorem B.9.3. Unigueness of Haar measure
Let G be a LCAG. Let m}y and mZ be two Haar measures on G. Then, there
exists C > 0 such that mg = Cmg;.

Proof. Let g1 € CF(G) be chosen so that [, g1 dmng = 1, and let C =
S 91(—2) dm%{z). Then, for all g, € CF(G), we have

/ng dmzc;:/cgz(ﬂfl) dmé(ﬂfl)fggz(ﬂ?z) dmg{zs)
= [ ([ ot dniy (o) ) oalar) dmb ()

[ et +2) dmé(mz)) g1 (a1 dmi (1)
&

|
S §
S

I

g1(z1)ga(z1 + z2) dmi(z2) dmb(z1)

g1(z1)ga{z1 + z2) dmi(xy) dm (my)

I

g1(y1 — ya)g2(y1) dmb(y1) dmé(yz)

g1(y1 — ya)ga(y1) dm(ya) dme(y1)

t
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= /G (fG alyr —y2) dm?;(yz)) g2(y1) dmig (i)
= (fggl(—yz) dm?;(yz)) fagz(yl) dmg(y1) ﬂcfggz dmgs.

Example B.9.4. Examples of Haar measures

a. Let G = R? be considered as an additive group. With topology defined
by the Euclidean norm, G is a LCAG. Then, the Lebesgue measure m? is a
Haar measure on G.

b. Let G = R\ {0} be the multiplicative group of real numbers taken with
the topology induced from the Euclidean norm topology from R, Then, G is
a LCAG. Further, mg(A) = [,(1/|2|) dm{z) defines a Haar measure on G.

c. Let & = C be the additive group of complex numbers with the usual
topology of the complex plane. Then, G is a LCAG, and mg{4) = [, dedy =
[, dm*(z), z = z + iy, is a Haar measure. This is the product measure on
R x B which is isomorphic to C.

d. Let G = C\ {0}, 0 € C, be the multiplicative group of complex
numbers with the induced topology from C. G is a LCAG, and mg(A) =
[4(1/]2[*) dm?*(2) defines a Haar measure on G.

T = R/Z, identified with {z € C: |z] = 1}, is a compact subgroup of G.
Note that mg{T) = 0. However, there is a natural locally compact topology
on T and corresponding Haar measure my when T is identified with the
additive group [0,1) with addition defined mod 1. In this case, T and my can
be identified with ([0, 1), M, m). We mention this because of the discussion
of the dual group in Appendix B.10.

e. Let G = (RT\ {0}) x R be a group with group action defined by
{a,b)-(a’, b} = (ad’, al/+b). Note that, in general, (aa’, al'+b) # {a'a, a'b4+b").
@ is a non-Abelian locally compact group, and it is called the affine group. In
this case, a left aar measure is defined by m&(4) = f,(1/a%) dm{a) dm(b); -
and a right Haar measure on @ is defined by mZ(A) = TA(I /a) dm{a) dm(b).
They are distinct.

J- Let G be a discrete group. Then, ma = 3 . -

g- The general linear group G = GL(d R) with matnx multiplication
is non-Abelian locally compact group, whose topology is induced from the
product topology on the d*- d]Iect product R x . X R. G played a role in
Section 8.7. In this case, ma(A4) = [, |det{X)[~ 4 *(X) defines both a left
and a right Haar measure on G

It is well known that every locelly compact topological group is complete
with its right wniform structure. We shall verify this general statement for
the metrizable setting.
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Theorem B.9.5. Completeness of locally compact groups
Let G be a metrizable locally compact group with metric p: G x G — [0, 00).
G is complete.

Proof. Since G is a metrizable topological space, it is completely regular and
has a countable open basis at the origin 0 € (7. Therefore, since & is a Tp
topological group the metric can be taken to be right translation invariant,
e, '
Vw,y,zEG, P(m?y):P(-T‘l‘zyy‘l‘z)a

see [227], pages 68-70, for a proof of translation invariance using a countable
basis at the origin,

To prove that G is complete, let {z, : 7 = 1,...} € @ be Cauchy and
find zg € @ such that

Ye>0, 3N, >0 suchthat ¥Yn> N, plz,z0)<e. (B.24)

By local compactness let C' be a compact neighborhood of the origin and
choose r >> 0 such that B(0,7) = {z € G : p(z,0) < r}. Since {5, :n=1,...}
is Cauchy,

AN, such that Vn > N, plzne,zn,) = plzn, —zN,,0) <7,

and 5o {yn = Tp—2n, : 1 > Ny} € B(0,r) € C. Thus, there is a subsequence
{Tm, :n=1,...} and ¥ € G such that lim, .o p(¥m,,,¥r) = 0. We set
To = Yr + Zn,, and, hence,

0= lim p(Tm, — TN, 2o —2Zn.) = Hm p(zm,, o). (B.25)
n—oa N—0Q

We now verify (B.24). By (B.25),

3 Ny such that Vom, > Ni,  p(&m,,zo) < g (B.26)
Also,
A Ny such that Y m,n > Na,  plan, zm) < g (B.27)

since {zn : n = 1,...} is Cauchy; and, hence, if N, = max(Ny, Nz), then
(B.27) implies that

Vn,mg > Ney  plzn, Tm,) < % (B.28)
Therefore, by (B.26) and (B.28), if n > N,, then
P(En,i"o) S p(Ins wmk) + P(mmk H :CO) < 67
where we have chosen Lrny, > Ne.
|

Section B.9 is the beginning of the story of abstract harmonic analysis.
Rupin’s [391] and HEWITT and Ross’ [227] treatises are a superb next step.
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B.10 Dual groups and the Fourier analysis of measures

Let & be a LCAG. The collection I' of all continuous group homemorphisms
v : G — T is the dual group of G. I' with pointwise multiplication is an
Abelian group. The fact that I" is a group follows from the definition, v +2,
by the rule (v1 + 72)(z) = y1(z)7v2(z), z € G. Then, if I" i3 equipped with
the “weak * topology” o(I', &), it becomes a LCAG. In fact, we have not
defined the weak * topology on groups so, to be precise, let us define a basis
B for such a topology. For each compact K C G and r > 0, let N(K,r) =
{yel': Vaee K, 1 —vz)| <r}.Set B={NK,r}+~v:vel, KC
G is compact, and r > 0}.

Given a Haar measure mg on G. We define the Fourier transform of
f €Ly (G) as

Vyer fuxw—iLf@fﬁﬁdmaw» - (B.29)

F o L (G) — Co(I') is a homomorphism, where multiplication is convo-
iution in L}, (@} and pointwise multiplication of functions in Cy(I"). This
notion of Fourier transform can be extended to bounded Radon measures on
GG by means of the formula,

vamm,fwm:Lﬁaww. (B.30)

F(4s} is a bounded uniformly continuous function on I'.

Example B.10.1. Homomorphisms and transforms

a. If G = R, then LLR) C My(R) C &(R) with analogous inclusions for
@ = R4, see Definition 7.5.7. In  this case, the dual group I" can be identified
with R, which we denoted by R in Definition B.1.1. The identification can
be made by proving that if v € I’ is a continuous homomorphism &' — T,
then there is a real number & = £, € R such that v(z) = e?™*¢. Clearly, if
« is of this form, then v € I', Thus, (B.29} is the same definition of Fourier
transform as given in Definition B.1.1.

b. Let A be an algebra, such as L} (R) with multiplication defined by
convolution. If A is a topological algebra such as the Banach algebra L (IR)
with topology defined by the norm ||...||1, then we can consider the subspace
H < A’ of continuous linear homomorphisms A — €. This setting gives
rise to a transform T for which there is an all important exchange formula,
T(f xg)=T(f)T(g), where f,g € A

For example, if A = L} (R) as in part a, then H can be defined by
{e?mizt . ¢ — ¢ andy e I =R} and 7 is the usual Fourier transform F as
given in Definition B.1.1.

This is the basis of the Gelfand theory, and this particular point of view
is expanded in [33].
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¢. Another example of part b is the case of £/(R) C 8'(R), the topological
algebra of distributions having compact support with multiplication defined
by convolution. When properly topologized, the dual of £'(R) is C*=°(R) [415],
and 7{ is defined by {e** : s € C}. In this case, the transform 7 is the classical
bilateral Laplace transform.

d. Let Zx be the set of integers 0,1,..., N — 1 under addition modulo
N. Zy is a commutative group with this definition of addition, and it is
a compact Abelian group when it is taken with the discrete topology, ie.,
every element is defined to be an open set. Then, the dual group Z?;; is
Zy. Further, the Fourier transform defined by (B.29) is the classical discrete
Fourier transform (DFT) Fn defined for f € L1{(Zx) by

N1
¥Yn=01,....N-1, Fy(f)[n = __% Z f[m]e—?.wimn/N'
m=0

In Example A.13.5, we noted that Fy : LZ{Zy) — L2(Zy) is a unitary
operator, Of course, in the setting of Zy, LI(Zy) = L2(Zy) = CV.

For a useful introduction to the D¥FT and its fast algorithm, the fast
Fourier transform (FFT), see [39], Sections 3.8-3.10. For comprehensive treat-
ments, see [73], [453], and [481].

Remark. One of the landmarks of SCHWARTZ' theory of distributions is
that the Fourier transform can be defined in a meaningful and productive
way. In fact, if T € 8'(R), then the Fourier transform T of T is defined by
the Parseval duality formula,

VicS®), T =17, (B.31)

cf., Theorem 8.7.6. In this case, T € &'(R). If T = u € My(R), then ji defined
by (B.31 is the same as F(u) defined by (B.30}.

It should be pointed out that the theory of distributions and correspond-
ing harmonic analysis is highly developed on locally compact groups.

Definition B.10.2. Positive-definite functions
a. Let G be a LCAG with the dual group . R: I"' — C is positive-definite if

Ve ooen €0 and Vo, €1, Z e Ry — ) 2 0.
F.k=1

b. Let F € L2, (I'), and define the involution F(v) = F(—v). Then, a
straightforward calculation shows that R = I F is a continuous positive-
definite function.

c. Anocther elementary calculation shows that if p € Mi{G) is positive,
then F(u) 45 o continuous positive-definite function. The Bochner theorem,
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which we now state, is the converse. It was first published by Gustav HER-
GroTz (1911) for I' = Z. BOCHNER (1933) proved it for I" = R and WEIL
published the proof for any LCAG. For positive-definite distributions and
their extensions, see [183].

Theorem B.10.3. Bochner theorem
Let R be o continuous positive-definite function on I'. Then, there exists a

unique positive bounded Radon measure u € My(G) such that R = F(u) on
r.

There are several accessible conceptually different proofs, e.g., [139], [268],
[391], cf., [415].

Remark. Because of our decomposition theorems for measures, the Bochner
theorem allows us to assert that F : I' — C is of the form F(u), for some
i € Mp{@3), if and only if F¥ is a finite linear combination of positive-delinite
functions. This does not give a useful, implementable, inirinsic characteri-
zation of F(My(G)). For perspective, such a characterization does exist for
F(L2, (@) because of the Plancherel theorem which is valid for LCAGs.
This characterization for F(L2, (&) is that F' € F(L2,,(G))} if and only if
FelL? (I

The problem for such an intrinsic characterization of F(Mg(G)) or even
F(LY (R)) is unsolved. We know that F(LL (R)) C Co(R), but we do not
have implementable conditions on F € Co{R), as a function on R, which are
necessary and sufficient to assert that F' & F(L}, (R)).

Example B.10.4. Lévy continuity theorem
a. In Section 6.6.5 we defined a sequence {u,, :n = 1,...} C M;"(R?) to be
tight if

Ye>0, 3 K. CR?% compact, such thatVn=1,..., pn{K:) > 1—e

(Besides being defined in Section 6.6.5, the space M, (R%) was also defined,
in a slightly different way, in Theorem B.9.2.) We then stated the Prohorov
theorem which describes the relation between convergence in the sense of
Bernoulli and tight sequences. These ideas have far reaching consequences
when dealing with the convergence of probability distributions, for exam-
ple, when dealing with probability measures on certain infinite dimensional
spaces. See [325] for the “down to earth” theory on R?. An important result
in this area is the Lévy continuity theorem proved by PAUL LEvY in 1925,
e.g., [61].

b. A central part of the Lévy continuity theorem, which is also appropriate
for this section, is the following result: Given {w,, p:n =1,...} C M (RY);
then, {pn i n==1,...} converges to u in the sense of Bernoulli if and only if

YyeRY  lm faly) = aly). (B.32)
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For each fixed y € BY, e~ 277 & C}(RY) as a function of x, and so (B.32)
is a consequence of Bernoulli convergence. The proof that (B.32) implies
convergence In the sense of Bernoulli is more substantial, and we give an
outline. R

c. Assume (B.32). We know that fi is continuous on R9, although for
this proof we only need it to be continuous at 0 € R?, By (B.32), 4(0) =
Hmy—oe n(0) = 1. Let & > 0. By the continuity,

35> 0such that V¢ € Qs, |1 — f4(8)] < g (B.33)

where Qs = {€ € B4 :Vj=1,...,d, |&| <8} Let A= {£cR: v =
o d, |zg] < LY Thus, if o = (z1,...,24) € A™, then some |z > 1/(mé);
and so,

d sin(2mw,8)| 1
[ 1
. 27I'£Ej5 2
g=1

Further,

1 sin(2mz;4)
Ve Rd, f —2miz€ d J
m(Qs) Qs = H 27x;d

Therefore, for each n > 1,

it o 8@t = [ (1= s [ et ) o)

i — 2
Z/N@ﬁwngfg w@d%m

> %Hn(AN)-
(B.34)
Because of (B.32) and the fact that ||fin]|e < [[pt]h = 1, we can use (B.33),
{B.34), and LDC to assert that

T jin(A™) < Tm Lf (1— finl0)) d¢

00 nr00 MY Q
- gy [, (e de <o

Consequently, we choose N such that p,(A™) < e for all n > N. Next,
choose compact K, 2 A for which p,(K;) > 1~ for 1 < n < N. Thus,
pn(Ke) > 1—cdoralln> 1, and {p, : n=1,...} is tight.

Thus, by part b of the Prohorov theorem (Theorem 6.6.5), there is v €
M;F(R?) and a subsequence {jn, : k=1,...} C {tin : n=1,...} for which
{tin, + k = 1,...} converges to v in the sense of Bernoulli. Now, by the
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Fourier uniqueness theorem for measures and another application (perhaps
“corollary” is more accurate) of the Prohorov theorem, it is elementary to
prove that {g, :n=1,...} converges to v in the sense of Bernoulli and that
v = p. This completes the proof.

B.11 Radial Fourier transforms

To outline Fourier analysis on R (or Z or Taq) and then to define an essen-
tially qualitative theory on LCAGs, as we have done, may be sald to have
missed a very big point. There remains the quantitative Fourier analysis of R%,
with unresolved geometric intricacies in topics such as spectral synthesis and
with analytic mysteries beyond extensions of the Paley—Littlewood theory
and the singular integral operators which generalize the Hilbert transform.
Some difficulties are implied in Sections 8.8.2-8.8.5, but, notwithstanding
20th century accomplishments, e.g., [196], so much is yet to be fathomed,
see [163].

On the other hand, the radial theory, with its one-degree of freedom, is
highly developed. A function f : R% — C is radial if f(z) = ¢(||z]]), for some
g:[0,00) — C, where ||z| = (% + ...+ z2)/2. An equivalent definition was
given in Exaraple 8.6.2¢. Thus, f is radial if and only if f{S(z)) = f(z) for
all S € SO(d,R). We record some useful facts in this area. To whet one’s
appetite we give two useful examples, compute the Fourier transform of a
radial function, and state a fascinating theorem.

Definition B.11.1. Fourier transform on L} ,(R%)
The Fourier transform of f € L} ,{R%) is the function F defined as

VeeRI=RY, F(e) = / Flz)e™ 26 gy,
R
Also, the dilation fy, A > 0,1is fi(z) = A%f(Az). In particular, [, fa(z)dr =

Jge f () dz.

Example B.11.2. The Gaussian in R
Let f(z) = e™=l" r » 0, z € RY By Example B.1.8 and the Fubini
theorem, the Fourier transform F of f is

F(g) = 42 mlIEN/r,
Setting G¥(z) = G{z1) ... G{zq), we have [, G*(x)dr =1 and
(G (E) = e~ (IR,

Example B.11.3. The Poisson function

We shall define and compute the Fourier transform of the natural general-
ization to R of the Poisson function on R, as defined in Example B.1.5 and
Example B.3.4.
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a. We begin on R, using either Theorem B.1.2 or Theorem B.3.7, to

compute
_ 2r [ cos(2mty)
2mrlyl . 20 et Nliig 3
e - /0 212 dt. (B.35)

If r = 1, we use (B.35) to obtain

— 2|yl 2 [ * ——ut?
e = — cos(2nty) e eV du | dt
™ Jo 0
= 2 ]OO e (1 fm e ut’ g2mity dt) du.
T Jo 2 /o

We apply Example B.1.8 to the right side, so that

_ 1 o0 pH 2
el — E e g
VT Jo Vu

Thus, for r > 0 and v € R,

e——-Z?r'r'|'r| _ _“}__‘ /00 ..e—_ue*('”r'ﬂz/u du. (B36)
Fh

b. Next, we recall the definition of the gamma function I'
Vux>0, I'u)= f 4 e da.
0

Using the Laplace transform £ in Example B.4.5¢, and for fixed v > —1, we
have

¥ s such that Re(s) >0, L{z")(s)= ;Tlﬁp(u +1),

as a function of s. It is easy to see that if u = m € N then L(z™)(s) =
m!/s™*+! and so I'(m+1) = m!. Further, M'u+1) = wl'(u) and I'(1/2) = /7.

c. Now consider e=#"1¢ll ¢ ¢ ]@d, and take its inverse Fourler transform
using (B.36) and Example B.11.2:

: 1 o0 gTu 2 ;
—2mr|gl miz ge _m/ U ~ (g g2miat g ) d
e 1 e [2) U
.[ﬁd \/’E 0 \/’E T §

= W/Dog"‘u(1+”11:”2/7'2)“(61*1)/2 du
Laavid )

]
r 1 oo
= —, (d—-1)/2
7T-(d+1)/2 (,rQ + H$H2)(d+l)/2 /0 e v d’U.
Therefore,
—2mri|gf J2wix-£ . TF((d+ 1)/2) 1
]ﬁ ¢ ¢ a6 = mld+1)/2 (r2 |]w”2)(d+1)/2' (B.37)

The right side of (B.87) is the Poisson function on R% and e=2"I} is its
Fourier transform on R%,
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Example B.11.4. Bessel functions on R-
We shall use Bessel functions of the first kind,

($/2) i —42 cos P
Jy(x) = m—j/ e @) sin®(0) d8,

for the case v = (d — 2)/2. The functions J,, arose as solutions of the differ-
ential equation,

d w dw

o5tz —+(z vHhw = 0,
see [350].

Theorem B.11.5. The Fourier transform of radial functions
Let f € L} ;(R%) be radial. Then, its Fourier transform F' is radial. Further,

FUS) = e | ¥ Ta-mamrlet) dr (B39

where 7 = ||z|| and ¢{r) = f(jlzl}).

The proof that F is radial comes down to checking that F(£) is invariant
with Tespect to rotations about the origin. The formmla (B.38) results from
Theorem 8.7.10, Example 8.7.11, and Example B.11.4, e.g., [413], pages 222
227,

Example B.11.6. Radial Fourier transforms for 4 =1,2,3
Given the notation of Theorem B.11.5. If d =1, then

F(lg)h =2 /000 cos(2mr|E|)p(r) dr

as predicted from Proposition B.1.7. If d = 2, then

F(lel) =2x [ raoCearielot) dr
If d =3, then -
F(El) = %/0 7 sin(27r || d(r) dr.

We close this section with SCHOENBERG's surprising result (1938), see
[407], [139], pages 201-206.

Theorem B.11.7. Schoenberg theorem
Let ' : [0,00) — C be continuous, and, for all d > 1, define R(£) = F({l£]]),
¢ c R, R is positive-definite on BY for all d > 1 if and only if
3 p e Mp([0,00)), >0, such that Yy >0, F(y)= f e ™ du(z),
0

noting this integral is the Laplace transform L(u){(v%}.



526 B Fourier analysis

B.12 Wiener’s Generalized Harmonic Analysis (GHA)

In this section we not only have a chance to advertise WIENER’s beautiful
theory of Generalized Harmonic Analysis (GHA), but the theory itself com-
bines many of the ideas we have introduced including the Bochner theorem
and distribution theory. It is particularly exciting because of the continu-
ing applicability of these notions, e.g., power spectra and spectrograms, in
physics and signal processing. See the penultimate bullet in Section 9.6.4.

In 1930, NORBERT WIENER [496], Volume II, pages 183-324, proved an
analogue of the Parseval-Plancherel formula, ||f|lz = | f]lz, for functions
which are not elements of L2(R). We refer to his formula as the Wiener-
Plancherel formula, e.g., (B.40). It became a beacon in his perception and
formulation of the statistical theory of commumnication, e.g., [493], [308].
WIENER [496] even chose to have the formula appear on the cover of his
autobiography, I Am o Mathematician. {This is a 20th century analogue of
ARCHIMEDES' tombstone, which had a carving of a sphere inscribed in a
cylinder to commemorate his “1:2:3” theorem, see Section 3.9.1 for details
concerning the mathematical results, CICERO’s role, and a recent npdate.)

Besides the use of GHA as an explanation of the polychromatic nature
of suniight, WiENER discussed the background for GHA in [496], Volume
IL, pages 183-324; and this background has been explained scientifically and
historically in a virtucse display of scholarship by MASANI, e.g., MASANTs
remarkable commentaries in [496], Volume II, pages 333379, as well as [331].
Two precursors, whose work Wiener studied and who should be mentioned
vis a vis GIIA, were Sir ARTHUR SCHUSTER and Sir GECFFREY 1. TAYLOR.
SCHUSTER pointed out analogies between the harmonic analysis of light and
the statistical analysis of hidden periods associated with meteorological and
astronomical data. TAYLOR conducted experiments in fluid mechanics dealing
with the onset to turbulence, and formulated a special case of correlation. A
third scientist, whose work (1914) vis a vis GHA was not known to WIENER,
was ALBERT EINSTEIN., EINSTEIN writes: “Suppose the quantity y (for ex-
ample, the number of sun spots) is determined empirically as a function of
time, for a very large interval, T. How can one represent the statistical be-
havior of y?” In his heuristic answer to this question he came close to the
notions of autocorrelation and power spectrum, e.g., B.12.5, cf., [331], pages
112-113, BINSTRIN’s paper [153], and commentaries by MASANI [330] and
YagrLoM [501].

The Fourier analysis of L1(R) or L?(R) or the theory of Fourier series
were inadequate tools to analyze the issues confronting SCHUSTER, TAYLOR,
and FINSTEIN. On the other hand, GHA became a successful device to gain
some insight into their problems, as well as other problems where the data
and/or noises can not be modelled by the Fourier transform decay, finite
energy, or periodicity inherent in the above classical theories, e.g., [9], Chapter
1, {29], [373].
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The material in this Section outlines GHA and is due to WIENER [496],
Volume II, pages 183-324 and pages 519-619, [490], cf., [33] Chapter 2, [52].
The higher dimensicnal theory, with its geometrical ramifications, is found
in [41], [37], <f., [6].

Definition B.12.1. Bounded quadratic means
The space BQM (R) of functions having bounded quadratic means is the set
of all functions f € L2 (R) for which

su L ' & f@)Pdt <

o0 2T '

The Wiener space W (R) is the set of all functions f € L (R) for which
2
e
Theorem B.12.2. Inclusions for GHA
The following inclusions hold:
L2 (R) € BQM(R) C W(R) C S'(R).
Moreover, all the inclusions are proper.

Definition B.12.3. The Wiener s-function
The Wiener s-funection associated with f € BQM(R) is defined as the sum

8 = 51 + 89, where
—‘27m‘,§ _ 1
/ Fit ) —2mit

and
e 21mt5

)= [ HO

Since f € L'[—1,1], we have s; € C(R) and |s1(&)| < 2/€][| fllz1[—1,1;. Since
f € BQM(R), Theorem B.12.2 and the Parseval-Plancherel theorem allaw
us to conclude that sy € L2 (R) In particular, s € L;OC(R) " &(R).

Theorem B.12.4. The derivative of the Wiener s-function
Let f € BQM(R). Then, f € 8'(R) and

=1,
where § € LIQDC(}@) NS (R) is the Wiener s-function associated with f.

Definition B.12.5. Deterministic autocorrelation
The deterministic autocorrelation B of a function f : R — C is formally
defined as
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R{t) = lim A/ Flu+ ) f(u) du.
T—o0 20

To fix ideas, suppose R exists for each t € R. It is easy to prove that I is
positive-definite, and so £ = .S for some positive bounded Radon measure 5 €
My(R) by Theorem B.10.3. There is also a notion of stochastic autocorrelation
arising in the study of stationary stochastic processes, see [284], [283], [140],
[61]. Deterministic and stochastic autocorrelation are the same if the process
has the property of being correlation ergodic, see [356]. This notion is not
unrelated to the ergodic theorem discussed in Section 8.8.6. 5 is called the
power spectrum of f, and, in applications, letters such ag “S” are used instead
Of “ !?

The Wiener—Plancherel formula is equation (B.40) in the following result.

Theorem B.12.6. Wiener—Plancherel formula _
Let f € BQM(R), and suppose its deterministic autocorrelation R = 5 exists
for each t € R.

a. Then,

YteR, R(t)=lim g / |Acs(€)|2e™ 2 de, (B.39)

where Ags(€) = 2(s(¢€ +¢) — s(€ — &)},

b. In particular,

. )2 dt = 2
lm / (t)de = tim 2 f Aus(6)]? de. (B.40)
Example B.12.7. Related formulas and spectral estimation
a. Because of (B.39) and assuming the setup of Theorem B.12.6, the following
formulas are true under the proper hypotheses, e.g., [33], page 90, [36], page
347:
2
lim =|As(6)f = S, {B.41)
g0 ¢

and

T
Jk©rds© = pm gz [ ks s
. 2 o) 2
~im? (RO &

b. Formally, (B.42) is (B.40) for the case k = &. For k € C.(R) the
first equality of (B.42) is not difficult, e.g., [36], pages 847-848. The second
equality, or, equivalently, Theorem B.12.6, requires the Wiener Tauberian
theorem {Theorem B.12.9).

¢. The following diagram illustrates the action and “levels” of the func-
tions and measure in Theorem B.12.6 for a giver signal f.

(B.42)
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R=85«— S {24}

d. Since 5 is the “power” spectrum, (B.40) and (B.41) allow us to assert

that -

limm i/ PO dt

Teoo 27T -7
is a measure of the total power of f, cf., WIENER's comparison of energy
and power in [493], pages 39-40 and 42. In light of the spectral estimation
problem, see, e.g., [39], Definition 2.8.6, the middle term of {B.42) is & measure
of the power in a frequency band [e, ] if k== 11a,5) in the first term of (B.42),
cf., [36], Theorem 5.2.

Remark. The Parseval-Plancherel formula, || f||z = || f|2, allowed us to de-
fine the Fourier transform of a square integrable function (Theorem B.4.2),
and, at certain levels of abstraction, it is considered to characterize what
is meant by an harmonic analysis of f. On the other hand, for most ap-
plications in R, the formula assumes the workaday role of an effective tool
used to obtain quantitative results. It is this latter role that was envisaged
for the Wiener—Plancherel formula in dealing with the non-square-integrable
case. After all, distribution theory gives the proper definition of the Fourier
transform of tempered distributions. The real issue is to obtain quantitative
results for problems where an harmonic analysis of a non-square-integrable
function is desired. As mentioned above, a host of such problems comes un-
der the heading of an harmonic (spectral) analysis of signals containing non-
square-integrable noise and/or random components, whether it be speech
recognition, image processing, geophysical modeling, or turbulence in fluid
mechanics. Such problems can be attacked by BEURLING’s profound theory
of spectral synthesis, e.g., [33], as well as by the extensive multifaceted theory
of time series, e.g., [366]. BEURLING’s spectral synthesis does not deal with
energy and power considerations, i.e., quadratic criteria, and time series re-
lies on a stochastic point of view. The Wiener~Plancherel formula deals with
these problems deterministically, and, hence, with potential for real imple-
mentation.

Example B.12.8. Elementary power spectra

a. The value of an autocorrelation R is that it can be measured in many
cases where the underlying signal f can not be quantified. This is the basis
of the Michelson interferometer. Also, the discrete part of the power spec-
trum S characterizes periodicities in f, e.g., [492], Chapter X. This can
be illustrated by taking f(t) = Y p_,mee™ 2™ € C, Ay € R. The



530 B Fourier analysis

L autocorrelation is not defined, but the deterministic autocorrelation is
R(t) = Sp_; |rel2e 2% (by direct calculation); and hence the power spec-

trum is n
S = Z |’I‘k|2 5,\k.
k=1

b, If f : R — C has the property that limy, .. f(£) = 0, then
& = 0. It is elementary to construct examples f for which § = 0 whereas
Elthim | F{(£)| > 0, cf., [490], pages 151-154, [29], pages 99-100, [33], pages
84 and 87, [35], Section IV.

As mentioned in Example B.12.7, the following result is required to prove
the Wiener—Planchere] formula. It was first stated in the Remark after Prob-
lem 5.8.

Theorem B.12.9. Wiener Tauberian theorem
Let f € LL(R) have a non-vanishing Fourier transform and let g € L°(R).
If

s Fro® =7 [ rwas, (B.43
thern o
Vhe IL@®), Jim heglt) =r f h{w) du. (B.44)

Remark. a. Theorem: B.12.9 has the format of classical Tauberian theo-
rems: A boundedness (or related) condition and “summability” by a cer-
tain method yield “summability” by other methods. In Theorem B.12.9, the
boundedness or “Tauberian” condition is the hypothesis that g € L22(R).
The given summability is (B.43), where f represents a so-called “summa-~
bility methed”. The conclusion (B.44) of the theorem is summability for a
whole class of summability methods, viz., for all & € L (R). A classical and
masterful treatment of summability methods is due to HARDY [210].

If G is the Gaussian defined in Example B.1.8, then & never vanishes.
Thus, in this case, if ¢ € L(R) has the property that

tlim Gg{t)=r,

then
VA, tlim Wy gty =r,

where {Wy} is the Fejér kernel.

The particular functions used by WIENER to prove his Wiener Tauberian
formulas are found in [490], [33], pages 91-92.

b. Modern Tauberian theorems have an algebraie and/or functional ana-
lytic flavor to them. For example, the Wiener Tauberian theorem is a special
case of the fact that iof f € AR}, T € A'(R), and Tf = 0, then f =0 on
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supp T. In fact, the generalizations of Theorem B.12.9 are much more far
reaching than this. [33] gives an extensive treatment of both classical and
modern Tauberian theory, as well as the history of the subject, and applica-
tions to spectral synthesis and analytic number theory, see also, e.g., [239].

Beeause of the importance of translation invariant systems and the theory
of multipliers, we define the closed translation invariant subspace V; generated
by f € X, where X is L (R) or L2,(R), to be the closure in X of the linear
span of translations of f by t € R, ie,,

Vy =gpan{n(f) : t € R}, ' (B.45)

Theorem B.12.10. Zero sets and dense subspaces
a. If f € LL(R) and f never vanishes, then Vy = L1 (R).
b. If f € L2 (R) and |f| > 0 a.e., then Vi = L2 (R).

Proof. Part a is the Wiener Tauberian theorem, and we refer to [490], [33],
pages 256-26, 49-50, 94-95, and Section 2.3 for proofs.

The proof of part b is much simpler than that of part g, and so we shall
give it. Suppose Vi # L2 (R). Then, there is h € L2 (R) \ {0} such that

ViER, ] (reF)) ) R) dus = 0. (B.46)

Fquation {B.46) is a consequence of the Hahn-Banach theorem and the fact
that L2 (R) = L2 (R). By the Parseval-Plancherel theorem,

VteR, f FIOR(E)e~2mi%E g¢ = 0.

f?z_ € L}n(]@.) by the Holder inequality, and so, by the L'-uniqueness theorem
(Theorem B.3.5¢), fh = 0 a.e. Since |f] > 0 a.e., we conclude that h=0ae.,

and this contradicts the hypothesis on k. Thus, V¢ = L*(R).
O

Subspaces such as V3 in (B.45) play an important role in Gabor and
wavelet decompositions in the case that the get of translates r:(f) is reduced
to {7-(f) : r € D} where D is a discrete subset of R, e.g., [338], [114], [45],
[301].

Remark. a. Let M;" (R) be the space of positive bounded Radon measures
on RB. In GHA, a function f is analyzed for its frequency information by
computing its autocorrelation R and its power spectrum § = RY € MJ (R).
Mathematically, this is a mapping between a class of functions f and a class
of measures § € M, (R). A natural question to ask is the following: For any

s M,;‘" (]ﬁ.), does there exist f whose autocorrelation R exists, and for which
Ro==p? '
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b. The question of part a is answered affirmatively in the case of weakly
stationary stochastic processes (WSSPs) by the Wiener—Khinchin theorem:
A necessary and sufficient condition for R to be the stochastic autocorrelation
of some WSSP X is that there exist S € M, (R) for which § = R. In one
direction, if R is the stochastic autocorrelation of a WSSP X, then § = RY ¢
M;r (R) by Theorem B.10.3. The question in part a deals with the opposite
direction, and the positive answer is not ditficult to prove, e.g., [366], pages
221-222, [148], pages 62-63 and 72-73. KHINCHIN’s proof dates from 1934,
and there were further probabilistic contributions by WoLD (1938), CRAMER
{1940), and KoLMoGOROV [283], cf., [38].

¢, The deterministic and constructive affirmative answer to the question
in part o is the Wiener—Wintner theorem (1939) [496]. JEAN BAss and JEAN-
PauL BERTRANDIAS made significant contributions to this resuls, e.g., [29];
and the multidimensional version is found in [36], [273].

Theorem B.12.11. Wiener—Wintner theorem
Let € M (R). There is a constructible function f € LE (R} such that its
deterministic autocorrelation B exists for allt € R, and R = pu.

B.13 Epilogue

This appendix serves as a handmaiden to the book, but the material is re-
ally a preface to harmonic analysis as one of the goddesses of mathematics.
There are magnificent, profound edifices from classical Fourier series to rep-
resentation theory, from non-harmonic Fourier series to sampling, wavelets,
and time-frequency analysis, from Fourier methods in classical partial dif-
ferential equations to pseudodifferential operators, from the computation of
(Gauss sums to the role of Fourier analysis at all levels of analytic number
theory, and from Fast Fourier Transforms to an ever expanding litany of gen-
uine applications. We have referenced intreductory texts and groundbreaking
treatises, and encyclopedic works of scholarship.




