Chapter 3

Fourier Series

3.1 Fourier series — definitions and con-
vergence

3.1.1 Definition. Fourier SeRries

a. Let > 0 and let F: R — C be a function. F is 2Q0-periodic
with period 2Q if F(y + 2Q) = F(y) for all v € R. For example,
F(v) = sinvy is 2m-periodic. If F is defined a.e. then F' is 2Q2-periodic
if F(y+2Q) = F(y) a.e.

b. Let F € LL (R) be 20-periodic. The Fourier series of F is the
series,

(3.1.1) S(F)(y) =3 fln]e™"/%,
where
— 1 @ minyf§)
(3.1.2) VneZ, flnl= 50 /_g F(v)e dry.
The numbers f[n] are the Fourier coefficients of F. The symbol “377

denotes summation over all of Z, 1.e., “3500 7.
c. Formally, the right side of (3.1.1) can be thought of as defin-
ing the Fourier transform f or F of the sequence f = {f[n]}, cf,

Remark 3.1.3d. In fact, a sequence f = {f[n]} is a function
f:Z — C
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Letting £'(Z) be the space of all sequences f = {f[n]} for which
| flle@y = Z|f[r]] < oo, the right side of (3.1.1) is well-defined for
f € £4(Z). In this context, we shall write

(3.1.3) fenF F=F f=p,

just as we did in Definition 1.1.2 for the case of Fourier transforms.

Thus, in the case of sequences we write 1\3" [7] = fln].

The notation (3.1.3) is based on the presumption that S(F') should
equal F', e.g., Remark 8.1.2and Theorem 8.1.6; and that if the right side
of (3.1.1) defines the Fourier transform of the sequence f then (3.1.2)
is the Fourier inversion formula on Z corresponding to the Fourier in-
version formula (1.1.1) on R.

In fact, S{F') often does equal F' in the sense that the partial sums
of the series S(F') will converge in some way to F'. With this in mind,
if F e LL (R) is 2Q-periodic we shall write

N
Sun(F)(7) = 32 flnle™™%,

n=—M

where f is defined by (3.1.2). Sy(F) = Sy n(F) is the N* partial sum
of S(F).

d. The venerable subject of Fourier series has its share of venerable
treatises, which include [Bary64], [Car30], {[Edw67], [HR56], [Kah70],
[KS63], [Kat76], [Kor88], [Rogh9], and [Zygh9] (Zygmund’s first edition
is great, too).

e. We are using the notation “f[n]|” for a Fourier coefficient of F
to distinguish it from the notation “f(n)”, which usually designates
the value at n € Z of a function f defined on R. Similarly, we have
chosen “f[n]” instead of “f,”, since “f,” often indicates an element of
a sequence of functions defined on R. Also, we could use “¢,” instead
of “f[n]”, but then we lose contact with the letter “F”.

We can and shall consider Fourier series of periodic functions on R
instead of R. Our choice of (3.1.1) to define Fourier series is based on
the first part of ¢, the typical setting of spectral frequency information
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(in terms of Greek letters such as “y”) associated with digital signals
(sequences), and whim!

Finally, we could have defined Fourier series for 1-periodic or 2n-
periodic functions; and then have developed the theory of Fourier series,
unburdened by lots of Qs. We have chosen the setting of 2Q-periodic
functions to give us the flexibility of dealing with different values of
which might arise in specific problems or applications. In more theo-
retical developments, we shall usually let 200 = 1.

3.1.2 Remark. FormMAL CALCULATION AND ELEMENTARY EXAMPLES
a. The reason we deal with (3.1.1) and (3.1.2) as a pair is that
the decomposition of F' into it fundamental parts, viz., the formula
S(F) = F, is only effective if there is quantitative knowledge of the
coefficients f[n] in (3.1.3). In the case S(F} = F the following formal
calculation allows us to obtain (3.1.2) from (3.1.1):
fr; F(v)ewim’r/ﬂ d,}, — ftz (Z f[n]e—m'n'y/ﬂ) e'nim'ylﬂ. d’}f

0

= 3 Jlol [, erm=rif g = 20 flm).

n=—00

b. Let € > 0 and let a € (0,Q). Define F as F = 1_,,) on
[—Q,Q), extended 2Q2-periodically on R, i.e., F(y + 2nQ) = F(v) for
all ¥ € R and all » € Z. The Fourier series of F is

S(F) Zd(a) -—m'n'y/ﬂ
where d()[0] = & and

7)

Vn € Z\{0}, dln] = gt Izw(a)

cf., the Dirichlet function in Frample 1.5.1. _
Next define F by F(v) = max(1 — J_}l, 0) on [—-, ), extended 202

periodically on R. A straightforward calculation, similar to that in
Example 1.8.4, shows that the Fourier series of F' is

S(F)(7) = Y wia[nle ™9,
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where w(,)[0] = 3% and

20

Vn € Z\{0}, wln]= % (22(15—9—)) ),

cf., the Fejér function in Ezample 1.3.4.
The Fourier coefficients in this example define the Dirichlet and
Fejér kernel on Z, cf., Ezample 3.4.5. ‘

3.1.3 Remark. NoTaTION AND SETTING

a. fQ > 0and F e L. (R) is 2Q-periodic, then we write F €
LI(ng). N

Mathematically, Taq = R/(2Q7Z) is a special quotient group re-
ferred to as the circle group depending on 1. An engineering student
need not be concerned with this terminology for the time being. The
point is that, because of the periodicity of F, F € L}(Tq) can be
thought of as being defined on any fixed interval I C R of length 20
and that this periodicity, combined with knowledge of F' on any such
interval, completely determines F' on R.

Similarly, Ag € T3 indicates any element of the set {A +2nQl:n €
Z} C R for some fixed X € R. Further, J € Tyq indicates a subset
JCIC ]R’., where I C R is an interval of length 20, or any one of the
subsets

Jr+2nQ={y+2nQ:v€ Ji}, nelZ
If Q =1/2, we write T=T;.
This possibly cryptic exposition might be unraveled at this time by

performing some of the calculations in Ezercise 3.1, cf., part c.
In any case, if F' € L'(Tsq) , then f; F(y)dy = [ F(v) dvy for any
interval I C R of length 2. As such we introduce the notation,

me Fy)dy = 2—19-fIF(7) dy.

The factor “-L.” is a normalization factor in the sense that if F =1 on

2 26
R then
F=1¢ L (Ts) and fT 1dy = 1.
20
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The norm of F € L}Taq) is
1 0
1Pl = [ 1Fdy =55 [ 1FG)ld.

b. If Q > 0, F is 2Q-periodic, and F? € L (f&) is 2Q)-periodic, then

loc

we write F' € L2(Tyq). The norm of F € L*(Tsg) is

Pl = ([, 1FoFar) " = (& [ 18P ar)

By Holder’s Inequality,

[ 1P@)G@) ¢
(3.1.4) >

L
2

<(/ ) ([iomrs)

e.g., Theorem A.15 and so we have the inclusion L?(T2q) C L*(Tsq)
and the inequality

(3.1.5) VI € L:(Toa), 17l mae) S NF la2(ran)-

Recall the analogous (sic) situation on R, i.e., Erercise 1.35. The in-
clusion and inequality (3.1.5) follow since, by taking G =1 in (3.1.4),
we obtain

1 11
- d
1Fllz2¢ra0) = 5 /;QIF(’Y)l v

1 & 2 % 1
S 5 LQIF(V)I dy) (27 = | Fllr2(ren)-

The inclusion is also proper, e.g., Ezercise 3.6.
c. Let = and let F(v) = sinvy + cos 2y on R. Then

];rmF('r)d'F 2%[(]2#-”(7)(57

. /W F(y)dy lfﬂ%F('y)d*r:O,

T 2 s T o Ja
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for any fixed & € R. Further, if J; = (%,%] C I = (0,2n] then

1 (% 1 [Etem
Vn€Z, o f Fly)dy=— f F(y)dy = 5- / F(v) dr.

?-}-21711

Thus, if we let J be any one of the sets J; + 2mn C I@., then J C Tan

and
1 r%
F(v)dy = — .
[ @ =5 [F Py

d. In Definition 8.1.1c we defined the Fourier transform of a se-
quence f = {f[n]} € £1(Z). We now define the Fourier transform of
F € LY(Tyq) as the sequence f = {f[n]}, where

vnez, fln)= | F()e R dy,
2

and where “fp 7 is defined in part a. In this case, the formal inversion
formula is

F(7) = ¥ flnlem2,

e. In Chapter 1, for f € L*(R), the Fourier transform of f was
defined on R(= R). In this chapter, we have two “dual” settings.
First, for f € £}(Z), the Fourier transform of f is defined on Tsq; and,
second, for F' € L'(Tsq), the Fourier transform of F is defined on Z.
Mathematically, R and R are locally compact abelian groups (LCAGs)
which are not compact and which are dual, in a technical sense, to each
other; similarly, the discrete LCAG Z is the dual group of the compact
LCAG Taq, and vice-versa, e.g., [Rud62], [Edw67], [BenT75).

3.1.4 Example. Fourier SERIES OF REAL-VALUED FUNCTIONS

Let F' € L1(Tqq) be real-valued, and let f = {f[n]} be the sequence
of Fourier coeflicients of F'. Thus,

K2 T
)= g Lo Fnees (FE) i+ 55 [ Fesin (FG)
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Formally, since S{F'} should be equal to F' and therefore be real-valued,

we have o [

£y (.é_lﬁ / F()) cos (”;"z’\) Do [ | F(¥)sin (%) aL\) <
(cos (%) = 15 (7))

% FOY D+ ( [ Z F() cos (“;’\) d)\) cos (27

+3 (% / S; F(})sin (”g’\) d)\) sin (221
?)

—ag-l—Za,ncos( -I-Zb sm( )
where | 0
ao = ﬁf_ﬂF()\)d,\
and \
n
a, Q/ F(3) cos( a )d)\,
and

A
b, Q] F(Asm(ﬂ)d)\,

for n > 0. The coefficients a,,b, are obtained since, for example, if
n > 0 then _
1 0 . {—7nA . =Ty
(—z—ﬁf_nF()\)sm( ) ) d)\) sm( q )
1 9 . {mnA . [Ty
+ (ﬁ/_QF()\)sm ( 0 ) d,\) sin (T)

== b, sin (%fz) .
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The Riemann-Lebesgue Lemma for L'(R) (Theorem 1.4.1c) has an
analogue for L!(T2q).

3.1.5 Theorem. RIEMANN-LEBESGUE LEMMA
If F € LYTaq) then limpjoyeo fin] = 0, where f = {f[n]} is the
sequence of Fourier coefficients of F, ie., f = F.

Proof. a. Assume F € CY(R). Then, G = F' € L'(Tsq) has the
properties that [%, G(v)dvy = 0 and

(3.16) VYve[-0,0), F(y)= f "; G(\) dA + F(—Q),

cf., the approach in Theorem 1.4.1c.
We compute (for n # 0)

2 .
fln) = 55 [ Foeri dy

1|0 &g s .
— e} e miny/Q _ miny/
20 [m’ne F) _q mnJ-q G(v)e dﬁy}
_1 o _
— TinyfQ g,
2rin ./—Q G(7)e 4

and, hence,
2
[fin]| < mHG”LI(Tm)-

Consequently, limj,| o0 f [n] = 0.

b. Let F € LY(Taq) and € > 0. There is F, € CL(R) which is
2Q-periodic and for which ||F — F|lpyr,q) < € Then (3.1.5) is valid
with F, and G, = F! € L(Tq) instead of F' and G. (The existence
of F. can be proven in many ways, including the convolution of F' with
an approximate identity, which we shall discuss in Section 3.4.)

We compute (for n # 0)

[fIn]l < 1fln] = feln]l + | fln]|

4]
SNF = Fellpy(ran + mlchllLl(Tm),
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where fo = {fr]} is the sequence of Fourier coefficients of F. and
where we have invoked part ¢ in the second inequality.
We know that

Im e, < lim b, + Lim ¢,
|| =+oo |Inj]—oo Ir|—=oo

in case a, < b, + ¢, and ay,,b,, cn > 0, e.g., Definition A.1. Conse-
quently,

lim |f[n]| < l1m F — Felloi(r,q) < €

|n]—roo Inf—+
Since the left side is non-negative and independent of € we conclude
that limjjeseo |f[n]| = 0. )

We shall use the Riemann-Lebesgue Lemma to verify Dirichlet’s
fundamental theorem which provides sufficient conditions on a function
F ¢ LY(Tsq) so that S{F)(v) = F(yo) for a given point 7. The
following ingenious proof is due to P. Chernoff [Che80], cf., [Lio86] and
the classical proof as found in [Zyg59]. Dirichlet’s theorem for Fourier
series naturally preceded the analogous inversion theorem for Fourier
transforms, e.g., Sections 1.7 and 3.2.

3.1.6 Theorem. DIRICHLET THEOREM
If F € LY(Tyq) and F is differentiable at 4o then S(F)(y0) = F{7o)

in the sense that

where f = {f[n]} is the sequence of Fourier coefficients of F, i.e
f=F.
Proof. a. Without loss of generality, assume v = 0 and F'(y) = 0. In
fact, if F(0) # 0 then consider the function F' — F(v,) (instead of F),
which is also an element of L*(T,q), and then translate this function
to the origin.

b. Since F(0) = 0 and F'(0) exists we can verify that G(y) =
F(y)/(e~™*/® —1) is bounded in some interval centered at the origin.
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To see this, note that

(3.1.7) G(v) = F fy”) ( =

A (R + (P 4 o
. . . . =S EYeyme)
and, hence, G(7) is close to<2F"{0}/(n4) in a neighborhood of the origin,

e.g., Erercise 5.4.

This boundedness near the origin, coupled with integrability of F
on Tjq, yields the integrability of G on Taq. Therefore, since F(vy) =
G(7)(e=™/® — 1) we compute f[n] = g[n — 1] — g[n], where g = {g[n]}
is the sequence of Fourier coefficients of G. Thus, the partial sum
Sy~ (F)(0) is the telescoping series

N
> (gln — 1] - gln]) = gl-M — 1] - g[N].

n=—M

Consequently, we can apply the Riemann-Lebesgue Lemma to obtain

JAm_Sun(F)(©) =o. O

3.1.7 Remark. FUNDAMENTAL SPACES AND ELEMENTARY CONVERGENCE RESUL '§

a. Let ? > 0, and let C’m(lﬁ), 0 < m < oo, be the space of m-times
continuously differentiable functions on R. It is convenient to define
the following spaces:

C™(Taq) = {F € C™(R) : F is 2)-periodic on R}, 0 < m < o0,
AC(Typ) = {F € AC1e(R) : F is 20-periodic on R},
BV(Ts0) = {F € BVioe(R) : F is 2Q-periodic on R},

C(T20) = C%Teq) = {F € CO(R) : F' is 2{)-periodic on R}
Clearly, ‘
C®(T2q) C...C™Tyq) C C™(T2q) C ...CYTaq)
C AC(Tqq) C C(T2e) N BV (T2a),
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cf., Remark 1.4.2.

b. The hypothesis in Theorem 3.1.6 that F' is differentiable at ~p is
strong; and the proof of Theorem 3.1.6 is still valid if the hypothesis on
F € LY(T2q) is weakened to the condition that f—(l_);:—%"—“l be integrable
on some interval centered at 7o, cf., Erercise 3.42. In particular, if

F € BV (T,q) then

_F+H) + Fv-)
2

Further, Erercises 8.26 and 3./9 deal with properties of Fourier coeffi-
cients and rates of convergence of {Sn(F'}} for functions F' belonging
to the spaces defined in part a.

c. With regard to Theorem 3.1.6, we can further assert that if F €
BV(Taq) and if F is also continuous on a closed subinterval I C Taq,
then {Sn(F)} converges uniformly to F' on I, cf., [Zyg59, Volume I,
pages 57-58]. The Dirichlet Theorem and this version of it for intervals
of continuity are often referred to as the Dirichlet-Jordan Test, cf.,
Section 3.2.3.

Vy € Tan, Jim Sw(F)(7)

3.1.8 Definition. ReraTions BETWEEN FuNoTioNs DEFINED oN Z anD Tag

a. If f € £1(Z) and Q > 0 then F = J is an absolutely convergent
Fourier series, and the space of such series is denoted by A(T.q). By
definition, the norm of F' = f € A{Tsq) is

1Flaqro) = I ey = D 1£[n]l,
cf., Definition 1.1.2 and Ezample 2.4.6f. We define
L®(Taq) = {F € L=(R) : F is 20-periodic on R},

and the norm of F' € L™(Taq) is || F||zeo(r,0) = |]F||Lm(ﬁ), e.g., Defini-
tion A.10. C(Taq) is a closed subspace of L®(T2q) if C(Tsq) is taken
with the ||... ||z (1,q) norm.

b. We have the proper inclusions,

(3.1.8)  A(Taq) C C(T2q) C L™(Tea) € L¥*(Taq) C LY(T20);
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and the identity map corresponding to any of these inclusions is con-
tinuous, e.g., Ezercise 8.4{4. In fact,

(3.1.9)  [IFller(ran) € NFN2man) < 1F Lo (tany < NF|la(ta)-

We shall show in Ezample 8.5.8 that C'(T1q) C A(T2q).
. Lot £(Z) = {f : Z - C : |flle = (SIRIPM? < oo,

Because of part b, we have the proper inclusions
(3.1.10) H(Z) C X(Z)C A'(Z) C £4(Z) C A(Z),
where the notation X(Z), A(Z), A(Z) is defined as follows:

X(Z) = {f:Z-C : feC(Tw)}
A(Z) = {f:Z—=C : feL=(Tx)},
AZ) = {f:Z->C : feILY(Tw)},

e.g., Bzercise 3.44. If we define ||f||x@) = ||f[|Loo(']I‘20) for f € X(Z),

resp., || fllar@) = | fllze (v, for f € A(Z) and {|f)|a@) = |1 px(rq) for
f € A(Z), then the identity map corresponding to any of the inclusions
in (3.1.10) is continuous. In fact,

(3.1.11) {fllae) < Ifle@ < fla@ < flix@ < Nflle @)
From Theorem 8.1.5, we know that
A(Z) € eo(Z),

where co(Z) = {f : Z = C: limy,|s fln] = 0}, cf., Ezample 3.3.4a.

d. A'(Z) is the space of pseudo-measures on Z, cf., Example 2.4.6f.
In light of RRT, it is natural to define the “bounded Radon measures
Mi(Z)” on Z as the dual space co(Z) of ¢o(Z), where the norm of
[ € co(Z) is defined as || f]|¢=(z), €.8., Appendiz B. This handwaving in
terms of plausible analogy fails in this case since ¢o(Z) = £1(Z), i.e.,

My(Z) = £4(Z)!
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3.1.9 Definition. Measures on T

a. A linear function T : C(T) — C is an element of the dual
space C(TY (of the vector space C(T)) if lim, o T(F,) = 0 for every
sequence {F,} C C(T) for which limp—e0 || Fa||peo(my = 0.

b. We denote C(T)' by M(T). M(T)is the space of Radon measures
on T. The functionals T' € M(T) are often denoted by x, v, etc., and
in this case we have the usual notation,

T(F) = u(F) = [ F)du(a),

cf., Section 2.7. We also define My (T)={p e M(T): p(F) 2 0if F >

0}.
c. By the definition of M(T), if ¢ € M(T) then

3C, > 0 such that VF' € C(T), |p(F)} < CullF|pe(r)-

|[#£]]1 denotes the infimum over all such constants C),. As in the case
of measures on R, L'(T) is naturally embedded in M(T), and if the
correspondence is denoted by F' — pug, then it is easy to show that
I1# N zrexy = Nl

d. The relationship between M(T) and M(R) is established by the
fact that M(T) can be identified with

{1 € M(R) : p = p},

i.e., M(T) can be considered as the subspace of 1-periodic elements of
M(R). Of course, p € M(T) is bounded in the sense of the norm in-
equality in part ¢; but if p € M(T)\{0}, then the 1-periodic measure on
R corresponding to 4 is not in M(R). For example, if ' € L'(T)\{0}
then the 1-periodic function F; on R, which equals F on [0,1), is not
in L} (]R) As another example, define the Dirac measure 6., at v € T
by the formula 6,(F) = F(v), where F' € C(T). Then p = 7(3_46,) is
the 1-periodic measure on R corresponding to 6y, and p & Mb(]ﬁ) The
verification of these assertions is left to Ezercise 3.50.

3.1.10 Example. PerioniciTy: POTPOURRI AND TITILLATION
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a. Periodicity. We defined 2Q}-periodicity on R in Definition 3.1.1.
Let p € C and let F': C — C be a function. F is p-periodic with period
pif F(z+p) = F(z)forall z € D. f D C Cis a domain then F is
doubly periodic with periods py,p; € Cif Im(pz/p1) > 0 and

Vze D, F(z+p1)=F(z)and F(z+ p) = F(z).
F is quasi-periodic if
V(z,w) € R x R,
Fz +1,0) = e ¥ F(z,w) and F(z,w + 1) = F(z,w).

b. Jacobi theta function. As examples, we first note that entire
doubly periodic functions are constants. Also F(z) = e* is 2mi-periodic
on C.

The Jacobi theta function 93 1s a 1-periodic entire function, depend-
ing on a parameter t € C, and is defined as

?9(2’,15) — 29(2.) — Ze—'nnzt-{—mrinz’

where Ret > 0. ¥(z) is 1-periodic on C.

c. Elliptic functions. An elliptic function is a meromorphic function
in the plane which is doubly periodic in its domain of definition. If
71,03 € C, Im(ps/p1) > 0, and pmn = 2mp; + 2nps for m,n € Z, then
the Weierstrass P-function is defined as

P =5+ Do)

Z = pmun)z a p’?n,n

where summation is over all (m,n) € Z x Z\{(0,0)}. P is an elliptic
function.

d. Zak transform. The Zak transform Zf of f : R — C is formally
defined as

¥(z,w) € R x R,
(3.1.12)

Zf(z,w) = '/ 3" f(za + ka)e*™,
k
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where ¢ > 0. Zf is a quasi-periodic function.

e. Elliptic integrals. Seventeenth and eighteenth century problems
from astronomy for computing arc length of orbits, or from mechanics
for computing the period of a simple pendulum, led to the problem of
evaluating integrals of the form

v (1 —k2z2\ 2

or

y dy
(3.1.14) s(y) =f0 (1 — k2sin? )1/2’

respectively. These are examples of elliptic integrals; and Liouville
(1833) proved that such integrals can not be evaluated in terms of alge-
braic, trigonometric, logarithmic, or exponential functions. The study
of elliptic integrals was an important part of eighteenth and nineteenth
century mathematics featuring the likes of Fagnano, Euler, and Legen-
dre, and leading to the analyses of Gauss, Abel, and Jacobi. General
elliptic integrals are of the form f R(z,/P(x)) dx, where P(z) is a third
or fourth degree polynomial with distinct roots and R(z,w) is a rational
function of z and w.

f. Quintics. Instead of studying the function s(y) in (3.1.13) and
(3.1.14), Abel (1802-1829) in 1826 and Jacobi in 1827 analyzed the
inverse of elliptic integrals; and these are, in fact, the elliptic functions.
The analogue in trigonometry is to study the sine function instead of
the multiple-valued arcsine,

3(9):/:%-

Jacobi’s theta functions are relatively elementary functions from
which elliptic functions can be constructed. Later, in the early 1860s,
Weierstrass introduced P(z) as the elliptic function inverting a specific
elliptic integral; and then he proved that every elliptic function can be
expressed in terms of P(z) and P'(z) [Hil74, page 141].
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Ruffini and Abel proved that quintic polynomial equations can not
necessarily .be solved by algebraic operations. In 1858, Hermite used
elliptic functions to obtain solutions of such equations, cf., [Kle56].

g. Shape of the sun. We can integrate the Newtonian equations of
motion of a secondary body in the equatorial plane of a rotationally
symmetric central body; the solution is in terms of the Weierstrass P-
function [SB65]. There are important applications of this technique.
In particular, the motion of equatorial artificial earth satellites is char-
acterized, and orbital apsidal line shifts of the secondary body can be
computed. This latter point is interesting because of the apsidal line
shift of mercury’s orbit about the sun. This shift can be accounted
for by Newtonian methods if the sun is sufficiently “flat”, as an oblate
spheroid. Robert Dicke and others, e.g., Hill and Stebbins in 1975, have
provided an experimental tour de force, and shown that the sun is too
spherical, by an order of magnitude, to account for even ten percent of
mercury’s apsidal line shift by Newtonian methods. Einstein’s theory
of general relativity does explain the shift.

h. Coherent states. A coherent state is a family of functions of the
form

(3.1.15) (1) = g(t — a)e?mitbe?micaw

parameterized by (a,b,c) € R®% In the quantum physics literature,
g is often taken to be the Gaussian. There is a natural relation be-
tween coherent states and the Heisenberg group, e.g., our Gabor rep-
resentations and wavelets, AMS Contemporary Math., 91(1989), 9-27.
Closure problems for coherent states have a history going back to von
Neumann’s classic from the early 1930s [vIN55, page 407]. Zak’s role in
the evolution of the Zak transform and its use in quantum mechanics
has been documented in [Jan88]. The Zak transform and knowledge
of its zero set are relevant for solving a variety of closure problems for
coherent states, e.g., [BF94, Chapter 3].

As we have seen, J(z) is a l-periodic entire {and therefore non-
elliptic) function used in the construction of meromorphic doubly pe-
riodic elliptic functions. It turns out that ¥(z) also plays a role in the
non-analytic quasi-periodic Zak transform of the Gaussian. In fact, it
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is easy to check that the Zak transform of a Gaussian is a product of
J(z;t), for certain ¢, and a Gaussian. Thus, the zeros of the Zak trans-
forms of the Gaussian are determined by the zeros of 9, cf., [BF94,
computation after Theorem 7.8].

3.2 History of Fourier series

George Sarton, who founded the journal Isisin 1912, wrote that the
“main duty of the historian of mathematics... is to explain the human-
ity of mathematics, to illustrate its greatness, beauty and dignity...”.
Alas, we can neither achieve such a noble goal with its accompanying
deep scholarship, nor even present a lapidary exposition of the history
of Fourier series. Fortunately such expositions abound, e.g., the his-
torical commentaries of Riemann [Riel873], Gibson [Gib1893], Carslaw

~ [Car30], Hobson [Hob26], Plancherel [Pla25], cf., [Zyg59, Preface], the

masterful entries on Fourier series in the Encyclopedia Britannicas of
the last fifty years, and the relevant biographical entries in the Dic-
tionary of Scientific Biography. There are also important historical
contributions by Burkhardt, Plessner, and Tonelli referenced in these
works.

Our treatment in this section is selective and perhaps idiosyncratic.
We shall not discuss the history of Fourier series vis a vis its major
applications to heat and light and celestial mechanics by Fourier and
Fresnel and Hill, respectively. (Of course, there are brilliant, but per-
haps curmudgeonly, thermodynamicists who assert that Fourier’s the-
ory. of heat [Foul822] did not really treat heat.) We shall mostly deal
with the relation of Fourier series with real analysis, and to some extent
with number theory, cf., [Ben76] and [Mon94], respectively. We shall
not discuss its relation w1th functional analysis, that begins with the

profound work of Beurhng [BeuBY), or with complex analysis, that be- .

gins with the work of F. and M. Riesz, Lusin and Privalov, and Hardy
and Littlewood .

3.2.1 d’Alembert (1717-1783), Euler (1707-1783), D. Bernoulli (1700-1782), and Lagrfa

L.a.jra.nje (1736-1813).

————
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In Section 1.8 we discussed some partial differential equations from
mathematical physics, and it turns out that Fourier series originated in
dealing with such equations.

In 1747, d’Alembert solved the vibrating string problem. This prob-
lem is to solve the equation,

?u 8%u
(8.2.1) ke 62—3—:55’
for a function u(z,t), where z € [0, L], c € R, ¢ > 0, u(0,%) = u(L,t) =
0 for all t > 0, and u(z,0) = f(z) is given on [0,L]. d’Alembert’s
solution « is in terms of f, and so f must be twice differentiable in this
case. On the other hand, equation (3.2.1) was derived, after significant
assumptions, to represent the motion of a taut string, such as a violin
string, after it is released from a given initial position f on [0, L]. One
can imagine an initial position f to have corners, so that f’ need not
exist everywhere.

In 1748, Euler made an important observation about the vibrating
string problem. He noted that the motion of the string is completely
determined for z € [0, L] and time ¢ > 0 if the form of the string and
its velocity at ¢ = 0 are given. In particular, Euler was able to find the
solution of (3.2.1) for a given initial position f and initial velocity g of
the string. Euler’s solution allowed for the initial positions f to have
discontinuous derivatives. This led to a disagreement with d’Alembert
on an issue which ultimately comes down to defining the notion of
function e.g., [Bir73, pages 16fl.] which is taken from [Riel873], cf.,
[G-V92]. In any case, Euler felt he had solved the vibrating string
problem for very general initial positions f.

Daniel Bernoulli entered the discussion in 1753 in the midst of the
d’Alembert-Euler disagreement. Daniel Bernoulli had developed hy-
drodynamics from the principle of conservation of energy, and was a
professor of anatomy and botany at Basel, before becoming a professor
of physics. He approached the vibrating string problem with Brook
Taylor’s observation (1715) that if

(3.2.2) tn(2,%) = sin (fr_z_m_) Cos (Tri;d) , néEZ,
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then (3.2.1) is satisfied for u = u,, and un(0,t) = un(L,t) = 0 for all
t > 0.

Using infinite sums of terms of the form (3.2.2), Bernoulli wrote
down expressions which he asserted were the most general solutions of
the vibrating string problem (3.2.1), i.e., solutions for the most general
initial position f. His argument was both formal and in terms of the
physics of sound, cf., [BS82], [Pie83] for beautiful treatments of the
fundamentals and harmonics used by Bernoulli. Later in 1753, Euler
noted that Bernoulli’s claim of general solutions could only be correct
if “arbitrary curves” f defined on [0, L] could be written as, what were
later called, Fourier series. Further, because of the periodicity of the
individual terms in Bernoulli’s series, Euler judged that Bernoulli was
incorrect as far as generality of solution, cf., [Bra86, pages 462-464].
Once again, ill-defined terms such as “arbitrary curves”, instead of a
precise definition of function, were the root cause of these different
opinions.

To add to the intellectual melee, Lagrange, at age 23, wrote in 1759
in support of Euler’s solution being the most general. Amazingly, his
“proof” used trigonometric series similar to Bernoulli’s. For the case
L = 1, Lagrange’s solution was essentially of the form

1 o
u(z,t) = /{; > (sinmnz cos mnct) f{y) sinwny dy
n=1

(3.2.3)
2 AR i ent)aly) sy d
+c:rr A nz=:1 n(sm wne sin wnct)g(y) sinrny dy.

Note that if £ = 0 and if there is an inferchange of summation and
integration, then (3.2.3) gives rise to the Fourier series expansion of
f. Lagrange series were almost history! Lagrange seemed intent on
verifying FEuler’s claims versus d’Alembert. In another bizarre twist,
Euler did the formal calculation of Remark 3.1.2 to compute Fourier
coefficients in 1777 when Fourier was a 9-year old, cf., [Car30, page 4]
for a similar contribution by Clairaut.

3.2.2 Fourier (1768-1830).
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Fourier submitted his 234 page manuscript, “Sur la propagation de
la chaleur”, to the Institut de France in 1807. At that time, Fourier was
almost 40, and had only three unrelated published papers. His work
as Prefect of the Department of Isére in Grenoble dealt with drainage
of marshlands, consultation on the achievements of Napoleon’s Institut
d’Egypte, modeled after the Institut de France, and with planning the
first road between Grenoble and Torino, Lagrange’s hometown.

The turbulent story of the evolution of this paper includes its cri-
tique by Lagrange, et al., a prize competition which Fourier won in
1812 along with Lagrange’s reservations, the publication of the book
[Foul822] in 1822, and the disappearance of the original paper, e.g.,
[Grat72] along with some of the other references listed at the beginning
of Section 3.2. Darboux rediscovered the paper at the Ecole Nationale
des Ponts et Chaussées in 1890.

As we saw in Section 3.2.1, the technology was already in place for
Fourier series long before Fourier came on the scene. What did Fourier
do? He never claimed discovery of the Fourier coeflicients (3.1.2) that
he used. However, he had a point of view which introduced a “new
epoch”, to use Riemann’s phrase. In the 18th century, Fourier coef-
ficients were an integral part (sic) of trigonometric series which had
already been derived by other means. Fourier asserted that an arbi-
trary function could be expanded in a trigonometric series whose coef-
ficients could be computed as in Remark 5.1.2. Such an assertion led to
questions of convergence of series and integration of arbitrary functions
(in the definition of Fourier coefficients) and, of course, to questions
about the meaning of function. Fourier’s examples and applications
in {Foul822] are extraordinary; and were influential in establishing the
field of Fourier’s series.

There are also related subsequent contributions by Cauchy and Pois-
son; but we shall go directly to Dirichlet.

3.2.3 Dirichlet (1805-1859).

Who gave the first correct definition of function? Scholars of good
will and excellent credentials disagree, cf., [Monn72, especially pages
57-65]. As mentioned in Remark 1.7.7b, it seems to us that Dirichlet
has a valid claim.
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In 1829 [Dir1829, page 121], he wrote that a continuous function
f on [0,A] is defined by the property that it “has a finite and well
determined value for each value of 3 between 0 and h, and moreover
such that the difference f(8 + €) — f(B) decreases without limit (to 0)
when ¢ becomes smaller and smaller”.

In 1837 [Dir1837], he wrote the following, in which the parenthetical
remark shows that continuity was not an intrinsic part of his definition.
“Imagine ¢ and b to be two fixed values and z a variable, which is sup-
posed to assume one after the other all values between a and b. If to
each x there corresponds a unique finite y in such a manner that while
z runs continuously through the interval from @ to b, y = f(z) varies
gradually also, then y is a continuous function of z for this interval.
(Since in what follows, we shall only discuss continuous functions, this
attribute can be omitted without loss.)” The lack of rigor in defin-
ing continuity in terms of the word “gradually” is compensated by his
precision in 1829. “It is not at all necessary that y depends on w in
this whole interval by the same law, and it is not even necessary to
imagine a dependency expressible by mathernatical operations. ...This
definition does not prescribe a common law to the different parts of
the curve; it can be thought of as being composed of parts of the most
different kinds or completely without law.” This last part addresses
the confusion from the 18th century analysis, when a formula such as
f(z) = z* on [a, b] was often thought to characterize a function, instead
of characterizations such as f = 2 on [0, %b] and f(z) = z* on (42, 8]

Of course, it was precisely in the papers [Dir1829] and [Dir1837],
where Dirichlet defined the notion of function, that he also proved the
fundamental Theorem 3.1.6. Dirichlet’s theorem was generalized by
Lipschitz in 1864, supposing so-called Lipschitz conditions; and gener-
alized still further by Dini, who wrote an important book on Fourier
series in 1880. In the spirit of Dini’s analysis, there is the following
Dini-Lipschitz-Lebesque test for uniform convergence. If F € L*(Taq)
and

lim [F(7+ 3) = F(7)]log || =0

uniformly in an open interval I, then S(F') — F on any closed subin-
terval J C I, and the convergence of the Fourier series S(F') to F is
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uniform on J, e.g., [HR56, Theorem 59|, cf., [Zyg59, page 52] for the
original Dini test.

For perspective, recall that the Jordan Theorem, Theorem 1.7.6, is
the analogue for Fourier transforms of the Dirichlet Theorem, Theo-
rem 8.1.6. The second mean value theorem (Lemma 1.7.3) was used
to prove Theorem 1.7.6, and, in fact, Bonnet (Memoires des Savant
Etrangers of the Belgian Academy, 23 (1948-1850) used Lemma 1.7.3
directly to prove Theorem 3.1.6. Dirichlet’s original proof in 1829 used
an argument similar to that required to prove Lemma 1.7.3.

Dirichlet made major contributions to number theory. It is not
difficult to prove that the sequence {4n — 1 : n € N} contains infinitely
many primes. Dirichlet proved the general fact that if a € N, b € Z,
and o and b are relatively prime, then {an + b : n € N} contains
infinitely many primes, cf., Remark 8.8.11a.

In this book we shall refer to two other number theoretic issues
where Dirichlet had seminal ideas. The first concerns the Dirichlet Box
Principle, related to rational approximation of irrationals, and leading
to the Kronecker Theorem which can be formulated in terms of trigono-
metric sums, e.g., Izercises 3.{/0 and 3.41. The second concerns a proof
of Gauss’ Law of Quadratic Reciprocity, e.g., Remark 3.8.11. The ma-
terial of Section 2.10 plays a role, as well as subtle issues concerning
Gauss sums and the so-called Littlewood Flatness Problem, e.g., Re-
mark 3.8.11.

3.2.4 Riemann (1826-1866).

Bernhard Riemann’s life was tragic in its briefness and transcen-
dental in its brilliance. The excerpts in [Kli72] about Riemann’s ideas
barely scratch the surface on the depth and breadth and lustre of his
creativity, cf., [Edwa74] for implications of just one of his gems.

Riemann’s Habilitationsschrift [Riel873] was presented in 1854 but
was only published in 1867 after his death. It is the first part of this
work which has provided us with some of the material in Sections 3.2,.1-
3.2.3. Next, Riemann developed the Riemann integrel. His theory of
integral was created to define Fourier coeflicients and Fourier series
expansions for a large class of functions. Finally, he developed the
Riemann Localization Principle and several other important tools for
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dealing with trigonometric series, e.g., [Zygh9], cf., [Ben71] for the re-
lation between the Riemann Localization Principle and the notion of
support.

The Riemann Localization Principle is a key technique in the study
of sets of uniqueness (U-sets). A set E C [0,1) is a U-set if

lim Z cae " = 0 off of E implies ¢, =0 for all n € Z.

Neoo XN

Using Riemann’s theory, Cantor proved that the empty sef @ is a U-set,
cf., Section 8.2.5. Cantor’s theorem was apparently known to Riemann,
e.g., [Leb06, page 110]. At the other extreme, if |E| > 0 then E is not
a U-set, e.g., Ezercise 3.37.

As is well-known, a bounded function f : [a,b] — C is Riemann
integrable if and only if f is continuous a.c., e.g., [Ben76, pages 94-96).
The concept of measure 0 and the notation “a.e.” (Definition A.4)
are now part of the Lebesgue theory (1902). Leading to Lebesgue,
Vito Volterra (1881), at that time a student of Dini at the Scuola
Normale Superiore in Pisa, constructed functions f whose derivative
exists everywhere but for which f’ is not Riemann integrable, e.g.,
[Ben76, pages 20-21], cf., the interesting examples in [Riel873, Section
13]. Actually, H. J. Smith had solved the same problem in 1875; but
Lebesgue was unaware of Smith’s result in his thesis [Leb02}, where he
gives prominent mention of Volterra’s example.

The point is that measure 0 was emerging in the late 19th century
as an important idea. Norbert Wiener (1938) has made a case for
formulating the notion of measure zero based on justifying Maxwell’s
and Gibbs’ theory of statistical mechanics. He wrote that “the ideas of
statistical randomness and phenomena of zero probability were current
among the physicists and mathematicians in Paris around 1900, and it
was in a medium, heavily ionized by these ideas that Borel and Lebesgue
solved the mathematical problem of measure” {Wie8l1, Volume II, pages
794-806), cf., [Carl80}.

Besides non-(Riemann) integrability, the issue of non-differentiability
was prominent in this part of the 19th century. Weierstrass wrote, at
least in a possibly edited version of a lecture he gave at the Royal
Academy of Sciences on July 18, 1872, that “Riemann, as I learned
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from some of his students, stated decisively (in 1861, or perhaps even
earlier)” that

2y

(3.2.4) fle) =X —
is an everywhere continuous nowhere differentiable function, e.g., Weier-
strass’ Mathematische Werke II, pages 71-74, cf., [BSt86] for a profound
analysis of this area. Although (3.2.4) does have some points of dif-
ferentiability, there are now many continuous nowhere differentiable
functions including Weierstrass’ lacunary Fourier series (1872),

flz)= i b cos(ma”z),

where ¢ > 1 is an odd integer, b € (0,1) and ab > 1 + 37/2, cf,,
[Ben76, pages 28-29] for other examples and [Dui91] for the relation to
selfsimilarity. :

Riemann convalesced and toured in Italy during the winter of 1862,
arriving in Pisa in 1863. He became friendly with Betti and Beltrami.
Betti, of “Betti number” fame, was Director of the Scuola Normale
Superior, and there is an interesting Betti-Riemann correspondence
at the Scuola. (The Scuola Normale was started by Napoleon, and
is modeled after the Ecole Normale Supériore in Paris.) Dini was a
student at the Scuola at the time of Riemann’s visit. He graduated in
1864, spent a year studying with Bertrand in Paris, and returned to the
Scuola Normale where he spent the next 52 years. Besides Volterra, he
counts Vitali as one of his students, e.g., [Ben76] for historical remarks
and mathematical contributions of Vitali.

Riemann returned to Germany for the winter of 1864-1865, but then
came back to Pisa. He died and was buried at Biganzolo in the northern
part of Verbania (the Italian resort town on the western banks of Lago
Maggiore just 15 miles south of the Swiss border). A mourner at the
local cemetery will surely point you to the marker of “Il Tedesco”.

3.2.5 Cantor (1845-1918).
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Georg Cantor received his Ph.D. in 1867 at Berlin. His disserta-
tion on quadratic Diophantine equations, related to some issue from
Gauss’ monumental Disquisitiones Arithmeticae [Gaub66], was written
under the direction of Kummer, cf., [Ben77] for remarks about Kum-
mer, Fermat’s Last Theorem, and ideals. Kronecker, who later became
an intellectual adversary of Cantor’s, was also a professor in Berlin at
the time.

Cantor wrote several important papers on U/-sets in the early 1870s,
including his theorem quoted in Remark 3.2.4. In order to prove this
result, that the empty set is a U-set, he first proved what is now known
as the Cantor-Lebesgue Lemma: if X C [0,1) is ¢ Lebesgue measurable
set of positive measure, and if

Vv € X, m E cpe” Y g C,

i
T nl<N

then limy, o, ¢, = 0. Cantor actually proved the result for the case that
X is a nondegenerate interval. Fatou first investigated the converse. In
this regard, Lusin found a trigonometric series which was a.e. divergent
and for which limy, ¢, = 0. Steinhaus clinched the converse by
constructing such a series which was everywhere divergent and for which
limyn|00 €n = 0, e.g., [Bary64, Volume I, pages 176-177].

After proving that the empty set was a U-set, Cantor showed that
finite sets and certain countably infinite sets are also U-sets. This work
certainly influenced his later research on set theory and the infinite.

It was in 1874 that he gave his famous, correct, and controversial
proof that of the fact that there are only countably many algebraic
numbers. Recall that an algebraic number is a zero of a polynomial
with integer coefficients.

In any case, Cantor tried to prove that all countable sets £ C [0,1)
were U-sets; and this was finally achieved by F. Bernstein (1908) and
W. H. Young (1909), cf., [But95]. Actually, Bernstein proved somewhat
more, cf., Sections 3.2.6 and 3.2.7.

The remainder of Cantor’s life, from the mid—1870s, was devoted
to the study of the infinite, not only in mathematics as in [Canb5],
but often delving into various philosophical notions of infinity due to
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the Greeks, the Scholastic philosophers, and his contemporaries, e.g.,
[Daub79]. Cantor certainly did not dote on philosophers. In a letter to
Bertrand Russell, who was then at Trinity College, Cambridge, Cantor
wrote (1911): “... and I am quite an adversary of Old Kant, who
in my eyes has done much harm and mischief to philosophy, even to
mankind; as you easily see by the perverted development of metaphysics
in Germany in all that followed him, as in Fichte, Schelling, Hegel,
Herbart, Schopenhauer, Hartman, Nietzche, etc. etc. on to this very
day. I never could understand why ... reasonable ... peoples... could
follow yonder sophistical Philistine, who was so bad a mathematician.”

3.2.6 Mensov (1892-1988),

Dmitrii Mensov proved a key result on U-sets in 1916 by finding a
non-U-set X with Lebesgue measure |[X| = 0. He did this just after
graduating from Moscow University, where he wrote his thesis under
N. Lusin. Mensov’s example stimulated a great deal of study about sets
of measure zero. Actually, on the basis of Mensov’s example, Lusin and
Bary defined the notion of U/-sets as such. Earlier, de la Vallée-Poussin
had proved that if a trigonometric series converged to F' € L*(T) off
a countable set E, then the series is the Fourier series of F'. It was
generally felt that the same would be true for sets £ with |E| = 0.
Mensov changed that perception. Mensov showed that there exists a
nontrivial trigonometric series which converges to I’ = ( off a set of
measure zero. Since F' € L}(T) is the O-function a.e., and since the
series has some nonzero coefficients, the series is not the Fourier series
of F'. Needless to say, Mensov’s example had a certain amount of shock
value, cf., [Men68], [Ben78, page 115] for other major results by Mensov.

Nina Bary (1923) asked for conditions on the coefficients {c,} of
trigonometric series to ensure that ¢, = 0 for all » whenever

(3.2.5) lim Y c,e™™ =0 ae. on T.
N=oo <N .

In light of de la Vallée-Poussin’s and Mensov’s results of the previous

paragraph, it is interesting to observe that if ¥ |c,|* < oo and (3.2.5)

is true then ¢, = 0 for all n, e.g., Frercise 8.36. There have been
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deep results in this problem area, in the case L]c,|? diverges, by Lit-
tlewood (1936), Wiener and Wintner (1938), A. C. Schaeffer (1939),.
Salem (1942), Ivasev-Musatov (1957), Brown and Hewitt (1980), and
Koérner [K6r87]. For example, Salem proved that for each ¢ > 0 there
is @ (bounded measure) p € M(T)\{0} for which |supp | =0 and

1

1.9
n]z

(3.2.6) JIC,N suchthat Vr|> N, | ,l\i ]| < C

e.g., [K863, pages 106-112], cf., [Ben75, pages 96-97]. If the right side

of (3.2.6) were C(1/|n]2+¢) then u € L*(T), e.g., Theorem 3.4.18; this

coupled with the condition |supp p| = 0 implies p is the 0-function.
With regard to (3.2.6) and the Lusin Conjecture of Section 3.2.8,

deLeeuw, Kahane, and Katznelson proved the following result:

Vf=F e L¥T), 3§ = G € C(T) such that
Vn € Z, |fln]| < lgln]| and||G|pe(ry < 9| F|z2m)

(Comptes Rendus Acad. Sci., Paris, 285(1977), 1001-1003).

3.2.7 Bary (1901-1961) and Rajchman (-1940).

What with Mensov’s example, Alexander Rajchman (who died at
Dachau in 1940) “seems to have been the first to realize that for sets
of measure zero that occur in the theory of trigonometric series it is
not so much the metric as the arithmetic properties that matter” (from
Zygmund’s biography of Salem in [Sal67]. Rajchman (1922) proved
the existence of some uncountable, closed U-sets including the 1/3-
Cantor set. He was motivated by some work of Hardy and Littlewood
(Acta Math., 37(1914)), and Steinhaus (1920), on diophantine approx-
imation to introduce “H-sets”; and proved that such sets are U-sets.
In fact, the 1/3-Cantor set is an H-set. In a letter to Lusin, he also
expressed his considered opinion, that any U-set is contained in a count-
able union of H-sets. Although this particular conjecture was proved
false by Pyatetskii-Shapiro(1952), it was such questions that focused
the direction of the subject.

Actually, Nina Bary had proved the existence of some uncountable,
closed U-sets in 1921, and presented her results at Lusin’s seminar at
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the University of Moscow. They were unpublished at the time of Rajch-
man’s paper. This does not undermine the importance of Rajchman’s
theorems, since Rajchman’s approach illustrated the need for number
theoretic (diophantine) properties in the construction of such sets.

Bary proved her first result on U-sets as an undergraduate, and
made outstanding contributions to the subject throughout her life. One
of her major results is that the couniable union of closed U-sets is
a U-set. The problem is open for the finite union of arbitrary U-
sets. Another one of her theorems, which was proven in 1936-1937,
asserts that if o is rational and E(a) is the Cantor set with ratio of
dissection o, then E(a) is ¢ U-set if and only of 3 = 1/a is an integer,
This generalizes Rajchman’s result about the 1/3-Cantor set C since
C = E(1/3). In general, E{a) is constructed by “throwing away”
centered open intervals of length a(b— a), where [a, b] is any remaining
closed interval at a given step, and where the first step begins with
[a,b] = [0, 1], e.g., [KS63, Chapitre I].

A Pisot-Vigayraghavan (P-V) number is a real algebraic integer 8 >
1 with the property that all the other roots of its minimal polynomial
have modulus less than 1. Bary’s theorem on Cantor sets of uniqueness
has the following spectacular sequel announced by Salem (1943): &
a € (0,1/2) then E(e) is a U-set if and only if § = 1/a is a P-V
number, e.g., [Bary64], [Ben76, pages 116-117], [Mey72], [Sal63] for
the proof, a history of the proof, and recent developments.

3.2.8 The Lusin Conjecture.

In his dissertation of 1915 (actually he published a Comptes Rendus
Acad. Sci., Paris note on the relevant material), Lusin conjectured that
the Fourier series of every F' € L*(T) is convergent a.e. This is the Lusin
Conjecture.

As background for the Lusin Conjecture, du Bois-Reymond (1872)
constructed functions F' € C(T) whose Fourier series diverge at some
points, cf., [Rogh9, pages 75-77], [Zygh9, Volume I, Chapter VIII] and
Ezercise 3.45. Further, just prior to Lusin, there were contributions
in this general area by Fatou{1906), Jerosch and Weyl (1908), Weyl
(1909), Fejér (1911), W. H. Young (1912), Hobson(1913), Plancherel
(1913), and Hardy (1913).
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In 1926, Kolmogorov constructed functions F € L(T)\L*(T) whose
Fourier series diverge everywhere! His proof used Kronecker’s Theorem,
which we shall discuss in Section 3.2.10. There were subsequent rele-
vant “log estimates” by Kolmogorov and Seliverstov (1925}, Plessner
(1926), and Littlewood and Paley (1931). Finally, Lennart Carleson
(1966) proved that if F € L*(T) then S(F) = F a.e. [Carl66], cf.,
[Fef73] for a conceptually different proof and [Moz71] for a superb ex-
position. R. A. Hunt (1968) used the method of Carleson’s proof and
the theory of interpolation of operators to extend Carleson’s result to
LP(T), p > 1, cf., [Ash76, pages 20-37] for an elegant presentation
by Hunt, and [Ben76, pages 208-210] for a connection between tech-
niques used by Carleson and the FTC. Also, for perspective vis a vis
du Bois-Reymond’s example and Carleson’s Theorem, we have Kahane
and Katznelson’s Theorem that if £ C T is a set of measure zero then
there is ' € C(T) such that S(F)(vy) diverges for all v € E, eg.,
[Kat76, Chapter 2].

We close this section with remarks by Carleson on the occasion of
receiving the 1984 Steele Prize. They concern his proof and a remark

about the FFT, cf., Section 3.9.

“When [ was a student at Harvard in 1950-1951, A, Zyg-
mund and R. Salem were also in Cambridge and I learned
very much from them. They also encouraged me to try to
use Blaschke products as examples of a Fourier series which
diverges a.e. I worked hard at that then, and all through
the years I tried different ideas. Then finally, in 1964 or so,
I realized the basic reason why there should exist an exam-
ple. Very briefly we can describe the main feature of the
trigonometric system cosnz, n < 2™, by writing down a
matrix of £1 giving the sequence of sign{cos nz) which can
occur. This matrix is essentially 2™ x 2™, i.e., very few se-
quences of signs occur which, of course, is very favorable for
examples of divergence. (This is also the basic idea behind
the fast Fourier transform.) To my great astonishment, it
now turned out that for a random 2™ x 2™ matrix there is
no example and then a proof of the convergence theorem



214 CHAPTER 3. FOURIER SERIES

came naturally.”

3.2.9 The Dirichlet Box Principle.

a. The Dirichlet Box Principle asserts that if () boxes contain ¢} +1
objects, then at least one of the boxes contains more than one object.
This fact may not seem to be at the usual Dirichlet level of brilliance,
but it has been a staple in the method of proof of many results since
he first made use of if. _

An adaptation of the Dirichlet Box Principle is even used in Wiles’
proof of Fermat’s Last Theorem. In this case the objects are Hecke rings
and an infinite sequence of sets of boxes is created. The assertion, in
the part of the proof due to Taylor and Wiles, is that there are Hecke
rings in every set of boxes.

b. Originally, Dirichlet used the box principle to give a new proof
of the fact that if z € (0,1) is irrational then

Ye> 0, Jp,q € N such that

1

¢

The pairs p,q can be chosen to be relatively prime. (3.2.7) is an ele-
mentary result in Diophantine approximation, and Dirichlet’s proof (in
part ¢) has the advantage of being applicable to d-dimensional prob-
lems, e.g., [HW65, Theorem 201]. The first inequality of (3.2.7) follows
from basic properties of R; and the second inequality gives insight into
the rapidity of rational approximation to irrationals.

c. To prove (3.2.7), let @ > 1, and consider the @ boxes [%, %’"],
n=0,...,Q—1, and the @ +1 numbers, 0, z — [z}, 2z — [2z],... ,Qz —
[@z]. By the Dirichlet Box Principle there are integers 0 < ¢; < g, < @
and p € N for which |gz — p| < 1/Q, where ¢ = ¢z —q1 € (0, @INN and
p = [ge2] — [@1z]. Thus the second inequality of (3.2.7) is valid. This
part of the proof also works for rational z.

Since € > 0 is given in (3.2.7), we choose @ = Q(e) = [1] +1 for the
above argument. In particular, € > 1/Q and so |z — | < /g < e.

(3.2.7)
|$-—£|<e and ]:r:—£|<
q q

3.2.10 Kronecker Sets and [/-Sets.
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A significant refinement of (3.2.7), which is deeper than d-dimensional
versions of (3.2.7), is Kronecker’s Theorem. Kronecker (1884) proved
that if {1,71,...,7¢} € R is linearly independent over the rationals, if
{A1,..., A} CR, and if ¢, N > 0, then there are integers ¢ > N and
P1y... ,pq such that

(3.2.8) Vi=1,...,d, lgvi—pi—X\|<e

Dirichlet’s analysis was for the case A; = 0. With the same hypotheses,
the conclusion (3.2.8) can be reworded to assert the existence of g for

which
(3.2.9) Vj —_ 1, . ,d, |627riq’fj —_ e27r£)\ji < €.

There are several different proofs, e.g., [Ben75, Theorem 3.2.7], [HW65,
Chapter 23], [KK64], [Kat76, pages 181-183].

Because of (3.2.9) we say that a closed set E C T is a Kronecker set
if for each € > 0 and continuous function F : E — C, for which |F| =1
on I, there is ¢ € Z such that

sup |[¢*™ — F(v)| < e.
~eE

In 1962, Paul Malliavin proved that if £ C T is closed and if every
closed subset of E is a set of spectral synthesis, then E is a U-set.
In 1965, Nicholas Varopoulos proved that Kronecker sets satisfy the
hypothesis of Malliavin’s result; and, hence, Kronecker sets are U-sets.
This is the “tip of the iceberg,” cf., [Rud62], [KS63], [Kah70], [Ben71],
[LP71], [MeyT72].

3.3 Integration and differentiation of Fourier
series

3.3.1 Example. INTEGRATION 0F SERIES
If 3%, F, is a uniformly convergent series of continuous functions
F, on [0,1], then

(3.3.1) fo 1 (ﬂi Fn(’y)) dy = g fo ' Fa(y) d,
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e.g., [Apob7]. On the other hand, it is well known that the hypotheses,
{F, :n=1,...} € C[0,1] and 2, F, = F € C[0,1], where the
convergence is pointwise on [0, 1], are not sufficient to ensure (3.3.1),
e.g., [Har49], {Ben76, Section 3.3]. For example, if we let Fi(y) =
(1 —7) and Fu(y) = n®y(1 = )" — (n — 1)>4(1 — y)*"! for n > 1,
then it is easy to see that each F,, € C[0,1] (and each F, € C(T) since
Fo(0) = Fo(1) = 0), =2, Fo = F=0on [0,1], 3 (£ Fa(v)) dv =
0, and '

oo 1 ) N 1
E/o Fa(v)dy = A;g%o;;/e Fa(y) dy

n=1

1 N?
= li 2 _— N = 1 =
- n}‘—lfiofo Noy(L=7)"dy N, (N +1)}{N +2) L

cf., Section 3.4 where we discuss approximate identities for L(T).

The following theorem is a remarkable feature of Fourier series. It
asserts that (8.3.1) is valid when the series 322, F,, is replaced by the
Fourier series of any function in L}*(R). In particular, the Fourier series
to be integrated can diverge everywhere, as in Kolmogorov’s result
mentioned in Section 3.2.8, cf., Ezercise 8.45.

3.3.2 Theorem. INTEGRATION OoF FOURIER SERIES

Let F € LYTyq). The Fourier series S(F) of F , with Fourier
coefficients f = {fIn]}, can be integrated term by term, i.e.,

= <} 8
(332  VeBeR [ S(F)ndr=[ Fe)dy,
where the left side of (3.8.2) denotes
B .
> Jln) [ ey,

Proof. Define
G(1) = 55 [ (F () = S0} >
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for v € [0,29). Consequently, G{0) = G(2Q0) = 0, and G can be ex-

o~

tended 2Q-periodically to R with the property that G € AC).(R). Let
g = {g[n]} be the sequence of Fourier coefficients of G. As such, we can
apply the Dirichlet Theorem, properly modified as in Remark 3.1.75,
to assert that S(G) = G on Ty, i.e.,

(3.3.3) Vy e Ta, G(7) =gl0] + 3 glnle™™/%,

where Y denotes summation over Z\{0}. For n # 0, we compute
I 21 g :
- - _ miny/Q
oln) = o /0 [ - fo (F(A) f[O]) dA] /% g

20

_ (Zs}z)zfﬁem/ﬂ [0 K (F(A) - f[{]]) dA

¥=0

~ags i (Fo) - g0

—fln]

2min

The last equation follows since 55 PN dX = f[0] and [E emmr/0 gy =
0. Integration by parts is allowable by the (local) absolute continuity.
Combining the above computation for g[n] with (3.3.3), we obtain

(3.3.4) Vy € Tan, G(y) =9[0] =) m-e-’"“*'““f/“,

2min
so that, since G(0) = 0,
_ <~ finl
(3.3.5) ) glo] =>" Py
In particular, the series 3’ f[n]/n converges, cf., Remark 8.1.7a about

symmetric convergence.
By definition of G, (3.3.4) becomes

(3.3.6) 2% [ FOyix = Zplo] + glo] - ¥ Fi —,

2min



¥
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By definition of [ S(F)()A)dX we have
-1_ ! — i v —minA/Q
= [0 S dh = o Zf[n]/o e dA
— l _ L ! & —minyfQ __
= 20 0~ gq 2 fllte Y

1 ' Y .
= e f0] — 55 3 fln] =% 4 g[0].

Consequently, (3.3.2) is obtained for the interval [0,4] C [0,2€)] by
combining (3.3.6) with this last calculation.

The case for the interval [a, 3] C [0,20)] is obtained by writing
I =04 fF = B _ = and then making the natural adjustments for
other values of o and 3. Ol

The following result is a consequence of (3.3.5).

3.3.3 Corollary. A Prorerry or Fourier Corrricients [ € A(Z)

Let F € L'(Taq). The series,

r fln]
25,
converges, where f = {f[n]} is the sequence of Fourier coefficients of
F.

3.3.4 Example. NEcEssaARy CONDITIONS FOR INTEGRABILITY OF TRIGONOMETE(C SERIES

a. The Riemann-Lebesgue Lemma asserts that if F € L!(T,q) then
limps|se0 f[7] = 0, where f = {f[n]} is the sequence of Fourier coeffi-
cients of #'. On the other hand, suppose we are given a trigonometric
series Y- ¢, e~ 2™ for which limpy|ye0 o = 0. Is there any way we can
determine if this series is or is not the Fourier series of some function
F € LY(Tzq), cf., Section 3.2.67

We can assert that the trigonometric series,

(3.3.7) i sin(mny /)

n=2

)

log n
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is not the Fourier series of an element F' € L!(T2q) even though the
coefficients tend to 0 at 400 , & la the necessary conditions given by the
Riemann-Lebesgue Lemma. To verify this claim we argue as follows.
First, we write (3.3.7) as

1 sgnn

20 15 log In]

e—‘rr:rw/ﬂ,

where sgnn = n/|n|. Then we apply Corollary 3.5.3 to observe that if
(3.3.7) were a Fourier series (of an element F' € L'(Tq)) then

1

T <00
[n]>2 In|log |n| ,

which is false by the integral test, e.g., Ezercise 8.10. Thus, we have
constructed a sequence f € co(Z)\A(Z), cf., Example 1.{.4 where we
constructed the analogue of (3.3.7) for the case Co{R)\A(R). An ex-
ample F € C(T2q)\A(T3q) is constructed in Ezercise 3.43, cf., Exer-
cise .45 and du Bois-Reymond’s example mentioned in Section 3.2.8.

b. 1t does turn out, however, that the series (3.3.7) converges point-
wise for each v € IR, e.g., FEzercise 8.29b.

3.3.5 Theorem. DIFFERENTIATION OF FOURIER SERIES
Let F € AC(T2q). Then F' € L'(Tiq) (ordinary differentiation)
and

S'(F}y=S(F),
where S'(F) denotes the term by term differentiated series

- 3 T e,

and where f = {f[n]} is the sequence of Fourier coefficients of F.

Proof. Clearly, F' € L'(T1q), e.g., Remark A.21. By the absolute
continuity and 2§)-periodicity of F', and by the FTC, we compute
TN v

1 min 9 .
F; v F winy f§)
(F")"[n] 20 O .[_ﬂ (7)6 al Q Fn]
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for n #0. If n =0, then

(Y0 = 55 [ Py =0

since the absolute continuity aga.in allows us to use FTC. The result is
obtained. ]

3.3.6 Example. ¢(2)
a. Let F(v) = 5% on [0,27), and consider ¥ as an element of
L} (Tyn).

Figure 3.1

We shall compute S(F). F is odd on {—m,7), and we have

S(F)(y) = Eb sin n-y,

where
i 1

Vn > 1, = —[ —-(ﬂ‘ — ) sin nydy.

We calculate

2w

n

]_ 27
+— f cosnydy| = —
nJo

1
b, = —— {-lcosn’y
2r o

Thus,
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By the Dirichlet Theorem, S(F)(v) = F(v) on R\U{27n} and S(F)(2rn) =
0.
b. Since F' € Li(Tgﬂ), we have

Yy € [0,2x], fo "S(F)(N) dr = / "FO)d),

0

by Theorem 3.3.2. This becomes
> 1
vy e0,2n], > -

n=1 T

T _m 7
_/; sin nAdA = 5 ,

and the left side is — Y02, 5(cos ny — 1). Thus

=1
Yy € [0,2x], %(2# —7) == % —{cosny - 1).

n=1

c. Integrating both sides of the last expression in part b we obtain

27 ~
fﬂ 7 (2m =) dy

21 =1 for =1
:2”215’5_2%5]0 cosnfydqr:.?'rrz_:l;?-.

n=1
Consequently,
® 1 ?1“2
3.3.8 —_=—
( ) T; n? 6

d. The Riemann {-function {(s) = Y2, 1/n°, discussed in Ez-
ample 2.4.6g, was defined by Pietro Mengoli (1625-1686) in 1650. He
showed that the harmonic series ((1) diverges. The problem of evalu-
ating {(k), for integers k > 2, attracted the attention of British math-
ematicians, including James Gregory (1638-1675). Henry Oldenburg
(c.1615-1677), first Secretary of the Royal Society in London, wrote
to Gottfried Leibniz (1646-1716) asking him to evaluate ((2). This
occurred during Leibniz’s visit to London in 1673. In 1696, Leibniz
admitted his inability to solve this problem. Earlier, in 1689, Jakob
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F.

.‘]E:a-rw.veu.
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Bernoulli (1654-1705), Daniel’s uncle, had also tried and apparently
given-up summing ((2), cf., [Pé154, pages 17-22], [KIli72, pages 448
449], [Ebe83] for tantalizing historical remarks and incisive analysis.

Around 1736, Euler was able to state (3.3.8) by an ingenious ar-
gument outlined in Fzercise 3.28, cf., Erercise 3.38. His Introductio
in Analysin Infinitorum (1748) contains (3.3.8) and many similar re-
sults. In light of our discussion in Sections 3.2.1-3.2.3, it should also be
pointed out that the Infroductio also “defines” a function of a “variable
quantity” as “any analytic expression whatsoever made up from that
variable quantity and from numbers or constant quantities.”

The following result can be used to prove the Classical Sampling
Theorem (Theorem 3.10.10), e.g., [Ben92b, pages 447-449]. The proof
of Theorem 3.3.71s similar to that of Theorem 3.3.2, e.g., Exercise 3.15.

3.3.7 Theorem. INTEGRATION OF FOURIER SERIES — A REFINEMENT

Let F € LY (Taq) and G € BV(Taq). Then

(33.9) VageR [ SENNGO) A= [ FEIGE)d,

where the left side of (3.8.9) denotes

5 1 [ G-
and where f = {fln|} is the sequence of Fourier coefficients of F.

3.3.8 Remark. INTEGRATION OF FOURIER SERIES — EVOCATIONS
a. f §— o =20 in Theorem 3.3.7, then (3.3.9) becomes Parseval’s
formula,

lim Y flnlg[-n]= 29[ +Q F(v)G(7) dv,

N
-—¥oo| |<N

where g = GV. With the adjustment as in Proposition 1.10.{, we obtain
Parseval’s formula in the form,

(3310)  Jim 3 fiolofe] = [ F()TM b,

i |<N
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where F' € L'(Tjq), G € BV(Tag), and {f[n]} and {g[n]} are the
Fourier coefficients of F' and G, respectively, cf., Theorem 3.4.12b and
FEzercise 5.47 for other statements of Parseval’s formula.

b. With respect to Corollary 3.3.3, we recall the following Hardy
and Littlewood Theorem: if F € LY(Tyq) and f[n] =0 for all n < 0,
where f = {fln]} is the sequence of Fourier coefficients of F', then

= |fin
,;0 Jg'_[r]'l'l' < 7|[F||zi(r,y) < 0.
This result is difficult to prove. One proof involves a fundamental
factorization theorem for the so-called Hardy space H'(Taq), as well as
the following double series theorem due to Hilbert: if f,g € £2(NU{0})
then )
i |fls1glk]]
Gl tE+1

where 7 is the best possible constant, as proved by Schur, e.g., [Hel83,
pages 94-99], cf., Fzercise 8.84 for related material on Hilbert trans-
forms of sequences. ‘

c. It is well known that the desirable statement,

< 7l fllewutopllglle voroy),

(3.3.11) SN (F) = Fllzr(ryg) = 0,

lim
Nooo

is not true for all F € L}(Taq), e.g., Ezample 3.4.9.
On the other hand, a sequence {Fn} C L*(T2q) converges to F' €
L} (Tqq) weakly, i.e.,

VG € L(Tw), lim [ (Fw(y) = F(x))G(y)dy =0,
if and only if

(3.3.12) A [ (Fn(y) = F(y))dy =0
for every Lebesgue measurable set A C Tagq, e.g., [RN55, page 89}. If
we have weak convergence, or, equivalently, (3.3.12), then (3.3.11) is
true for Sy(F) = Fy if {Fn} converges to F in measure, e.g., [Ben76,
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page 226]. (Of course, norm convergence always implies convergence in
measure.) Further, Dieudonné and Grothendieck proved that {3.3.12)
is true for all Lebesgue measurable sets A C Tyq if and only if it is true
for all open sets A C Taq, e.g., [Ben76, page 225].

Because of this general relationship between weak and norm con-
vergence, and because we would like to have (3.3.11) (or at least know
how close we are to it), we note the following reformulation of The-
orem 8.8.2: Theorem 3.3.2 is (3.3.12) for all intervals A in the case
Frn = Sy(F). Further, Theorem 38.8.7 gives (3.3.12) in this case for all

finite unions A of intervals.

3.4 The L'(T) and L*(T) theories

We showed in Remark 3.1.8 that L*(T) C L*(T), and have already
noted in Section 3.2.8 that Fourier series of L%(T) functions converge
a.e., whereas there are L'(T) functions whose Fourier series diverge at
every point. Conceptually there are deeper differences between L'(T)
and L%(T) than the fact that larger spaces may allow more instances
of unusual behavior; briefly, L*(T) has algebraic properties and L*(T)
has geometric properties which characterize their Fourier analysis.

3.4.1 Definition. CoNvoLUTION
a. Let F,G € L'(Tsq). The convolution of F' and (7, denoted by
FxG,is

FxG(y) = /T F(y— NG d\ = [T FO)G(y — X) dA.

20 20

(Recall that “fr_” designates “35 [ +2 for any fixed a € Eﬁi) As with
LY(R)and Ezercise 1.31, it is not difficult to prove that F*G € L'(Tsq)

and
VF, Ge LI(T29)9
|F * Gllzi(raq) < NFH Lt Gl (7an)-

b. L} Tsq) is a commutative algebra taken with the operations of
addition and convolution, i.e., L*(Tsq) is a vector complex vector space

(3.4.1)
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under addition, and convolution is distributive with respect to addition,
as well as being associative, and commutative.

3.4.2 Proposition.

Let F\G € LY(Taq), with corresponding sequences f = {f[n]}, ¢ =
{9[n]} € A(Z) of Fourier coefficients, i.e., f = F and § = G. Then
fg = {flrlg[n]} € A(Z) is the sequence of Fourier coefficients of F x
G € Ll (ng), ‘J.‘-.B.,

VneZ, flnlgln]= fT F * G(y)em™1% gy,

The proof of Proposition 3.4.2 is the same as that of Proposi-
tion 1.5.2.

3.4.3 Definition. ApProXIMATE IDENTITY
An approzimate identity is a family {Kpy @ A > 0} € L(Taq) of
functions with the properties

a VA>0, [ Kymdr=1,
Taq

b. 3C' > 1 such that YA >0, ||Kpylloi(rg <O,
Ve (0,9, i wif Koo (v)|dy = 0.
c. /€ (0,8, limiyeo3q nsmsn' W (Mdy

3.4.4 Theorem. APPROXIMATE IDENTITY THEOREM
a. Let F € C(Taq) and let {K5} C L'(Taq) be an approzimate
identity. Then

(3.4.2) Jim ||F = F % Ky o (rzn) = 0.

b. Let F € L'(Taq) and let {K} € LYT2q) be an approzimate
identity. Then

(3.4.3) lim [|F'— F % Kpyllzimyg) = 0,

¢f., Theorem 1.6.9a.
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The proof of Theorem 8.4.4a follows the proof of Theorem 1.6.9a,
but for the case of ||...]|zeo (1, instead of ||+« [|z1g). In fact, by the
uniform continuity of F', (1.6.6) can be replaced by the statement that
for each € > 0 there is > 0 for which

‘v’l)\l < n, ”F — T)\F”L""(TQQ) < E/C.
This allows us to prove
}g&“F - Fx K(z\)”L""(Tm) <e

analogous to the proof of Theorem 1.6.9a.
The proof of Theorem 3.4.4b follows from part a, e.g., Exercise 3.16.

3.4.5 Example. Tue DiricHLET AND FEJER KERNELS

a. The Dirichlet function Dy on Ty is defined by
(3.4.4) VyeR, Dy(y)= Y e/t

In|<N
It is not difficult to show that the trigonometric polynomial Dy can be
written as
sin(N + )&

(3.4.5) Dn(y) = T
where Dy (2k02) is 2N + 1 for k € Z, e.g., Ezercise 3.11a. The family
{Dn : N € NU{0}} is the Dirichlet kernel on T, cf., the Dirichlet
kernels on R and Z in Remark 1.6.4 and Remark 3.1.2, respectively.
Using the notation of Definition 3.4.3, we see that K,y = Dy is not
an approximate identity since Dy ¢ L!(T.q).

b. The Fejér function Wi on Taq is defined by

™ _ Inl —miny /2
(3.46) VYveR, Wx(y)= > (1 N1/ :

In|<N
It is not difficult to show that the trigonometric polynomial Wy can
be written as
MNt...+Dnly)
N+1
1 (sin(N+1)22\?
N4+1 sin -’2—% ’

Win(y) = 22

(3.4.7)
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where Wy (2k8Y) is N + 1 for k£ € Z, e.g., Ezercise 8.11b. The family
{Wn : N € NU{0}} is the Fejér kernel on Taq, cf., the Fejér kernel on
R and Z in Remark 1.6.4 and Remark 3.1.2, respectively.

c. The Fejér kernel is an approzimate identity. To see this, first
note that Wy > 0 by (3.4.7), and

f Wr(y)dy =1
Ton

by the definition (3.4.6) and the fact that fi. e~/ gy = 0 for n # 0.
Thus, parts ¢ and b of Definition 3.4.3 are valid. Finally, we obtain
part ¢ of Definition 3.4.3 by (3.4.7) and the estimate

1 2 —n) 1
—_— W, dy < ———— su h
20 [;S|1]SQ Ww(v)ldy < 2Q(N +1) nsh&g sin? o

< 1—7p 1
— QN +1) sin? %

In Section 3.2.8 , we mentioned du Bois-Reymond’s example (1872)
of a function F € C(T) for which {Sy(F)(0)} diverges, cf., Ezer-
cise 83.45. At the risk of being an alarmist over 100 years after the
fact, it is not an exaggeration to say that this example dampened some
of the optimism for a comprehensive theory of the representation of
functions by trigonometric series. Fejér’s result (1904), stated below in
Theorem 3.4.6a, came none too soon, e.g., [Bir73, pages 150-156) for a
translation of the relevant parts of Fejér’s original paper.

3.4.6 Theorem. Felér THEOREM
a. Let F' € C(Ta), and let f = {fIn]} € A(Z) C £*(Z) be its

sequence of Fourter coefficients. Then

% — . _ Inl n e—'m"n.'y/ﬂ
(3.4.8) F th)|%%(1 ﬁjq)ﬂ]

and

(3.4.9) lim ||F — F % Wyl|Le(1,0) = 0-

N—aoo
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b. Let F € L'(Tyq). Then
dy =0,

lim
N—oo JToq

Ftv)— > (1-%) fln)e~mim/0

In|l<N

ef., Theorem 1.6.9b.

Proof. a. (3.4.8) follows from a direct computation of the left side,
cf., Ezrercise 3.12a. (3.4.9) follows by combining Frample 3.4.5¢ with
Theorem 3.4.4a. Part b follows from part a, e.g., Fzercise 3.16. U

3.4.7 Corollary. UNiQUENEss

Let F € L'Y(Tyq) and assume f[n] = 0 for each n € Z, where
f =A{fIn]} is the sequence of Fourier coefficients of F. Then F is the
0-function, cf., Theorem 1.6.9c.

3.4.8 Remark. WEIERSTRASS APPROXIMATION THEOREM
a. The Weierstrass Approzimation Theorem (1885) asserts that if
F € Cle, [] then there is a sequence { Py} of polynomials for which

(3.4.10) ;\Irl_I,Iio |FF — Pr||oofa, = 0.

(3.4.10) can be derived from (3.4.9) in the following way. By transla-
tion we can take F' € C[—Q, 1] without loss of generality. Next choose
¢ such that G(—§1) = G(Q) where G(y) = F(y) ~ ¢y for v € [0, Q].
In fact, let
_F(®@) - P(-9)
c= 50 .

Apply Theorem 8.4.6 to G considered as an element of C(Tsq). Fi-
nally, uniformly approximate the trigonometric polynomials G * Wy on
[—£, ©1] by polynomial approximants of their Taylor series expansions.

b. There are extensive developments of the Weierstrass Theorem,
many of which have evolved from Stone’s celebrated Stone-Weierstrass
Theorem (1937). We refer to [BD81] and [Bur84], replete with ingenu-
ity and scholarship, for recent contributions to the Stone-Weierstrass
Theorem in a functional analytic uniform algebra setting.
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In Remark 3.3.8¢c we asserted that the partial sums Sy(F) do not

necessarily converge to F in L!(Tq). We shall now prove this assertion.

3.4.9 Example. LEBESGUE CONSTANTS AND AN L!-CONVERGENCE PROBLEM

a. Analogous to (3.4.8), a direct computation shows that
VF e LI(TZQ)’ SN(F)(’}/) = F* DN('Y):

cf., Erercise 3.12.

b. The Lebesgue constants are defined as | Dy|[L1(1,q) for each N.
We shall prove that there is a bounded sequence {C'(N): N > 2} such
that

4 .
(3411)  YN22, | Dnlnmg = —lg N +C(N),

cf., Remark 3.9.8b.
To see this we use (3.4.5) as follows. First,

1 1 1
+

2 1%
IDM ey = = [ 15in(2N + )] da,

sine 1 =z

so that
o 2 17 |sin(2N 4 1)z|
. Ly — = d
(1Dl - 2 [ LD,
(3.4.12)
2Ll Mo,
wJo |sinz =

by the triangle inequality, where C; < oo. In fact, it is easy to check
that limg o= — i) =4.

sinz
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Next, letting ¢t = (2N + 1)z and dividing the domain of integration
according to the sign of the sine, we have

gf;—' |sin(2N + 1)z dm:_g_zilfkmuﬂsint] o
8]

i T e k=0 7t i

+2 Nt |sint[dt
mTJNw t
(3.4.13)

2 f[7sinu 2 pNm+3 | sinul
+ - du + — du
o wu 7 JNm u

Since both sinu > 0 and
N-1 1

N 1 N-——ll
—< < _
gkﬁ_;u—l—kﬁ“;kﬁ

on [0, 7], we can use the integral test to compute

4 2 pm (=1
F(—l-I—Iog(N-{—I))S;‘/O smu(zu_i_kﬂ_)du

k=1
3.4.14
( ) 4

e

(1 +log(N — 1)).

m

We obtain (3.4.11) by combining (3.4.12), (3.4.13), and (3.4.14).

c. Consider the linear mappings
Ly Ll(Tgﬂ) — Ll(Tzn)
F s Sn(F).

The norm of Ly, defined in Definition B.6 is

”LN” = sup ”LN(F)”LI(Tm) = sup “F * DN”LI(Tm)’

FILI(Tzn)Sl IF”Ll('ﬂ'm)gl
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and so || x|l < | DOn||z1(1an) by (3-4.1) and part a. To prove the oppo-
site inequality we first note that

ILwll 2 [Lw(Wa)llosra) = 1PN % Wallzi(rsq)-
Then, by Theorem 3.4.4b and Ezample 3.4.5¢, we have
lim |[Dy * WalLr(rag) = DN o1 (r0)-
Consequently,
(3.4.15) VN 21, |Lyll = IDn|lzs(1m)-

Combining (3.4.15) and (3.4.11) with the Uniform Boundedness
Principle (Theorem B.8), we can assert that there are functions F' €
LY(Taq) for which supy |Sn(F)]|zt (e = 00- In particular, for such
functions we do not have limyeo ||SN(F) — F||pr(1,q) = 0.

We begin our discussion of the L?(T) theory with the following
definition (Definition 3.4.10) and background {Remark 3.4.11).

3.4.10 Definition. ORTHONORMAL BASIS
a. A sequence {E,} C L*(Tyq) is orthonormal in L*(Tsq) if

Ym,n € Z, fT En(¥)En(y) dvy = 8(m,n),
20

where
1, if m=n,

a(m,n)={0’ if m#n.

An orthonormal sequence {E,} C L*(Tiq) is an orthonormal basis
(ONB) for L*(Tqgq) if
VF € L*(Tyq), 3{cn} CC such that
(3.4.16)
F=chEn in Lz(Tm),

of., (3.4.18).
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b. Using Holder’s Inequality, it is an elementary calculation to show
that

(6417 lm [ EOGMd = [ F@TH) &

7300 fTaq 20

when F, G, F,,G, € L*(Tz) and

lim ||F ~ Fullz2(r,) =0 and  lim ||G — Gullzar,e) = 0,

n—oo

e.g., Ezercise 3.9.
¢. In the case of an ONB {E,}, the coefficients ¢, in (3.4.16) are of
the form

(3.4.18) VneEZ, ¢= F(y)E.{v) dy.

Taq

This follows from part b.

3.4.11 Remark. INTEGRAL EQUATIONS AND THE Riesz-FiscHER THEOREM

a. In Ezample 3.1.10f we mentioned Abel in conjunction with ellip-
tic functions. In fact, this work was in the realm of integral equations,
and Abel (1823) solved the “tautochrone” equation

v f(z)
dz =
0 \/yT.'E‘ L g(y))
for a given forcing function g, by computing
L A()
== dy.
j@) = [ ety

In the late 19th century it was realized that many problems in mathe-
matical physics could be transformed into solving integral equations of
the form

(3.4.19) L FOK (3,0 dy = GO

e.g., [CH53], [Die81]. The Dirichlet problem in potential theory was
solved in particular cases by Neumann. Vito Volterra {1896)used the
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Neumann method to solve a certain type of integral equation, and this
led to Ivar Fredholm’s (still) eminently readable and fundamental paper
on integral equations in Acta Mathematica (27(1903), 365-390).

b. Hilbert and (Erhard) Schmidt, in the periods 1904-1912 and
1905-1908, respectively, made great strides in solving (3.4.19), and, in
the process, established some of the fundamental ideas of functional
analysis. They also set the stage for the Riesz-Fischer Theorem in the
following way.

Suppose {E,} C L?*(T) is orthonormal. Assume we can write K, FF,
and G of (3.4.19) as K = Y k(m,n)ELE,, F = Y. f(n)E,, G =

Y g(n)E,. For a given kernel K and forcing function G, the goal is to
find F'. Formally,

JEDOE@ N dy = T £m)k(p, ) Ey(A) [ En(n)Es(7) dy
T T

m P

=5 (S smktma)) £,

m

and so (3.4.19) leads to the infinite system of linear equations
(3.4.20) Ve Z, 3} f(m)k(m,q)=g(q)

Suppose g € {#(Z),and k : Z x Z —+ C has the property that
5> [k(m, 1) — §(m, m)? < oo.

Then classical methods yield the construction of a unique solution f €
(Z) of (3.4.20), e.g., [GG81, pages 70-74].

c: Once the sequence f € £%(Z) of part & is found, then the major
problem in solving (3.4.19) in terms of F' = ¥ f(n)}E, is accomplished
by means of F. Riesz’ Theorem: if {E,} C L*(T) is orthonormal and
f € £3(Z), then there is F' € L*(T) for which

ez, f(n)= [ FOEG)dr.
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This is Riesz’ formulation of the Riesz-Fischer Theorem (1906-1907).
Fischer’s formulation is that L%(T) is complete, i.e., if {F,} C L%(T) is
a Cauchy sequence in the L?-norm then there is F' € L*(T) for which
Lm ||F' — Fullr2(ry = 0. Zygmund refers to the Riesz-Fischer Theorem
as “a great achievement of the Lebesgue theory”.

Fischer’s formulation is a special case of Theorem A.18, which itself
is a staple in a basic real variables course, e.g., [Ben76, pages 232-
233], [HS65, pages 192-194], [Rud66, pages 66-67]. We shall use The-
orem A.18 in the L*(T) theory which follows.

3.4.12 Theorem. ONB, PARsEvAL ForMULA, AND CONVERGENCE

a. ONB. {e~™"/%} is an ONB for L*(Tsq).

b. Parseval Formula. Let F,G € L*(T4q), and consider the pairings
fe—F, g+ G. Then

f, F@)G@) dy = 3 finlln]
and, in particular,
1/2
1Pl = (f,_1F@)PdY) " = (S 1A100F)

¢. Convergence. For all F € L*(T»q),

1/2

= |[fllezz)-

(3.4.21) Sim || F = Sv(E))|za(ran) = 0.

Proof. i. {e~™™/?} is orthornormal in L?(Tsq) by direct calculation,
and span{e~"""/%} = L*(Tsq) by the Fejér Theorem (Theorem 3.4.6a)
and the method of Exercise 3.16.

ii. For any F' € L*(Tyq) and any N

0 < |IF = Sn(F)2aempey = 1F2qrpey — 2o FIn1?,

[n|<N
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and so0

(3.4.22) 3o 1P < N1 F e qryg)-
i<V

This is Bessel’s Inequality (1828). Further, if N > M then

1Sw(F) = Su(F)zemam = 22 IRl

M<|n|<N

and so, by (3.4.22), {Sn(F)} is a Cauchy sequence in L*(Taq). Thus,
Y flnle ™"/? converges to some K € L*(T4q) since L*(Taq) is com-
plete.

iii. By i, if G € L*(Tagq) and

Vn € Z, ./;1' G(v)e™™/ %y = 0,
it

then (3.4.17) allows us to conclude that ||G||z2(1,,) = 0, and so G is
the O-function.

iv. Now, for any F € L*(T2n) and corresponding K as in i, we
have (by (3.4.17) again)

(F(7) — K(v))e"™dy

Taa

= flrl = Jim, 3 fiml [ ey =0

m]SN Tzn-

Therefore, by iii, F' = K a.e.; and so (3.4.21) is obtained, giving part
¢ as well as part a.

v. Part b follows from (3.4.17), (3.4.21), and the calculation

[, PGy = Jim [ Sn(F))Sx(G )y

N-—yeo JTeq

= Jlim S fmlgla] [ emmriigy

N
% Iml nl<N

=" flnlgln].
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In light of Bessel’s Inequality (3.4.22), we know that if F € L*(T)
for the pairing f +— F, then f € £#(Z). Riesz’s formulation of the
Riesz-Fischer Theorem completes the picture as follows:

3.4.13 Theorem. {*(Z) — L*(T)

There is a unique linear bijection F : £2(Z) — L*(Taq) with the
properties

i VI € (Z), fle@ = IFSfllr2ran

i. YF € L*Ty), f = F'F is the sequence of Fourier coeffi-
cients of F'.

Proof. In light of Corollary 3.4.7 and Theorem 3.4.12, it is sufficient to
prove that for any sequence {c,} € £2(Z) there is F' € L*(Tag), uniquely
determined a.e., such that {c,} is the sequence of Fourier coeflicients
of F.

If we define Sy(7) = 3 eae™™™%, then {Sy} C L*(Ta) is a
In|<N
Cauchy sequence since

1Sv — Smllerey = 2 leal?

M<|nl<N

when N > M. By the completeness of L?(Tjq) there is a unique
F € I*(T3q) for which

Sim | F = Syllzzr.q) = 0.
Further, for each n and for N > |n], we have

‘/ SN 7))emm'/nd7

SNF = Snllzzerea
by Hoélder’s Inequality. Thus, ¢, = f[n]. U

3.5 A(T) and the Wiener Inversion Theo-
rem

Besides the formidable task of finding an effective intrinsic char-
acterization of A(T), e.g., Evamples 1.4.4 and 3.3.4, the space A(T)
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is worthy of careful attention because of its algebraic properties and
the ramifications of those properties, cf., the introductory paragraph
of Section 3.4. Fortunately, there is an accessible masterpiece on the
subject by Kahane {Kah70]. Our modest goal in this section will be to
state these algebraic properties, and to prove Wiener’s theorem on the
inversion of absolutely convergent Fourier series. We shall refer to this
result as Wiener’s Inversion Theorem.

3.5.1 Definition. ConvoruTioN
a. Let f,g € £1(Z). The convolution of f andg, denoted by f * g, is

fagnl= 3 fln—Kgkl= > flklgln - K.

k=—co k=—co

More simply than the cases of L'(R) and L'(Tsq), we see that f*x g €
£(Z) since

£ ipeali< £ 3 1fin—oltll = 110l Slolel

n=—co

Rewriting this expression, we have
(351)  Vf,gel(Z), |f+*glae <|fla@lslea

b. £YZ) is a commutative algebra taken with the operatious of
addition and convolution, i.e., £2{Z) is a complex vector space under
addition, and convolution is distributive with respect to addition, as
well as being associative, and commutative.

Further, ¢1(Z) has a unit u under convolution. u is defined by
u[n] = 6(0,n), so that

Vi f(Z), fru=uxf=Ff

since

VneZ, Y fln—k5(0,k) = fln].

k=—00

A straightforward calculation yields the following result.
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3.5.2 Proposition.
Let Q) > 0 and consider A(Tsq) (Definition 8.1.8a).

a. Let F,G € A(Tsa) and let f = {f[n]}, g9 = {g[n]} € £2(Z) be the
sequences of Fourier coefficients of F' and G, i.e., f = F and § = G.
Then frg € £'Z is the sequence of Fourier coefficients of FG € A(Tagq),

€.,

Vn€Z, (froln=[ FGH)e™®dy.

Tag

(Recall that “fy_ 7 designates “G5 f2t2y for any fized o € lﬁ)
b. A(Tsq) is a commutative algebra under the operations of addition

and (ordinary pointwise) multiplication of functions. The function U =
1 € A(Taq) is the multiplicative unit of A(Taq), and

(3.5.1)  VF,G€ A(Ta), [FGllacrany < 1Fllamea |Gl amaq)-

3.5.3 Example. Toe A(T) Norm
a. Let F € A(Tyq) and let f = {f[n]} € £1(Z) be the sequence of
Fourier coefhicients of F. Then

(3.5.2) 1P laceany = A0+ 3 F%mf[nn.

Using (3.5.2) and Ezercise 3.26 we can conclude that if F € A(Tyq)
and F' € L*(Tyq) then

Qo
(3.5.3) 1 F |l aeraey < [£10]] + ﬁ”F |22 (7209

b. Let F, be the 2Q-periodic triangle function, max(1 — |vy|/e, 0),
defined in Remark 3.1.2b. As we stated there, its sequence {wy} of
Fourier coefficients is an element of £!(Z), and so F. € A(T.q). Now
define the 2Q-periodic trapezoid function V, = 2F,. — F,. Note that

(3.5.4 IVellagramy < 3.
In fact, since w(y > 0 in Z, we have

I Vellaraay < 2l Faell a(Tan) + | Fell aqran)
= 2Zw(2£)[n] + Y " wign] = 2F2(0) + F5.(0) = 3.
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We shall show that if F' € A(Taq) and F(0) = 0 (and so F(20n) =
0 for all n € Z) then

(3.5.5) lim |IFK||AFT29) =0

First, F'V, € A(Taq) by Proposition 3.5.2.  F &€ C'(Tyq) then
F € A(Tyq) by (3.5.3). Also, the pointwise a.e. derivative (FV,) is
not only supported by [—2¢,2¢] on [~Q, ), but is uniformly bounded
independent of €. In fact,

1
I(FV)Y Npoman) S 1F 2o (ray +  sup — =|F(7)];

ve[—2¢,—€]Ule,2¢] €

and the second term on the right side is bounded independent of ¢ since
F(y) = F(y) — F(0) and the mean value theorem applies. Further, it

is clear that ,

lim [ F(7)Vi(7)dy = 0.

€0 /o9

Thus, remembering the support of (F'V;), we can apply (3.5.3) again
to obtain (3.5.5) for F' € C*(Tq).
For arbitrary F' € A(T2q), we define the trigonometric polynomials

Fy(v)= Y, FY[nleT™% 4 anl0),
1<inl<N

where aa[0] = — Sy pnen F¥[n]. Thus, Fy € C(Tzq) and Fiy(0) = 0
so that the result of the previous paragraph can be used to obtain

iy | Vot =0
Thus, since
“FV;IIA(Tm) < (F - FN)V;”A(Tm) + ”FNVE”A(TM)?
we can further apply Proposition 3.5.2 and (3.5.4) to compute

zi_}_ngllFKIIA(Tzn) < BHF B FN”A(TZQ)'




240 CHAPTER 3. FOURIER SERIES
The left side is independent of N and the right side is

3{FV[0] ~ 5 FV[nple™ /4 ST FVin]

>N 1<inl<N

<3 v F"[n]‘+3 S|PV,

Inl<N ni>N

A(T2n)

As N ~4 oo, the first term tends to 0 since F(0) = 0, and the second
term tends to 0 since F &€ A(T4q).
The proof of (3.5.5) is complete.

There are far reaching generalizations of (3.5.5) related to spectral
synthesis and the ideal structure of L(T), e.g., [Ben75, Section 1.2].

3.5.4 Proposition.
A(Tzﬂ) = Lz(ng) % Lz(ng)

Proof. The inclusion L?(Tqq) * L*(T2q) € A(T2q) is a consequence of
Parseval’s Formula and Hélder’s Inequality. In fact,

1/2

S 1f gl < (S (Slglll?) < oo,

where F, G € L*(Tyq) and f=F,G=G; and so fg € 7).

For the inclusion, A(T2q) C L?(Taq) * L*(T2q), let F € A(Tag),
where f = F. For each n, we can write fn] = (g[n])? for some g[n] € C;
and we define the sequence g = {g[n]}. g € £*(Z) since f € £1(Z), and,
hence, F = §* g € L*(Tzq) * L*(T2q)- O

3.5.5 Remark. FacTorizaTioN

a. The factorization, A(T) = L*(T)*L*(T), or, equivalently, £ (Z) =
P2(Z)*(Z), of Proposition 8.5.4 is elementary. A consequence of Propo-
sition 8.5.2 is the inclusion A(T)A(T) C A(T). In this context, we
observe that A(T) = A(T)A(T), or, equivalently, £1(Z) = £1(Z) x £(Z),
is also valid since U = 1 € A(T).

Further, A(Z) = A(Z)A(Z) and A(R) = A(R)A(R). However, these
two results are far from trivial and are due to Salem and Rudin, re-
spectively. Paul Cohen (1959) proved that A(I') = A(T')A(T') for any
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locally compact abelian group T', cf., [Koo64], [Pta72] for elegant proofs
of the Cohen Factorization Theorem. Using Salem’s Theorem, or an
argument with convex functions, we also have A(T) = Li(T)* A(T),
where L} (T) = {F € L*(T): F > 0}.

b. Although the proof that A(T) = A(T)A(T) is elementary, we
have the following more intricate relationship: if ' € A(T) never van-
ishes then

YH e A(T), 3G € A(T) such that H = FG.

In particular, if F € A(T) never vanishes then 1/F &€ A(T). This
last fact is Wiener’s Inversion Theorem. There are Banach algebra
proofs [Ben75, pages 22-23], a “spectral radius” proof [Ben75, pages 23—
24], extensive generalizations which are documented and compared in
[Ben75], and classical proofs going back to Wiener’s original techniques
[Wie81, Volume II, pages 519-623, esp., page 532], [Wie33, page 91].
We shall proceed in this last direction in Sections 3.5.6-3.5.9.

c. Before proving Wiener’s Inversion Theorem, let us point out that
a modified version of it is a natural component in the proof of Wiener’s
Tauberian Theorem, Theorem 2.9.12 and Remark 2.9.13, cf., the his-
torical remark in [Ben75, pages 142-143] and the proofs in {Ben75,
Sections 1.1-1.4]. Also, as indicated earlier, these results are funda-
mental in spectral synthesis, e.g., [Ben75, Section 2.5]. We shall apply
Wiener’s Inversion Theorem in Section 3.6.

3.5.6 Definition. LocaL MEMBERSHIP
Let I C A(Tq) be an ideal in the algebra A(Taq), ie., [ is a
subalgebra of A(T2q) and FG € I whenever F' € A(T3q) and G € I.
A function F : Tyq — C belongs to I locally at ~v € T if

3G, € I and 3N, = (o, 8) C Taq such that 7 € (a, 3) and
VAEN, G,(\)=F())

In this case we write F' € N,{7).

3.5.7 Theorem. LocAL MEMBERSHIP THEOREM
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Let I C A(T3q) be an ideal and let F' : Tyg — C be a function. If
F € Noc(7y) for each v € Tyq then F € I.
Proof, For each v € Tq choose G,y and N, (as in Definition 3.5.6) for
which G, = F on N,. Clearly we can take N, centered at v; and for
each v we choose a closed interval C, C N,, also centered at v and
whose length |C,] equals 1|N,|. Since Taq is a compact set we can find
Y1yt 3 Yn SO that

T
(3.5.6) Tsa = {J Cj,

J=1
e.g., Definition B.1.

Next, choose V; € A(T2q), 7 =1, ,n, where V; =1 on C,, and

V; = 0 off N, e.g., Ezample 3.5.3, cf., Exercise 1.50 and the general
construction in [Ben75, Proposition 1.1.4]. Since [ is an ideal, we have
V;G; € I for each j = 1,--- ,n. It is also clear that

(3.5.7) ¥y € Tog and Vj=1,---,n, V;(v)G(y) = Vi(7)F(7).
Defining
(3.5.8) F=F(1-(1-W){1-V)--(1-V)),

we see that F € I because of (3.5.7) and the fact that the “1s” cancel
when we compute the right side of (3.5.8). Finally, /o = F' on Tyq. In
fact, if ¥ € Tsq, then there is k for which 1 — Vi(y) = 0 because of
(3.5.6). 0

3.5.8 Example. 2|f[0]| > || F|la¢r,q) IMPLIES 1/F € A(T2q)
Let F' € A{T,0)\{0} and let f = {f[n]} be the sequence of Fourier
coeflicients of F. Assume

(3.5.9) ‘ 27101 > 1 F'llacran)-

We shall show that 1/F € A(Taq). To this end we combine the series
expansion, 1/(1 +G) =1-G+G%2~ G+ -, and (3.5.9) to compute

for Giy) =Y ‘}J{'—g%e"”'m/ @ that

1 1

oM 3;[—01(1 -GV +G()’ — G’ +-).
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Thus, by (3.5.9) and Proposition 3.5.2b,

|| Zllama < 7’"‘“ ; G r.0)

1 1 1
AN T = Gl aqraqy  21F101] = 1 F |l a(Ta0)

3.5.9 Theorem. WiENER INVERSION THEOREM

Let F € A(ng).

a. If F(vo) # 0 then there is G € A(Taq) such that F' = G on some
open interval N centered at v and 1/G € A(Taq).

b. If F never vanishes then 1/F € A(Taq).

Proof. a. Without loss of generality, let vo = 0, and define

(3.5.10) Vv € Tea, Ge(v) = F(0) + V(7)(F(y)) — F(0)),

where V, was defined in Frample 3.5.3. Choose n = |F(0)|/3 > 0, and
apply (3.5.5) to find € > 0 for which |[V.(F — F(0))}| 4(T,q) < n. For this
€, set G = G..

Since

< 0.

meVé('r)(F(’r) - F(O))d7' < Ve(F = F(0) ]| acrzn;

we have

[ cma|=|Fo+[ v. — F(0)) dy

(3.5.11) |
2 |F(0)] = [Ve(F — F(O) )l acrag) > [F(O)] — -
On the other hand, it is immediate from (3.5.10) that
(3'5'12) ”G“A(Tzn) < lF(O)I + 7.
Combining (3.5.11) and (3.5.12) with the definition of %, we obtain

(6513 2|[ Gmd| > FIFOI> [Cluea.
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From (3.5.10) we see that G = F on Ny = (~—¢, €), and, because of
(3.5.13) and Ezample 3.5.8, 1/G € A(Taq). This completes the proof
of part a.

b. For each 7 € T2q, we use part.a to choose Gy € A(T2q) such that
G, = F on some open interval N, centered at v and 1/G,, € A(T2q).

Thus, 1/F € A(T2)ec(y) for each v € Taq, and so 1/F € A(T2q)
by Theorem 3.5.7. 0O

3.5.10 Remark. A(T) axp A(R)
a. Wiener’s concept of local membership leads one to investigate the

-~

relationship between A(T) and A(R). For example, it is natural to ask
the question: supposing F' € A(T), F(:i:%) =0, and G is defined on R

as

(3.5.14) G(y) =

0, otherwise,

{ F(y), if vl <3

18G € A(R)? Wiener proved the following theorem. Let F': T — C be
a function vanishing on [3 — €, 4 €] and define G : R — C by (3.5.14);
then F € A(T) if and only if G € A(R), and

AC:(¢), Ca(€) > 0 such that Ol(e)|]G||A® < |[F||am) < OZ(C)HGHA(@-

The proof is not difficult, e.g., [Wie33, pages 80-82].

b. The following extension of Wiener’s result from part ¢ was proved
by Wik [Wik65). Let F € L=(T) vanish on [3 — ¢,1 + €], define G :
R — C by (3.5.14), and let w : R — R be an even positive function,
which is increasing on (0,00) and which satisfies the condition

(3.5.15)  3C >0 such that Vie R\{0},w(2t) < Cuw(t);

then

ST IFY[n]|lw(n) < oo
if and only if

[ G @ty dt < .
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In this statement, we use “w” to denote a so-called weight, not the
Fejér function.

c. Using the result of part b, Wik [Wik65] proved that if F € A(T),
—1/2<a<f<1/2 Fla)=F(3)=0, and

3 [V [n)llog |n] < oo,
then F, 5 € A(T) where

Vye[-1,3) Fap(y) = F(7)a8(7)

and Fup is defined 1-periodically on R.

d. Condition (3.5.15) is a doubling condition for weights. Such
conditions play a conceptually important role in an interesting and un-
resolved set of problems categorized as weighted norm ineguality prob-
lems, e.g., [G-CRdeF85]. An example of a weighted norm inequality
is

1/2

516 ([IFmram)” <o ([iroruwe)”

where w > 0 and p is a positive measure, cf., Definition 2.6.5 and
Theorem 3.7,2, which are applicable raisons d’étre for dealing with such
inequalities. The problem is to characterize the relationship between w
and g so that (3.5.16) is valid for a large class of functions, e.g., [BH92]
for measure weights u.

e. Wik’s Theorem from part ¢ can be thought of in terms of local
membership or weighted norm inequalities. In the context of local
membership, we can obtain F,z € A(T) by Theorem 3.5.7 if we can
show Fo g € A(Thoc(y) for v = a, 3, since local membership is obvious
for other values of 7. In the context of weighted norm inequalities,
define w(n) = log|n| and Fv = F, 4, i.e, v = 1jag on [—1,1); and
consider the weighted norm inequality,

(35.17) |Follam < € X 1FVInlfo(n),

for all F € A(T) for which F(a) = F(B8) = 0. Then Wik’s Theorem
can be restated by saying that if the right side of (3.5.17) is finite then
Fv=F,p¢€ A(T).
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f. Geometrical considerations play a significant role in a class of
weighted norm inequalities referred to as restriction theory , e.g., [Ash76,
pages 107-117 by E. M. Stein], [Ste93]. Also, extensions of the classical
uncertainty principle inequality (2.8.5) are critical in quantifying the
implications of inequalities such as (3.5.16), e.g., [BF94, Chapter 7],
[BL94].

3.6 Maximum entropy and spectral esti-
mation

We shall discuss the Maximum Entropy Theorem and prove a spec-
tral estimation theorem. In so doing we shall prove the Fejér-Riesz
Theorem and indicate the role of A(T) in such matters.

3.6.1 Remark., TeE SPECTRAL ESTIMATION AND EXTENSION PROBLEM

a. We gave a qualitative statement of the spectral estimation prob-
lem in Definition 2.8.6b. We shall now aim to quantify that statement
for both the stochastic setting of Section 2.8 and the deterministic set-
ting of Section 2.9. As a first step, we say that the spectral estimation
problem is to estimate the power spectrum in terms of given autocor-
relation data on a finite interval.

In the context of Fourier series, we are given N > 0 and data
Xy ={rn:n =0, £1,... ,£N} C C, and the exztension problem
associated with spectral estimation is to find nonnegative functions
S € LYT) for which SV[n] = r, for n = 0, &1,...,+N. Because
of Herglotz’s Theorem on Z ( Theorem 2.7.10), X must satisfy some
positive definiteness condition, e.g., Definition 3.6.2. With this stipula-
tion on Xy there are generally many nonnegative solutions S € L'(T)
as Krein (1940) first showed in the setting of R. After Krein, contri-
butions to the extension problem were made by Chover, Doss, Dym,
Gohberg, R. R.Goldberg, Rudin, et al.; and [Rud63] also analyzed the
difficulties in extending Krein’s Theorem to higher dimensions. The
fact that there can be many solutions to the extension problem leads
to Fourier uniqueness problems in the spirit of Fzample 1.10.6, e.g.,
[Pric85, pages 149-170}.




3.6. MAXIMUM ENTROPY AND SPECTRAL ESTIMATION 247

b. From the point of view of spectral estimation there are var-
ious ways of choosing a specific solution S from part a, depending
on the type of application. One procedure, the Mazimum FEniropy
Method (MEM), involves choosing the function § = Sygar which max-
imizes a certain logarithmic integral associated with entropy, e.g., The-
orem 3.6.3.

Mathematically, we shall see that this choice restricts us to A(T),
instead of L!(T). Physically, since entropy is a measure of disorder
in a system, Syga represents maximum uncertainty with regard to
what we do not know about the system, whereas it depends on all
the known autocorrelation data Xx. Thus, the choice of Sygpr is
a mathematical guarantee that the least number of assumptions has
been made regarding the information content of the unineasured data
at |n] > N, e.g., [Chi78], [IEEE82]for expert physical rationales and
expositions.

John Parker Burg invented MEM in 1967 and van den Bos (1971)
[Chi78, pages 92-93] showed that the Maximum Entropy Method of
choosing a spectral estimator S is equivalent to least squares linear pre-
diction, used in speech processing, and autoregression, used in statis-
tics, e.g., Section 3.7. MEM is also related to the maximum likelihood
method, e.g., [Chi78, page 3 and pages 132-133]. There is a deep study
of MEM and moment problems by Landau [Lan87], Definition 2.7.8c,
as well as an important new mathematical contribution by Gabardo
[Gab93], cf., our extension of MEM to R in A quantitative mazimum
entropy theorem for the real line, Integral Equations and Operator The-
ory, 10(1987), 761-779.

3.6.2 Definition. PosiTivE DEFINITE MATRICES

a. An (N + 1) x (N + 1) matrix R = (rjz), where rjz € C and
0 <7,k <N,is Hermitian if rj = 7g;. An (N +1) x (N + 1) matrix
R = (r;x) is positive semidefinite if

Ve=(co,e1,---,on) € CVH, (Reyc) = > ket 2> 0.
gk

Positive semidefinite matrices are Hermitian, e.g., Ezercise 2.52.
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b. An (N +1) x (N + 1) positive semidefinite matrix R is positive
definite written R >> 0, if (Re,c) = 0 implies ¢ = 0. Clearly, if
R >> 0 then R is nonsingular and R~! exists. In fact, if Re = 0 then
(Re,c) = 0, and so ¢ = 0 by hypothesis; thus, R : CN*1 — CV*! js a
linear injection and we have the result.

c. Let Rbean (N+1)x(N+1) matrix with eigenvalues {Ao,... , An}.
By definition, the trace of R is Z?:o r;;. It can be shown that the trace
of R equals Eﬁio A; and that the determinant of R is Hf,—V:U A;. Also, R
is Hermitian if and only if

Ve,d € C' . (Re,d) = (¢, Rd);

and the eigenvalues of an Hermitian matrix are real.

Finally, if R is Hermitian, then R >> 0 if and only if each eigenvalue
A; > 0, e.g., [Str88], cf., part a.

d. Let {r; : j =0, £1, £2,...,£N} C C satisfy the condition
r; = 7_; for each j, and define the (N 4 1) x (N + 1) matrix B = (r;x),
where j,k > 0 and rjx = rj_x. R is a Toeplitz matriz, i.e., it takes
constant values on “diagonals of negative slope”. R is Hermitian since
r; = F—;. From the previous discussion, Eﬁ\f__o Aj = (N + 1)ro; and if
R >> 0 then the determinant of R is positive, ro > 0, and B~ = (c;x)
exists, cf., Exercise 3.52.

e. Let S € LY(T)\{0} be nonnegative, and let s = {s[n]} be the
sequence of Fourier coefficients of S. Then, for each N, the (N +1) x
(N +1) matriz R = (s[j — k]), where 0 < j,k < N, is positive definite.
In fact,

N
S sli—Hag = [ SOIY e dy >0,
0<jk<N T =0
for all (co, ... ,en) € CVH\{0}, since T°); cje"™7 = 0 for at most
finitely many points.

3.6.3 Theorem. Tue MaXiMuM ENTROPY THEOREM
Let {r; : 7 =0,%1,42,... , 4N} C C satisfy the condition r; =7_;
for each j, and assume the (N + 1) x (N 4+ 1) matric R = (rjp) >>
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0, where 7,k > 0 and ry = rj_x. There is a unique function S €
A(T), with Fourier coefficients {s[n]} € £'(Z), satisfying the following
properties:
a. Vin| <N, s[n]=rm;
b. S >0 on T, and, hence (by Theorem 3.5.9) S7' € A(T);
= |5+ |* where S; € A(T) has the form

7) =3 sy[n]e
n=0

d ¥n|>N, (5')[r]=0and

N
S — mCO.m—n -—2'11'1'7;')',
=1 5 ()
where R™! = (emn);

e. For all F € A(T), for which F > 0 on T and F¥[n] = r, when
In] < N, we have

| <
fT og F(y)dy < leog S(y) dv,
and equality is obtained if and only if F' = S.

Our proof of Theorem 3.6.3in [Pric85, pages 95-97] depends on the
fact that if the matriz R of Theorem 3.6.3 is posilive definite and if
(4o, a1, ... ,an)T = R7(1,0,0,... ,0)7, then

N
VyeT, Y ae ™40,

n=0

e.g., [GS58], [GLY4], cf., [DG79] for an important extension. We shall
not prove Theorem 3.6.3 since we shall not prove this fact. Instead
we shall prove Theorem 3.6.6 below, which is essentially Theorem 3.6.3
and which depends on the Fejér-Riesz Theorem.

3.6.4 Theorem. FEIEr-Ritsz THEOREM
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Let

N
AW = Y 4™ >0 on T
n=-N
and define A.(2) = TN _y a.2" s0 that A.(e=™/Y) = A(y). There
is @ unigue trigonometric polynomial B(7y) = N b,e ™"/ with the
properties that

(3.6.1) A=|B* on T,

and if B.(z) =0 then |z| <1.

Proof. Since A is real, the Fourier coefficients {a,} have the property
that @, = a_, for n = —N,...,0,1,...N. In particular, ¢5 € R.
Without loss of generality, assume a_y # 0.
Now define the polynomial P, by
-

P.(z) = z*NA.,(z) =a_y + a_yy1z+--+ag?

+ @ 2N an®N, z e C

Clearly,
Ve Q\{0}, #VET/E) = P(e).

Let P.(z0) == 0. If z5 3 0 then 1/Zp is also a zero of P..

Figure 3.2

2
\
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If 0 < |z0] < 1 then, by differentiation, we see that z, and 1/Z; have

the same multiplicity. If |zq] = 1 then z has even multiplicity since
A > 0.\ We shhll say that a polynomial has 0 as 4 zero of\ordgr m if 1ts

Y first]m koefficients, tHat is, these of 1,%,... ,2™"1, are 0; a,n{it hag oo
zeto of onder m if its last|m coefficients are D. Thus)if }o = 0fis a

rder ¢ for P, then P| has oolas a zero of order jn.)

CHECHERIOR—aLO e 771u5/
(362)  R(s)=CHf Ii(z — ) (- ;_-1;) ]j;(z — ),

where 0 < |z < 1, |u;] = 1, and sk 2p + 29 = 2N spih, ie.,
M p+ g = N, cf., Ezxercise 3.28i.
Since A > 0, (3.6.2) allows us to write

Aly) = |Au(2)] = |2V Pu(2)l = [Puf2)]

(3.6.3)
p 1 g 2
= 1C1TT Iz = #lle = =1 TT 1= — ]
i=1 7 =1
for z = e™/? where p + ¢ = N. Because |z — E%' = Iz—:"—[ for such z

on the unit circle, (3.6.3) becomes

P i q . 2
A) = |0 1% — 23)25 P TT (e — )]

j=1 i=1

(3.6.1) is obtained by setting

g

v
(364)  Bly) = OV [[(7 — )57/ [[ (1% — ;).

. J
=1 =1

The claim about the zeros of B, is immediate from (3.6.4). O

3.6.5 Remark. FEJErR-RIEsZ THEOREM: POTPOURRI AND TITILLATION

a. The Fejér-Riesz Theorem was proved by Fejér and F. Riesz, and
published by Fejér (Jour. fir Reine und Angew. Math., 146(1915),
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53-82, especially pages 55-59), cf., [RN55, pages 117-118], [PST76, page
259], [GS58, pages 20-22], [Ach56, pages 152-153].

b. The Fejér-Riesz Theorem is a critical component in the classi-
cal proof of the Spectral Theorem for Unitary Operators in a Hilbert
space, e.g., [RN55, pages 280-284], cf., the historical note on operator-
theoretic applications in [Bur79].

c. Herglotz’s Theorem (1911) on Z { Theorem 2.7.10) can be proved
as a consequence of the Fejér-Riesz Theorem, e.g., [RN55, pages 115-
118), where the context is in terms of the moment problems mentioned
in Definition 2.7.8c.

d. Using the Fejér-Riesz Theorem, it is elementary to prove that if
F € C(Tqq) is nonnegative, then there is a sequence {By} of trigono-
metric polynomials on Taq for which

A IF = By llpegrac) = 0,

cf., Frercise 3.48.

e. Krein Theorem. Using the Fejér-Riesz Theorem, Krein proved
that if f € PWq is nonnegative then there is b € PWy s for which
f=1b|* on R and for which the zeros of the entire function,

b /2 'E 2mizey d
()= [, Bnem=dy
are in the half-plane Imz > 0, e.g., [Ach56, page 154]. (PWy is the
Paley-Wiener space defined in Remark 1.10.8.) In fact, this result is
true for a larger space than PWh, e.g., [Ach56, pages 137-152].

f. If A(y) = TN _ya.e™¥™ > 0 on T and g = 1 then A(0) <

n=

2N + 1. This is an immediate consequence of the fact that {a,} >> 0:

N N
0<P0)= > @< Y |au| (2N + ay.
n==N n=—N

In his paper referenced in part a, Fejér proved that A(0) < N + 1.
g. The fact that the zeros zg of the polynomial B,, of Theorem 3.6.4,
satisfy |z0] < 1 for A > 0 on Taq is useful in filter design. A rational
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function H, all of whose zeros and poles zg satisfy |z} < 1, is a minimum
phase filter , e.g., [OS75, pages 345-353], [Dau92, pages 194 fI.].

h. Daubechies Theorem. One of the early stunning successes of
wavelet theory was Daubechies’ Theorem (1987): for any r > 0, there
is a constructible function ¢ € CL(R) for which {¢mn : m,n € Z} is
an ONB for L*(R), where

Yrmm(t) = 2™ 3h(2™t — n).

Her proof requires the Fejér-Riesz Theorem, e.g., [Dau92, Chapter 6],
especially pages 167-174 for the role of Theorem 3.6.4.

1. The functions A, and B, of Theorem 3.6.4 are called z-transforms
of {a,} and {b,}, respectively, e.g., Ezercise 3.22.

3.6.6 Theorem. A SPECTRAL ESTIMATION THEOREM

Let {r; 15 =0,%1,42,--- £ N} C C satisfy the condition r; =7_;
for each j, and assume the (N +1) x (N + 1) matriz R = (rj;) >> 0,
where 3,k > 0 and r;y = r;. Let > 0. There is a positive funclion
S € A(Te), with Fourier coefficients {s[n]} € €{(Z), satisfying the
following properties:

(3.6.5) Vin| <N, s[n]=r,,

and

N
(3.6.6) VyeTa, S(H)=1/A(7)=1/ Y a.e™™/9,

n=—N

where A designates the sum in the denominator on the right side of
(3.6.6).

Proof. 1. In order to prove this result we shall proceed in the following
devious way. -

Given the hypotheses on R we shall momentarily assume both (3.6.5)
and (3.6.6) for some nonnegative function S € L'(Tsq). Using these hy-
potheses and conclusions, we shall show in parts i-—v how to obtain the
coefficients {a, : [n] < N} of (3.6.6) from the given data {r,, : |n| < N}.
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In order to give an honest proof of the theorem, we work backwards.
In particular, we take the hypotheses on R (without the conclusions of
the theorem!), and solve the system of equations in part v to obtain
{a,}. Then we define § in terms of these a, by means of (3.6.6). The
calculations in parts ii-v allow us to conclude that 5 is nonnegative,
S € A(Tyq), and s [n] =r, for all |n] < N.

ii. We shall prove that S is not only in L}(T»q), but § € A(Taq). In
fact, A is a trigonometric polynomial, and so it is a continuous function
on Tjq with at most finitely many zeros. However, S is not integrable
over any small interval centered at such a zero, e.g., Frercise .27 and
thus S and A are really positive on Taq. Thus, § = 1/4 € A(T2q) by
Wiener’s Theorem ( Theorem 3.5.9).

iii. Since A > 0 on Ty we can apply the Fejér-Riesz Theorem
(Theorem 3.6.4). Thus, there is a trigonometric polynomial B(y) =
N o bae” ™™/ with the properties that A = |B|? on Taq, by # 0, and
for which N

Bu(z) = Y b,2" =0 implies |z]| <1,
n=0
where B.(e~™"/%) = B(y). In fact, the proof of Theorem 3.6.4 allows

us to write

B.(z)=C? 1‘[ )2,

where {z;} is the set of zeros of B,, and each z; satisfies 0 < |z;| < 1.
Therefore,

B_l_--@l/zN 1 T2 _ \F o0
Q=01 (G-2)5" =25

j:l z n=0

and its zeros z = 1/%; are outside the unit circle. Hence,

(3.6.7) =Y ez ", 7| <1

1
B.(3)
Further, if z = "™/ then

(3.6.8) B,,(%) =B(y).
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iv. Combining the factorization A = [B|? with (3.6.6), we obtain

1
(3.6.9) S(7)B(v) = == € A(Tx).
B(7)
Because of (3.6.7) and (3.6.8) the Fourier coefficients (S B)Y[n] vanish
ifn>0. v v
Since (SB)V[n] =S * B [n], we have from (3.6.9) that

N
(3.6.10) Vn>0, > s[n—klb=0.

k=0

v. Because of property (3.6.5), the N cases of (3.6.10) for n =
1,..., N give rise to the N equations

ribo + roby + rogba + -+ rionby =0,

b b by + -+ renby =0,
(3.6.11) robg + 110; -+ ToDy To-NON

rnbo + rn_1b1 + rno2b2 + -+ + roby = 0.
We rewrite (3.6.11) as the matrix equation,
RbT = '—bo(‘f‘l, e ,T‘N)T,

where b = (b1, by,... ,by). R is invertible since R >> 0, e.g., Defini-
tion 3.6.2¢,d. Thus, we compute b, cf., Frample 3.7.9;, and then we
compute {a, : —N <n < N} in terms of b since A = |B[%. [

3.6.7 Example. SPECTRAL ESTIMATION AND MAXIMUM ENTROPY

a. Equation (3.6.6) gives spectral (frequency) information about a
digital signal in the case that relatively little data X is known about
the signal. In fact, a small value of A(y) > 0 in (3.6.6) allows one to
guess that this value of v is a frequency component of the signal which
generates given autocorrelation data X. Of course, we very rarely get
something for nothing, and so this method of spectral estimation can
only be used effectively when, as indicated in Remark 3.6.1b, certain
physical parameters make sense.
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This method of spectral estimation is a form of the MEM, and
should be compared with Fourier transform methods, e.g., Proposi-
tion 2.8.8 and Frample 2.9.7, which really give accurate spectral infor-
mation but which usually require large data sets X.

b. Let {r, : [n| < N} C C satisfy the hypotheses of either the
MEM Theorem ( Theorem 8.6.3) or Theorem 3.6.6. The relationship
between these theorems was alluded to in part ¢, and is quantified by
the following suggestive calculation. The calculation itself was made
early on in the development of MEM, e.g., [Chi78, page 55], [[EEES2,
page 944]. It is a rationale (not a proof) for supposing that S has the
form (3.6.6) in the case that [plog S(7y)dy is the largest (or smallest)
value of {frlog F(v)dvy}, when F ranges over all positive functions F
in A(T) for which F' [n] = rn, |n| < N.

Let |n| > N be fixed, and consider the continuous (complex) vari-
able r = r,. Assuming fylog S()dy is an optimum we have

B 1 35(7
fl"gs("d r8() or 0

where 7 is fixed in the expression Q—(—l , ¢f., the proof of Theorem 3.7.7.
Writing S(v) = ¥_r;e~ ™% we have %(rﬁ e~2mmY Thus, (1/8)V[n] =
0 for all |n| > N, and so S has the form (3.6.6).

3.7 Prediction and spectral estimation

An extension of the factorization given by the Fejér-Riesz Theorem
(Theorem 3.6.4) is the Szegd Factorization Theorem: let A € L*(T) be
nonnegative; then log A € LY(T) if and only if A = |B|? for some
B € H¥T), where

HYT)={F € I}T):¥n <0, F[n]=0}

Proofs can be found in {GS38, Section 1.14], [Hof62, pages 48-54]. We
shall not prove Szegd’s Factorization Theorem, but mention it because

Szego's original proof (Math. Ann. 84(1921), 232-244) depended on
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the following result which he proved in 1920 (Math. Zeit. 6(1920), 167
202). (The proof of the Szegd Factorization Theorem in [GS58, Chapter
1.14] is joint work of F', Riesz and Szegd which actually appeared before
Szegd’s original proof, cf., [MW57, pages 115 f.].)

3.7.1 Theorem. SzEG6 ALTERNATIVE
Let W € L*(T) be nonnegative, and define the “geometric mean” of
W as
| exp frlogW(vy) dy, if logW € LY(T),
g(W) = {
0, if logW ¢ LYT).

Then
inf [ |1 = P()PW () dy = g(W),

where the infimum is taken over all trigonometric polynomials P on T

of the form
N
P(7) = 3 ane™2,

n=1

and where N > 1 and a,,...,ay vary.

The Szego Alternative has been generalized in several directions,
e.g., [Achb6, pages 256 fI.], [DM76], [Hel64, pages 19-24], [Hof62, pages
48-50]. It can also be reformulated as follows.

3.7.2 Theorem. KoLmoGorov THEOREM (1940)
Let W € LY(T) be nonnegative, and define the space,

BT = { P WPl = ([ IP@PW ) a7) " < o).
Then |
(3.7.1) spam{e="™ : n < 0} = L3,(T)

if and only if log W ¢ L}(T), where spanX is defined as the closure in
L%,(T), taken with the |[... (|22, (z)-norm, of the linear span of elements
from X.
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In the spirit of Section 2.8, we state the following definition.

3.7.3 Definition. STATIONARY SEQUENCES AND POWER SPECTRA
a. Let f € (*(Z). The {’-autocorrelation of f is the sequence
p: Z — C defined as

Vn € Z, pin] sz[n‘f‘m]mn

cf., Example 2.7.9 for L:-autocorrelation. By the Parseval Formula,
p=|F|* € L)(T). § = |F|? is the power spectrum of f.

b. A sequence z = {z[n|: n € Z} in a complex Hilbert space H is
stationary if the inner product

rin] = (z[n + k], z[k]), n € Z,

is independent of k, e.g., Definition B./. The sequence r is the autocor-
relation of z, and it is elementary to check that r is a positive definite
function on Z. By Herglotz’s Theorem, there is § € M, (T) for which
F= 8. S is the power spectrum of z, e.g., Definition 3.10.3.

3.7.4 Remark. PREDICTION AND KOLMOGOROV’S THEOREM

a. Theorem 3.7.2is valid in more general contexts, including replac-
ing the weight W by any u € M, (T), e.g., [Koldl], cf., [Ach56, pages
261-263).

b. Let H be a Hilbert space, and let € H be a stationary sequence
with power spectrum S. Define H(z) as span{z[n]} C H. Kolmogorov
noted that there is a unique linear mapping,

Z: L%(T) — H(z),

defined on the exponentials as Z(e*™™7) = z[n], which is an isometric
isomorphism, i.e., Z is a bijection and ||F|| 2y = || Z{F)]| for all F €
L%(T), where ||...|| is the norm on H.

c. Using Theorem 8.7.2 and the result of part &, Kolmogorov solved
the problem of “predicting the future from the whole past” [Kol41],
cf., [DM76], [Ben92a]. We shall not go into the details of defining de-
terministic sequences which are required for a clear statement of the
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prediction problem which Kolmogorov solved. However, one has the in-
tuition of prediction from (3.7.1) in the sense that the past information
{e?™"7 : . < 0} is sufficient to approzimate or predict any F € L%, (T),
including exponentials F(v) = e*™™ for times n > 0.

We shall now attempt to quantify Remark 5.7.4c for the practical
matter of addressing prediction problems that arise in analyzing bio-
electric traces, speech data, economic and weather trends, and a host
of time series from a variety of subjects. We begin with the following
example.

3.7.5 Example. PREDICTION ESTIMATES

a. Let € > 0 and let f = F, where F € L*(T2) has Fourier
coefficients f = {f[n]} € £*(Z). Suppose that for a given value of
" n, f[r] is not explicitly known, whereas H, = {f[n — k] : k > 1} is
known. When is it possible to predict, i.e., approximate or evaluate,
f[n] in terms of H,? One way of addressing this question is to write

N
(3.7.2) en[n] = fln] — ’; arpfln — kJ,
so that

N
o] R,

k=1 Tzq

enln)= [ F(n)e /% dy -
Tan
from which we have the estimate

dry

N .
il < [ 1P fL- Y a0

2 1/2
<1 Flzo(raay ( L d'r) -
2

In the transition from (3.7.2) to the right side of (3.7.3) we have squan-
dered our information H,. Further, 1 ¢ span{e"™*"? : k > 1} in
L2(Tm) by Theorem 3.4.12. This fact is corroborated by the Szego

(3.7.3)
N

1— Z a’ke——m'kq‘/ﬂ
k=1
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Alternative since the weight W = 1 on the right side of (3.7.3) has the
property that log W € LY(Tyq).
b. We now adjust the calculation of part a by implementing the
Parseval formula to compute
2 1/2
dq’) .

Of course, n is no longer fixed as it is in (3.7.2). On the other hand, if
log W ¢ L'(T4q), where W = |F|?, then the Szegd Alternative ( Theo-
rem 3.7.1) or Kolmogorov’s Theorem ( Theorem 3.7.2) can be used to
glean prediction theoretic information in the following way, cf., Ezer-
cise 3.54. For each fixed n, {en[n]| < |len]le(z), and so inf |en[n}| =
inf|lenlezzy = 0 in the case log [F| ¢ L*(Tzq), where the infima are
taken over all N > 1 and ay,...,any € C.

c. Our next adjustment of the calculation in part e deals with
analogue signals f € PWy, instead of discrete signals in £2(Z). We
write

N
1— E ake—ﬂ’ik’y/\ﬁ
k=1

lemlle = ( L Fer

N

en(t) = f(1) = 2 anf(t —k§)

k=1
for a fixed @ > 0 and for a fixed t € R. Then we compute

~ . N _ .
en(t) = -/'f(,),)Eth'_f DY akff(,y)ezm(t—ka/gh dv,
k=1

0Nz o N G 3
3.7.4) le <[ — 2 1 — a e-—?mk:fy d
(37.4) lew(®1 < (=) 226 (]_ -2 ,),)

As in (3.7.3), we have squandered information about ¢ on the right side
of (3.7.4). However, it can be shown that if o < 1/2 then

cf., [Ben92b, Proposition 9]. Thus,

(3.7.5) spani{e "™ 1 k> 1} = L¥~a, .

Thus,
inf IEN(t)| = 0,
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where the infimum is taken over all N > 1 and a;,...,ay € C.

The density result (3.7.5) is due to Carleman, e.g., [You80, pages
114-116), cf., Remark 3.7.11.

d. Suppose we are given a fixed discrete “time” n, resp., a fixed
continuous “time” {. In part b, resp., part ¢, we have shown in theory
how to predict the value f[n], resp., f(¢), in terms of its known values at
previous times. This prediction requires f to satisfy certain conditions;
and the prediction itself is made in terms of a given error bound e. In
fact, in both cases it can be proved that coefficients a;, 7 = 1,..., N,
exist with the property that |ex[n]| < ¢, resp., |en(t)] < e

We wish to design an applicable tool based on the idea of Ezam-
ple 3.7.5. We begin with the definition of linear prediction.

3.7.6 Definition. LINEAR PREDICTION MODELS
a. Let M, N > 1. A pole-zero linear prediction model of a sequence
f € £#(Z) is an equation of the form

N M
(3.7.6) fln] = 2; arfln — k} + ;bju[n -7l

for each n, where u € £2(Z), {ax}, {br} C R, and by # 0.

f[n] can be thought of as the output of a linear translation#invariant
system with some unknown input wu, including its past and present
values, as well as input consisting of past values of f, viz., f[n —
1],..., fln—N]. In this point of view, the goal is to estimate the system
parameters {a;}, {b:} C R, so that (3.7.6) is a meaningful predictor of
f.

b. If b = by = -++ = by = 0 then (3.7.6) is an all-pole model,
or, equivalently, an autoregressive (AR) model. If @y = a3 = -+ =
ay = 0 then (3.7.6) is an all-zero model, or, equivalently, a moving
average (MA) model. The full pole-zero model (3.7.6) is also called an
autoregressive moving average (ARMA) model.

c. In the following, as in Ezample 8.7.5, we shall deal with the
all-pole model. This type of linear prediction goes back to Yule’s work
(1927) on sun spot analysis, cf., the beginning of Section 2.9 for another
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remark on sun spots. The mathematics underlying the effectiveness of
linear prediction is Gauss’ technique of linear least squares estimation
from 1795, cf., Proposition 1.10.9. Major contributions were made
by Kolmogorov and Wiener, independently, in the early 1940s, e.g.,
[Wie49] including Appendix C by Norman Levinson. Linear predic-
tion is a staple in time series analysis, e.g., [BSS88], [JN84], [Mak75],
[Pri81]. We mention, for example, the introduction of linear predic-
tion into speech analysis and data compression by Fant, Jury, Atal and

Schroeder, and Itakura and Saito in the 1960s, e.g., [MG82].

3.7.7 Theorem. LeasT SQuarREs METHOD FOR ALL-PoLE MODEL
Let N > 1, assume f € £2(Z)\{0} is real-valued with £2-autocorrelation
T, and consider the sequence of equations

N
(3.7 Ve Z, flal=3 arfln— K +uln]
k=1
There are unique coefficients af,...,a}y € R and ¢ sequence ey € £*(Z)

defined by N
| enn] = fln] — ; aifln — k]
for each n, such that )

Va = (ay,...,an) € RY,

(3.7.8)

N
0 < r[0] = 37 aprlk] = |lenlizzy < Nl
k=1

where u is defined by (8.7.7). (Thus, u depends on a € RN as opposed
to the interpretation of Definition 3.7.6).

Proof. a. For agivenn € Z and a = (ay,...,an) € RY, we define the
approximation f;[n] of fln] as

N
faln] = kX_: afln — k.
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Clearly, (f — fa) € £*(Z), and we set
_ N ?
EN(a)=Z(f[n]—-]§:1akf{n-k]) < oo.

b. For each k, we have the formal calculation

re) MYy (f[n] -3 a;fln -j}) fln— k.

J=1

By Hélder’s Inequality, the right side converges uniformly on any bounded
interval of the az-axis. Thus, the right side of (3.7.9) is in fact 9—%’—:{51.

c. A necessary condition in order that Exn have a local minimum
(or maximum) at ¢* € RV is that

BEN(G*)
day

A sufficient condition in order that Ey (which satisfies (3.7.10))
have a local minimum at a* € R is that Dy_x(a*) > 0 for each
k= 0,1,...,N, where Do(a) = 1 and Dy_g(a) is the determinant
obtained from the N x N matrix,

82EN(a) .
(W ) m,n—l,...,.N,

(3.7.10) Vk=1,...,N, = 0.

by deleting the last & rows and columns, and taking the determinant
of the resulting (N — k) x (N — k) matrix, e.g., [Apob7].
d. In our case, by (3.7.9), we have

~ 8°Enf(a)

N
Ve € R7, fan,0a,,

(3.7.11)
=23 flj — m]flj - n] = 2rfm — n] = 2rn — m].

J
Since f € £*(Z), we compute 7 = |F|? € L}(T) by the Parseval Formula;
and the N x N matrix B = (r[m —n]), myn = 1,..., N, is positive
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definite, as we showed in Definition 3.6.2e. An elementary characteri-
zation of positive definite matrices is that Do(a), Di(a),..., Dn(a) be
positive [Per52, Theorem 9-26].

Thus, our goal is to find values a* € RY for which (3.7.10) is valid;
and, by the previous paragraph and the sufficient conditions for minima
in part ¢, these values will in fact be minimizers of Ey.

e. In order to obtain a candidate a* for a minimizer, we rewrite
(3.7.9) and (3.7.10) as the system of N linear equations in NV unknowns

A1y. ey AN
Y1<k <N,
(3.7.12)
N
2_a; 2 fln—glfln =k =3 fin}fln — &},
i=1 n n
or, equivalently,
N
(3.7.13) VI<k<N, Y arlk—j]=rlk.
7=1

Since Dy(a) > 0 by (3.7.11) and the discussion in part d, the system
(3.7.13) has a unique solution ¢* = (a},...,a}) € RV,

Thus, the inequality in (3.7.8) is obtained.
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f. Expanding the square in the definition of Ey, and substituting
the minimizer e* into (3.7.12), we obtain

N
0 < En(a*) =3 fln}* - QEGEEf[n]f[n—- k]

+22 (g: a;fln — kl) 2

n

N N
= fln)? *Zkz_:aZZf[n]f[n — k] +§ﬂizf[n]f[n— k]
N
=2 fln’ —’;GZZf[n]f[n — k]
Y
= r{0] — ;; ayrlk].
This completes (3.7.8). U

3.7.8 Example. SPECTRAL ESTIMATION AND THE ALL-PoLE MODEL

a. A typical and important issue in many problems and fields is
to find the spectral peaks or fundamental frequencies in a given sig-
nal f € £#(Z). In theory, the graph of the Fourier series F' = f will
provide this spectral information. In reality, there are potential prob-
lems. For example, trigonometric polynomial approximations of f, or
approximations such as Proposition 2.8.8, may be inadequate because
they are either too good or too bad! In the former case, a very good ap-
proximation of f may have so much spectral information from “noise”
embedded in f that desirable information about pure tones (in f) is
obscured when observing f . In the latter case, the approximation may
not be developed enough to specify relevant frequencies in f.

b. In cases, such as those hypothesized in part a, where the Fourier
transform can not be directly used to observe some fundamental fre-
quencies in a signal, there are other methods which sometimes provide
spectral information. The all-pole model is one of these methods. The
prediction estimates in Ezample 3.7.5 show that the prediction error
en In Theorem 3.7.7 tends to 0 as N — oo in many cases. The all-pole
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model in (3.7.7) of Theorem 3.7.7 shows that such a model and its cor-
responding prediction error can be used to specify spectral peaks by
the following process and rationale.

By taking the Fourier transforms of the sequences f and u, (3.7.7)
becomes

(3.7.14) F(v) (1 — i ake'“""") = U(%),

k=1

where F' and U are Fourier series with Fourier coefficients {f[r]} and
{u[n]}, respectively. With the minimization effected by Theorem 3.7.7,
equation (3.7.14) becomes

F('T) — gN(')’)

N .
1 — kzl aze—2m'k'y

Assume 0 < A < |én(y)| < B, which is reasonable for many ap-
plications, e.g., [Chi78]. Suppose F' is continuous and |F ()| is large
in comparison to |F(-y)| for values of 4 near =, i.e., suppose F has a
spectral peak at 5. Define the polynomial

N
Puz)=1- Za}"cz“, z e C
k=1

We write P(y) = P.(e"?**). Then |P(0)| is small. This simple obser-
vation is the basis of the all-pole model method of spectral estimation.

In order to describe this method, we consider the following proce-
dure for a given N > 1 and a given sequence f. First, choose a threshold
¢ > 0 and consider the annular region A, = {z: 1~ e < |z| <1+ ¢}
The choice of € can be adjusted according to the amount of spectral
information desired. Next, compute {af : k = 1,...,N}, cf.,, Exam-
ple 3.7.9. Compute the zeros 2y of P,, e.g., in MATLAB use the roots
command. If z € A., compute v by taking the projection e=2"% of
Zp to the unit circle.

F(~) is a candidate for a spectral peak.
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c. As a caveat for our presentation in part b, we note that we have
been precise about certain matters, e.g., Theorem 3.7.7, but quite cav-
alier about others. For example, the structure of u is important for the
type of application at hand; and the proper behavior of @ is important
for the success of the all-pole model method of spectral estimation in
that application, e.g., [JN84, Section 2.4], [Pri81].

We should also mention that we are not using the all-pole method
to predict values of f so much as to determine its spectral behavior. In
fact, in order to compute a* in Theorem 3.7.7 we assume knowledge of

each f[n].

3.7.9 Example. LEVINSON RECURSION ALGORITHM

a. Norman Levinson (1947) was the first to use the structure of a
Toeplitz matrix (Definition 8.6.2d) to solve the system of linear equa-
tions (3.7.13) recursively, e.g., [Wied9, Appendix B]. This system not
only plays a role in linear prediction (Theorem 3.7.7), but was also
essential in the proof of Theorem 3.6.6, e.g., (3.6.11), which is asso-
ciated with MEM. (Recall the equivalence of these methods noted in
Remark 3.6.16.) In statistics, equations (3.6.11) and (3.7.13) are called
the Yule-Walker Equations. In making use of the Toeplitz structure,
Levinson’s algorithm has led to numerically realistic computations of
the prediction coefficients aj, ..., a}. For example, the classical Gauss
elimination method requires N° 4+ K N? multiplications or divisions,
whereas even Levinson’s original method only required N2 + KN such
operations.

b. If {cp : & > 0} C C and exp(352, ce2*) = .22, biz®, then one
example of the Lebedev-Milin Inequalities is the inequality

n n 1
|64 |* < exp (Z kleg|> = E) , bo=1

k=1 k=1

These inequalities have applications in univalent function theory, as
well as in number theory and spectral synthesis, e.g., our construction
of idelic pseudo-measures in Zeta functions for idelic pseudo-measures,

Ann. Scuola Norm. Sup., 6(1979), 367-377.
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It turns out that

k .
J
(3,7.15) bk+1 = Z (1 _, m) ck+1_jbj

=0

[Pou84]; and that this recursion formula can be implemented numeri-
cally to deal with linear prediction problems. For example, in dealing
with the Fejér-Riesz Theorem (Theorem 3.6.4), A = |B|?, we let {c;}
be the sequence of Fourier coefficients of log A, where A > 0 is the given
nonnegative polynomial. Then, by way of a standard argument in com-
plex analysis, we obtain by = e*/2 and (3.7.15) for k = 0,...,N — 1,
where by, ..., by are the Fourier coeflicients of B, e.g., [Pou84].

3.7.10 Remark. RAMIFICATIONS OF SZEGG FacTorrzaTioN oN R

a. We first stated and discussed the Paley-Wiener Logarithmic In-
tegral Theorem in Ezample 1.6.5¢. It asserts that if o € LE(R)\{0} s
nonnegative, then there is f € L*(R), for which supp f C [0,00) and

|_]?| = ¢ a.e., if and only if

| log ()]
1442 dy < oo.

Although it is elementary to prove the Szego Factorization Theorem on
R from this theorem of Paley and Wiener, e.g., [Pric85, pages 156-157],
they were, in fact, motivated in their research by a result of Carleman
on quasi-analytic functions [PW33], [PW34, Theorem XII], cf., [Koo88],
[Rud66, Chapter 19] for the theory of quasi-analytic functions.

b. By an approximate identity argument, the Paley-Wiener Loga-
rithmic Integral Theorem can be used to prove the following result. If
p € M(R), then supp u C [T, 00) if and only if

| log |A(7)I|

T 42 dy < oco.

¢. The result for compactly supported measures analogous to that
of part b is due to Beurling and Malliavin: let W be a continuous
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function for which |W| > 1 and log |W| is uniformly continuous; then
the condition,
log [W(7)|
—d
f 1+ 7 < 00,
is necessary and sufficient that for all € > 0 there exists p € M(R) such
that supp it C [—e¢, €] and G K € L>(R) [BM62], [Mal79].

3.7.11 Remark. CLoSURE THEOREMS FOR SETS OF EXPONENTIALS

In Ezample 3.7.5 we saw a role for the closure theorems of Szegd,
Kolmogorov, and Carleman. There are other landmark contributions
by Paley and Wiener [PW34], Levinson {Lev40], and Beurling and
Malliavin [BM67], as well as deep results by others, cf., the superb
expositions of [Red77], [You80], [Koo88]. We shall close this section
with some perspective on such theorems.

a. Equation (3.7.5) was one of the first substantial results of an
area which culminated in the work of Beurling and Malliavin [BM67].
Beurling and Malliavin solved the following closure problem for a given
discrete subset D C R: find the upper bound 2 > 0 of the set of & > 0
for which

(3.7.16) span{e” ™" :t € D} = [*|—q,ql.

Their solution includes writing 2 in terms of a density condition on D.

b. Density results such as (3.7.16) are a weak form of sampling the-
orems— weak but not necessarily elementary. In fact, if (3.7.16) is valid
and f € PW,, then there is a sequence of trigonometric polynomials
P,, where

P.(v) = Z ayne 2™ and D, C D,
t€Dy,

for which ~
lim 17 = Pull-aa = 0

Distributionally, each P, = p, where p, = Y ep,, @10 Thus,

1F = Pallzztaes = I1F = Pl aailliey
= ”f — Pn ¥ d21'ra”L2{R)J
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and so
nlé)-IEo Z a't,nTtd21ra = f in LZ(R)a
t€D,
cf., the sampling theorems in [Ben92b], [BF94], [BSS88], [Hig85].
c. Let 4 € M;(R) and define

LLR) = {f : I fllym = [ 15 dua(t) < oo},

cf., Remarks 2.7.4a and 3.5.104d.

By Theorem 2.7.6, 4 = w + p, where w € L'(R) is nonnegative
and p, is the sum of the discrete and continuous singular parts of p.
Krein proved the following L'-version of Kolmogorov’s Theorem ( The-
orem 3.7.2) on R:

spai{e ™ 1y <0} = L,(R)

if and only if 0 )
og w(t
f 1412 dt =

d. Suppose w > 1 on R. In particular, w ¢ L!'{R), whereas
w € L}*(R) in part ¢. Assume w is even, 1 = w(0) < w(t), and
w(u +1) < ww)w(t) for v,t € R. LL(R) C L*(R) is an algebra under
convolution, and Beurling (1938) posed the spectral analysis question:
is every proper closed ideal I C L!(R) contained in a regular (i.e.,
LY (R)/I has a unit under convolution) maximal ideal? For an equiv-
alent analytic means of posing this question, consider the following
property of I = LL(R):

(3.7.17) Yy e R, 3f € I such that f(v) 0.

Then the spectral analysis question is equivalent to finding conditions
on w so that, whenever a closed ideal I C L1 (R) satisfies (3.7.17), we
can conclude that I = LL(R).

We have posed the spectral analysis question in this section since
there is an equivalent dual formulation in terms of sets of exponentials

in L33, (R), e.g., [BenT5).
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e. Beurling (1938) proved that if

log w(t)
1422

(3.7.18) dt < oo

then the spectral analysis question has an affirmative answer [Beu89].

Let w = 1 on R. Then (3.7.18) is satisfied and Beurling’s The-
orem reduces to the Wiener Tauberian Theorem : f € L*(R) has a
nonvanishing Fourier transform if and only if the closed principal ideal

I C L'(R) generated by f is all of L'(R), cf., Remark 2.9.13 and the
formulation of Wiener’s Tauberian Theorem in Theorem 2.9.12.

3.8 Discrete Fourier Transform

In Section 1.1 we defined the Fourier transform f of f : R — C;
in this case JF is defined on R. In Section 3.1 we defined the Fourier
transform f of f: Z — C; in this case, and for a given £ > 0, f is
defined on Tyo = R/(202Z), i.e., the Fourier series f is a 20-periodic
function on R with Fourier coeﬂi(uents f = {f[n]}. The next step is
the following definition.

3.8.1 Definition. DisCRETE FOURIER TRANSFORM

a. Let N be a positive integer, and let Zy be the set of integers
0,1,...,N—1 under addition modulo N. This means that if m,n € Zx
and the ordinary sum m + n < N — 1, then the addition modulo IV of
m and n has the value m + n. However, if m,n € Zy and the ordinary
sum m + n > N — 1, then the addition modulo N of n and n has the
value m + n — N. For example, the addition table for Zs 1s given in
Figure 3.3.

When dealing with Zy we shall denote the addition modulo N of
m,n € Zybym+n e Zy.

In order to define functions f on Zy, we assign values fln] for
n=0,1,..., N -1, and then we extend f as an N-periodic function
on Z. Thus, f[m 4+ nN] = f[m] for any m € {0,1,... ,N - 1} and for
all n € Z. In this case, we write f : Zy — C, cf., part e.
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b. The Fourier transformof f : Zy — Cisthefunction F : Zy — C

defined as
N-1
(3.8.1) Vne{0,1,... , N-1}, Fn]= E f[m]e—%rimn/N.
m=0
+ 101 2 3 405
0 01 23 405
1 1 23 450
2 23 4501
3 34501 2
4 4 501 2 3
5 5 01 2 3 4
Figure 3.3

Because of the setting Zy, F is called the Discrete Fourier Transform
(DFT) of f. In this context we shall write

FV [+ F ]?;F, f=}\;'a

just as we did in Definitions 1.1.2 and 3.1.1 for the cases of Fourier
transforms (on R) and Fourier series.

c. Letting f : Zy — C, and introducing the (standard) notation,
WN — 6—21“:/N,
the DFT F of f is defined as
(3.8.2) Vn€Zy, Flnl= > flm]Wy"

meZy
Clearly, (3.8.1) and (3.8.2) are equivalent.
We could have defined (3.8.1) for each n € Z by our definition in
part a; in fact,
N-1 _
VneZ, Flnl=)Y f[m]e=?rimnIN

m=0
N-1 )
— E f[m]e—-me(n-{-N)/N — F[n—i—N]

m=0




3.8. DISCRETE FOURIER TRANSFORM 273

In any case, Zy is the natural domain for F.

d. Zy is a commutative group under the operation of addition

modulo N.
A character v of Zy is a homomorphism from Zy into the multi-

plicative group {z € C: |z| =1}, i.e,,
Ym € Zy, |y(m)]=1

and
Vm,n € Zy, v{(m+n)=~y(m)y(n).
The set of characters of Zy is denoted by zN, and ZN becomes a

commutative group by defining the addition v, + 42 of characters v;, v,
by means of the formula

VYm € Zn, (71+72)(m)=mn(m)y(m).

In this setting it can be proved that Zy = Zy, e.g., [Rud62], cf., Re-
mark 3.1.3e.

Algebraic considerations are fundamental in many aspects of har-
monic analysis; but, in this book, I am coming closest to cheating the
reader by their omission in my treatment of the DFT and FFT.

e. Let L(Zy) denote the vector space of complex sequences on Zy,
and define the DFT mapping

Fn:L(Zy) — L(Zy),
Since Zy is a finite set, L(Zy) can be considered any one of the L*-

spaces on Zy. In fact, L(Zy) is the N-dimensional space of all functions

on Zin.
When one thinks of L(Zy) as L*(Zy), we define the inner product

Vf g€ L(Zx), (f.9)= %fo[m]m-

m=0

f. In order to make the analogy between the DFT F of f on Zy (N
even) and Fourier series on T with Fourier coeflicients on Z, we could
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consider the finite sets,

1 2 N-1 N N N
{Oaﬁaﬁv"a N }a‘nd{—'g,—“ﬁ“-ﬁ'l,...,?‘—l},

corresponding to approximations of T and Z, respectively.

The inversion theorem for the DFT is elementary.

3.8.2 Theorem. INVERSION FORMULA FOR THE DFT
Let N> 1 and let f : Zy — C have DFT F. Then

N-1
(3'83) Ym = 0? 1! o :N - 11 f[m] = —]%[—’ Z F[n]e?‘wimn/N-

na=0

Proof. Note that W§ = 1, and if N > 1 then Wyy # 1. Thus, since

(3.8.4) I4r4r24edr¥1= T T#0,
we see that
(3.8.5) 1+ Wy + Wi+ +WR"t=0.
For fixed m, the right side of (3.8.3) is
1 N-1 2mimn/N 1 N-1
— Flnle*™mniN = — Fn)Wym™
P v &, i
(3.8.6)
1 N-1 fN-1 ) . 1 N-1 ' N-1 (j—m)n
=5 X (T g wim = £ X 110 (5w ).
n=0 j=0 i=0 n=0

If j = m then ¥75 W;(vj—m)n = N. If j # m and r = Wi ™, then
r # 1 and (3.8.4) gives

Ry 1 N
(3.8.7) > WNT = (1= i) =0,

n=0
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Substituting this information into the right side of (3.8.6) gives f[m].
1

The simplicity of (385) or (3.8.7) in Theorem 3.8.2 evaporates if
one considers the Gauss sum,

N-1
(388) g}:{:r — E e:tZwtn?/N,

n=0

e.g., Ezxample 3.8.6, Theorem 3.8.7, Theorem 3.8.9, and Theorem 3.8.10.

3.8.3 Corollary.
Fn : L(Zy) — L{Zy) is a linear bijection.

3.8.4 Theorem. ONB AND PARSEVAL FORMULA

a. ONB. {ﬁW}\} tn=0,...,N —1} is an ONB for L(Zn) taken
with the inner product defined in Definition 3.8.1e.

b. Parseual’c,i“ormula. Let f,g € L(Zn) and consider the pairings
f+— F,g+— G. Then

N~1 N—-1
(3.8.9) > fimlglm] = = > FnClr],

and, in particular,
N—1 i/2 1 M- 1/2
(Sime) = (55 wwmre)
m=0 n=0
Proof. a. For a fixed k,n € Zy, we consider W and W} as functions

on Zy defined by Wk[m] = WZ*. Then

(3.8.10)
1 . 1 N-1 N-1

1 1 & :
( Wk, W'ﬂ.)z_ kaWumn:_Z(e—Zm(ka—n)/ )m-
VUG O PRGN PR

The right side of (3.8.10) is 1 if k = n. If k # n then r = ¢ 2mk—2)/N £
1 since (k — n)/N ¢ Z. Thus the right side of (3.8.10) is

(1-r™Y/1=7)=0

Le- 5,
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since r¥ = 1. Therefore, { =WF i n € Zn} is orthonormal.
Linear independence follows from orthonormality. In fact, if & € Zyn

is fixed and "Nl a, W} = 0, then

N-1
VmeZ, = LS anW”‘”W”mk =0,

n=0

and so

N-1
T a ( 53 wg,nﬂw];mk) = 0.

n=0 m=0
By the orthonormality the left side is ay.
The result follows since L(Zy) is N-dimensional.

b. It is sufficient to prove (3.8.9); and (3.8.9) follows from Theo-
rem 3.8.2, part a, and the fact that

N-1
z:o Flmlglm] = z% Fln ;alk (1 > w;:anmk). 0

3.8.5 Example. THE DFT MATRIX
a. The DFT N x N-matrix Dy is defined as (ﬁWR’r‘"), m,n =
0,...,N—1,1e,

1 1 1 e 1
e—2mi/N e-2mi2/N e—2mi(N=1)/N
1 —2mi2/N ~2mit/N —~2mi2(N=1)/N
Dv=—=|1 € e cas e
vN | .
i 2mi(N=1)/N  =2mis(N-1)/N . —2mi(N-1)(N-1)/N

Thus,
1 {1 1
2= sl1 o)

I f € L(Zy) is considered asa 1 x N column vector then the DFT
F of fis the 1 x N column vector .

F=+/NDxf.
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By Theorem 3.8.2 we have
1
VN
where Dy denotes complex conjugation of the entries of Dy.
b. Note that the trace (Definition 3.6.2) of Dy is

D}\}l b H'D‘N,

1 N-1 5 1
trace(Dy) = ~2min? N = ——G0xn,
P VN

which we shall evaluate in Theoremn 3.5.9 and Theoremn §.8.10.

c. Let UL : Zy — C, for fixed n € Zy, be defined by UR[m] = émyn
for m € Zy. Clearly, {\/_U}\}Man ONB for L(ZN), with the inner
product defined in Definition 3.8.1e. - "

It is easy to check that “"“(a "

M@g,uﬁfﬁ}

[ —— s
i

(3.8.11) DNUR = Wy,

1
VN
where U, and W} are considered as 1 X N column vectors and the left
side 18 matrix multiplication. Similarly, a direct calculation shows that

(3.8.12) DyWi" = VN UE.

For example,

Ds W2
(3.8.13)
7 1 + ezm'-z/s + 621”:4/5 + 62#1:6]5 + 627":8/5
1 1 + e2mifs + 62#12/5 + 2mi3/5 + e2mi4/5
—— |1+ 1 + 1 + 1 + 1
\/g 1 + 6—211'1'/5 + e—27r1'2/5 + 8—271'1'3/5 + 6-—211':'4/5
1 + e—2mi2/5 4+ e—2midf5 + e~ 2mi6/5 + e2mi8/5

The 1 X 5 column matrix on the right side of (3.8.13) is v/5 U2. In fact,
N1 em2mimn/N = ) for a fixed n € Zn by (3.8.4).
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Combining (3.8.11) and (3.8.12) we see that
VneZy, DyUm=UR.
Since {v/N U} is an ONB for L(Zy) we conclude that
(3.8.14) Dy =1,

where [ is the identity matrix, cf., Erample 1.10.12 where we did the
analogous calculation for the Fourier transform on R.

d. (3.8.14) leads naturally to investigating the eigenvalue problem
for the DFT. In fact, because of (3.8.14), the eigenvalues of Dy are
+1, +4. The more difficult aspect of the eigenvalue problem is the mul-
tiplicity problem, viz., finding the eigenvectors of Dy and the dimension
of the space of eigenvectors for each of the eigenvalues.

In any case the complete eigenvalue problem was essentially solved
by Gauss, fundamental related calculations were exposited in E. Lan-
dau’s classic book, Vorlesungen iiber Zahlentheorie (Volume 1, 1927,
pages 164-165), and the explicit solution was recorded in [Goo62, page
261]. Recent comprehensive contributions are due to McClellan and
Parks [MP72] and Auslander and Tolimieri, e.g., [AT79]. Using a tech-
nique due to Schur, e.g., [BSh66, pages 349-353], it is shown in [AT79,
page 856] that the solution of the multiplicity problem is equivalent to -
evaluating trace (Dy) for all N.

In the following material, from Ezample 3.8.6 to Theorem 3.8.10,
we shall deal with the evaluation of the Gauss sum gﬁ}. (Q?\} was defined
in (3.8.8)).

3.8.6 Example. G5 = 017 4 prvipes N — 2
a. HN —2=4k, k>0, then N = 2(2k + 1) = 2M, where M > 1
is odd. Then
M-1 L, M-1 ' \
(3.8.15) trace(Dy) = Y e 2mm /(M) 4§~ g-2milm+M)*/(2M),

m=0 m=0
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Expanding (m + M)? and using the fact that e~2"M/2 = —1 for M odd,
we see that

i o= 2ri(mAM)?/(2M) _ _ i g=2mim?/(2M) g=2mim.

=0 m=0

and, hence, the right side of (3.8.15) is 0.
b. Note that g;r =1iv3 and G5 = —i/3. In fact,

2
Z e2'm"m.2/3 =14 g2mi/3 4 ™43 — + 9e2mif3

mz=0

=1+2cos%’r+2isin—2§'-=i\/§

and

2
Z e-—2m’m2/3 = 1+ 2cos 2?7? — 21 8in ‘-?31 = —z\/§

m=0

3.8.7 Theorem. |Eﬁ;3 ez’“'"‘szI =+/N, N oop
Let N > 1 be an odd integer. Then

N-1
(3.8.16) |

Z e:l:27rim2/N| — ,\/ﬁ

m=0

Proof. Let g[m] = e~2™™*/N m =0,1,... ,N —1, and let G = 5. We
shall prove (3.8.16) with the minus sign in the exponent. The plus sign
case is a consequence of the same argument with the signs in the DFT
properly adjusted. For n =0,... ,N — 1, we compute

N-1
G[Zn] = Z 6_2"im2/N6“2rim(2n)/N

m=0

N-1
(3.8.17) — g2min?/N Z e~ 2ri(m+n)? /N

m=0
. N-1 2 2
gZmin /N Z e~ 2mim /N _ e2rin /NG[O]

m=0
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The second step follows since (m +n)% — n? = m? 4 2mn; and the third
2
step follows since WJS;M'N) = W5* and by noting that the Gauss sum

for either “m +n” or “m” has a domain of N consecutive integers. By
(3.8.17) we have

(3.8.18) S [G2n)l* = NIGLO)P.

n=_0

Since NV is odd,

(3.8.19) E |G[n]1? Z |G[2n] .

nz=0 n=0

For example, let N = 5 so that G[2n], n = 0,1, 2, consists of G[0], G[2],
G[4)]; and G[2- 3] = G[1] and G[2-4] = G[3] since 5 divides 6 — 1 and 5
divides 8 — 3, respectively. The same phenomenon occurs for any odd
N > 3 by properties of Zy.

Combining (3.8.18) and (3.8.19) with the Parseval Formula we ob-
tain

N|G[0} NZIQ

m=0

(3.8.16) is obtained. ' |

It is more difficult to evaluate G& than |GE|. We shall first com-
pute G for N odd in Theorem 8.8.9. Gauss gave the first proof of
Theorem 3.8.9 in 1805 after working “with all efforts” for four years,

, [BE81, pages 109-110]. There have been many other derivations
Of Theorem 3.8.9, eg., [BESl] We shall give Daniel Shanks’ proof
[Shab8]. o

Shanks originally devised ingenious finite term identities to prove
deep infinite term identities of Euler and Gauss. The original idea for
his proofs goes back to his PhD thesis at the University of Maryland in
1954. The identity by which he obtained Gauss’ infinite term identity
is Lemma 3.8.8, and in [Shab58| he used it to obtain Gauss’ Theorem
(Theorem 3.8.9).
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3.8.8 Lemma. SuaNks FINITE IDENTITY
Ifz>0, P(z)=1, and

_ N 1— m2ﬂ
n=1 -z

then
2N N-1

(3.8.20) 3, anrniis = 37 el
n=1 n=0 '”'

The proof of Lemma 3.8.8 begins with the identity
(1 _ $2N)_,Bn(2N+1) — (1 _ $2N—1)wn{2N—1]
+(1 _ m2n+1)x(n+1)(2N-1) _ (1 _ x?n)mn@N—l),

which we multiply by Py_;(z)/P.(z)(1 — V1),

3.8.9 Theorem. Gauss COIMPUTATION oF g;{,, N opp
Let N > 1 be an integer. Then

NZ = e NU{0} implies G = VN

and

N-3
4
(These two cases include all odd integers N.)

Proof. We shall consider the case (N - 1)/4 € NU{0}. The other case

is similar.
Let z = v? and v = €'*. Clearly,

(3.8.21) v H (vzn_ U—:Zn)

Further, if () = 1 and

M sin 2nd
O =11 (sin(Zn - 1)9) ’

n=1

e NU {0} implies G =iVN.
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then
(3.8.22) Zvﬂ(ﬂ—l) Z QM oM An(4M+1)
n=0 n
and
2M+1 M QM
(3.8.23) S ) o § XM Mn(aM )
n=1 n=0 n

by Lemma 3.8.8. For example, in the case of (3.8.22), the left side is
precisely the left side of (3.8.20); and so

M P (.’E‘)
n{n—1) _ M n(ZM-{-l)
(3.8.24) v § > TAON ,

n=0

from which (3.8.22) is obtained by substituting (3.8.21) into the right
side of (3.8.24).

Letting N =2K + 1 and § = 27w /N, we have

o = expi (21{(%“)) = expi (2K + 1)(5) - (57)) =™

Thus,
= 2win? [N =l ion2
= Z € = E Z o™
n=0 n=0 - n=0
(3.8.25) - ): KR _ K Z KA
n=—K K

2 K 2 K K41
— ’UK Z rUn(ﬂ_—l) — ‘UK Zvn(n—l) + Z pn=1
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Finally, let N = 4M + 1 and K = 2M. Combining (3.8.25) with
(3.8.22) and (3.8.23), we obtain

+ _ K2 X n{n—1) s n{n—1)
gN = Z v -} E v
n=1

n=1
M-1 Q M Q
- ,U4M2 lz M pMAn(4M+1) + Z M UM+n(4M+1)]
n=0 n n=0 n
M-1

QM (Men)anas1) , om QM (Mam) M4
GO o8 )

n=0 L n=0 n

Note that v = 1 since v?¥ = v~1, Hence,

M Qur
(3.8.26) Gh=1+2> ==
n=0 n

Also, Qe =1and Qy >0forn =1,... ,M since § = 2r/N. In fact,
for such n,0 < 2nf < 4Mn/N < =. Thus, G > 0 if &=L € NuU {0}.
The result follows by (3.8.16). ((3.8.26) gives a cryptic way to write
VN as a sum of products of quotients of sines!) l

In 1835, Dirichlet used Fourier series to evaluate gﬁ for all N. In
this paper, Dirichlet also gave Gauss’ proof of the Law of Quadratic
Reciprocity (Remark 3.8.11a) once he (Gauss) had Theorem 3.8.9, e.g.,
Dirichlet’s Werke, Chelsea Publishing Company, New York, pages 257
270. The following is Dirichlet’s computation of Gx. It not only shows
Dirichlet’s brilliance, but also the power of elementary harmonic anal-
ysis.

3.8.10 Theorem. DiriCHLET COMPUTATION OF g,%

Ox =
(3.8.27)
(1+9)VN,resp., (1 —i)VN, if N/4eN,
VN, if (N-1)/4€NuU{0},
0, if (N—2)/4eNu/{o},

iv/N, resp., —iVN, if (N-3)/4¢eNuU{0},
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where the two values for two cases on the right side of (3.8.27) indicate
Gk and Gy, respectively.

Proof. We shall evaluate Gy. The calculation of Q}t} is similar.
i. Let G(7) = e/~ on R. Then

Af(f—kG(O) + 7k G(1)) = (1 + /)

k=0
+(e—2m'/N + e-—zm'zsz) + (e—zm'zﬂ/N"_ e—zwisz/N)

+.. (e—2vri(N—1)2/N + e—2ar£N2/N) = 2G5
Let
F(y) = =G(7) + T11G(y) + ... + m(v-1)G(7)
for v € R. Then

F(Af + 1) = F('Y) -+ e_'27ri'7'2/N(e—47r1")' _ 1)

and so F(1) = F(0). At this point, we shall only consider F' defined on
[0,1), and extend F" as a 1-periodic function on R.

By the smoothness of 7, and the fact that F' € C'(T), we can invoke
Dirichlet’s Theorem ( Theorem 3.1.6) and Remark 3.1.7b to write

g5 = TOEIQ _ pig) = 3 fim)

where the sequence f = {f[m]} of Fourier coefficients of F is evaluated
by

1N-1 .
flml = [ Y sGa)em dy
0 k=0
N-1 g1 N
- 2mimA — ~27iA2 [N _2wim)
=3 [ emerman= [T e2mim )

k=0

for each m € Z. Completing the square, we obtain

. N .
f[m] — 6W1m2N/2.[0 e—2m('y—mN/2)2/N d’y,
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and, hence,
, N .
(3828) g}'\} = Z emmzNﬂfo e—21r=('r—mN/2)2/N d'-)"

If m is even then e™™N/2 = 1 and if m is odd then e™m*N/2 =
e™N/2 = iN_ Geparating the sum on the right side of (3.8.28) into even
(m = 2k) and odd (m = 2k + 1) parts, and making the corresponding
changes of variable, (3.8.28) becomes

gR{ = Ie+I07

where

(1-kN . }
I, = Ej;kN e-Zmz\sz d) = fe—-2m)\2/N d

and

whad
(1=k=3)N 6—21”')\2/]\-' d\ = Z'N./.e—27n'z\2/N d.

IoziNZ/(

~k-pN

Using Theorem 2.10.1, we see that
[e—~27ri,\2/N d) = g(l . ’l,)s

Combining this information we have the formula,

(3.8.29) Grn = —@(1 —3)(1 + V).

il. (3.8.27) follows by letting N = 4k, 4k + 1, 4k + 2, 4k + 3, respec-
tively, cf., Ezample 3.8.6a for the case N = 4k + 2 and Ezample 3.8.6b
for the case N = 4k + 3. |

3.8.11 Remark. Gauss Sums: POTPOURRI AND TITILLATION
a. Law of Quadratic Reciprocity., The Law of Quadratic Reciprocity
asserts that if p and g are distinct odd primes then

PyeQy _  2mi(p-1)(g-1)/8
3.8.30 —e ,
( ) (q)(p)
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where (*;3) is the Legendre Symbol. It is definedas follows. If r and m
are relatively prime then r is the quadratic residue of m if

nz-—“T

dn € N such that € NU {0},

and it is a quadratic nonresidue if there is no such n.Then (2) =1if p
is a quadratic residue of ¢, and (E) = —1 if it is a quadratic nonresidue
of q.

Equation (3.8.30) is important in Diophantine polynomial equa-
tions, e.g., [BE81], [HW85], as well as more advanced (and just as diffi-
cult!) number theoretic topics relates to the Riemann (-function, more
general Dirichlet L-functions, etc., e.g., [BSh66], [Cha68], [Cha70].

Equation (3.8.30) was first stated by Euler (1783). Legendre had
an incomplete proof since he used a property, only later proved by
Dirichlet, about primes in arithmetic progressions, e.g., Section 3.2.3.
Independently, Gauss discovered (3.8.30), which he called the “Theo-
rema aureum”, in March 1795 before his 18th birthday on April 30,
1777; and gave the rigorous proof by April 1796. He went on to give
seven other proofs. His third proof is in [HW65, Chapter VI]. His fourth
proof, published in 1809, used Theorem 3.8.9. This means of obtaining
the Law of Quadratic Reciprocity by means of Gauss sums has been
refined by magisterial lineage: Schaar (1848), Kronecker (1880), Hecke
(1919), C. L. Siegel (1966), e.g., [Cha68, pages 34-42].

b. Littlewood Flatness Problem. Let Uy denote the class of unimod-
ular trigonometric polynomials U(y) = N ju,e™ 2™, ie., Ju| = 1
forn=10,1,...,N. Inlight of a question asked in [Lit66] and expanded
upon in [Lit68, Problem 19}, we state the following Littlewood Flatness
Problem: determine whether or not there are unimodular polynomials
Un € Uy and positive constants ey > 0 tending to zero, as N — oo,
such that

Yy €T,
(1—en)VN+1L[Un() € (1 +en)VN +1

for all large N. It turns out that Gauss sums and their variants play a
natural role in dealing with (3.8.31).

(3.8.31)
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The inequalities (3.8.31) assert that there are trigonometric polyno-
mials Wé‘_ﬁUN, whose modulus is almost identically 1 on T and whose
coeflicients have moduli which are all identically 1. Also, using the
Parseval formula, they imply that

(3.8.32) VN,dUn € Ux such that lim M@ = 1.

N-—oo “UN”LQ(T)

There have been herculean attempts to prove (3.8.31), sometimes in
concert with subtle failures. Finally, in 1980, Kahane [Kah80] proved
(3.8.31) by showing that such polynomials Uy ezist, cf., [QS96]. His
proof has a fundamental probabilistic component, and it remains to
construct the Uy. There are constructions in the more general case
where it is only assumed that the moduli of the coeflicients are bounded
by 1, e.g., [BNe74}], [Benk92].

c. Antenna Theory. The ratio || F||peo(m)/||F||z2(z) is called the crest
factor of F. This relationship between L* (“maximum and minimum
values”) and L? (“energy”) norms plays a role in a number of appli-
cations. Further, under certain constraints, trigonometric polynomials
provide a natural model for arrays of energy transmitters and recep-
tors in fields such as acoustics, electromagnetism, and seismology, e.g.,
[Sche60)].

In particular, the space Uy combined with (3.8.32) can be used in
antenna array signal processing, e.g., [Stei76], [Hay85]. The space Uy
gives way to other models for other aspects of antenna theory. For ex-
ample, transmitters and receptors can be placed at points x;,... ,xny €
R3 and space factors for the corresponding array outputs can be mod-
eled by trigonometric polynomials P(vy) = TN, exp2mix, - v. Since
each of the coefficients is 1, it becomes relevant to check how close P is
to the ¢ measure, and to analyze the impact of the sidelobes of P out-
side of a neighborhood of the origin, e.g., [BHe93), cf., equation (UP)
in Remark 1.1.4 and Ezample 2.4{.8b, as well as the case of absolute
values for the examples considered in part b and Theorem 2.10.3a.

d. Lagrange’s Theorem and Surgery. The quadratic forms Y rjrcie;
we have dealt with have had complex entries; and we have established
central results in harmonic analysis in the case these forms are nonneg-
ative. It turns out that quadratic forms with integer or rational number
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entries have been central to the development of number theory and al-
gebra. The illustrious Dedekind, Frobenuis, Minkowski, E. Noether,
E. Artin, C. L. Siegel, Eichler, and Hasse are all major contributors.

Lagrange (1770) proved that every positive integer is the sum of four
squares of integers. More generally, if {r;x: j,bk=1,... ,N} CN, it is
natural to ask which integers n € N are of the form n = 3~ rjrere; for
some sequence ¢ = {¢; : 1,... , N} C N, and how many such “solutions”
¢ there are, e.g., [HW65, Chapter 20]. The problem in this generality
is unsolved. Many of the special cases that are known, as well as
Minkowski’s classification of quadratic forms over @, involve Gauss
sums, e.g., [Scha85, Chapter 5]. These Gauss sums are of the form
¥ e?74(%) where ¢ is a quadratic form associated with some algebraic
structure. For example, if b is a bilinear function b : V x V —» K,
where V' is a vector space over a field K, then q(z) = b(z, z) defines a
quadratic form.

Surgery invartants can also be determined by evaluating Gauss sums
of this type. The purpose of surgery in differential topology is to char-
acterize simply connected manifolds in higher dimensions, and a basic
(Gauss sum was computed in this setting by } W. Morgan and D. P. Sul-
livan (Annals of Mathematics, 1974). The first use of Gauss sums in
surgery problems was made by Edgar Brown.

3.9 Fast Fourier Transform

Let N > 1 and let f: Zy — C have DF'T' F. As is apparent from
Ezample 3.8.5a, {Fn] : n € Zy} can be computed with N* opera-
tions, where an operation is defined to mean a complex multiplication
followed by a complex addition. The Fast Fourier Transform (FFT)
is an algorithm to compute a DFT by N log, N operations in the case
N =2 eg., Ezample 3.9.2. The fundamental paper on the FFT is
due to Cooley and Tukey [CT65], and it involves an idea which they
refer to as a two step algorithm.

It turns out that two step Fourier analysis algorithms have been
used in various applications since early in the 19th century. The first
published results are due to Francesco Carlini (1828) in his research
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on hourly barometric variations. This historical fact, as well as the
fact that Gauss had a general form of the FFT as early as 1805, is
found in the fascinating article by M. T. Heideman, D. H. Johnson, and
C. S. Burrus [HIJB84] on the history of the FFT, cf., [DV90], [[EEE69],
[0875, Chapter 6], [RR72], [Walk91] for other developments. Gauss’
results were published posthumously in 1866.

3.9.1 Theorem. Two 5TEr FFT ALGORITHM
Let N\,N; > 1 and let f:Zy — C have DFT F, where N = N1 N,.

a. Fachn = 0,1,...,N — 1 has the unique representation n =
noNy +nq, for somen; =0,1,... ,Ny—~1 and someny, =0,1,... ,Ny—
1; and each m = 0,1,... ,N — 1 has the unique representation m =
m1No+mg, for somem; = 0,1,... ,N1—1 and somem, =0,1,... , No—
1

b. In the format of part a, F' can be written as
(3.9.1)

Nye—1 {Ni-1

F[ngN]_ + nl] s Z Z: f[m1N2 + mg]W;\?linl W;\?in ij\i};zﬂz

mop==0 \m;=0

for each n = noNy + ny.
¢. The total number of operations required to compute {F[n] :n =
naN1 +ny, ny € Zy,, and ny € Zin, } is

N(N; + V).

Proof. Part a is immediate when, for the case of n, we think of the N,
equispaced elements 0, Ny, 2Ny, ... ,(Na—1)N; of Zy. In fact, for each
fixed ny/N; we obtain all the elements of Zy which are greater than or
equal to ny Ny and less than (ne 4+ 1)N; by adding nq = 0,1,... ,N; =1
to nle. (If Ng — N2 —1 then (712 + 1)N1 - 0)

b. For a given n, choose n;, ny for which n = no Ny + ny. The_n

(3.9.2)  FlngNy+ni]= > flmiNg +mg] Wi wien.,

1,2

We calculate

—2mimi Non/N _ —2mim n/N, — e—Zwiml(n2N1+n;)fN1

[ c
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and
8-—21rt'm2(n2N1+n1 )/N . 6—211'3.7712!'12 /Nz e-—zwimgﬂl/N
- 7

and so the right side of (3.9.2) is
S flmaNa + malWR W W,

mim2

Writing out the domains of m; and g, this is precisely (3.9.1), which
we shall also write as

Np=1
Fin] = 3" Flmg,m|W52™,
ma=0
where
Ni—1
F[mz,ml] = E f[m1N2 + mg]Wﬁ;‘”‘ Wﬁznl.
m;=0

c. For fixed ny,ns, and ma, we can compute

N -1

(393) E f[m1N2 + mzlef\;tml

my==0

by N; — 1 operations, where the first of these operations yields
FI0+ Ny +ma] + f[1- Ng +mg Wy,

and the (N; — 1)st operation yields the complete sum (3.9.3). Multi-
plying this sum by Wi*™ we obtain F[mg,m] in (N1 —1)+1 =N,
operations.
Now, using the data {F[m2,n;]} which required N; operations to

compute, we can compute each

Np—1

Fln]= Y Flmy,n W5

ma=0
by an additional N, operations. Thus, for each pair (n1,nz), F[n] =
F[nyN1+n,] can be computed by means of (3.9.1) in N1+ N; operations.
Since there are N = N3N, pairs (n1,ne), all the data {Fin] : n =
0,...,N — 1} can be computed by means of (3.9.1) in N(N; + N;)
operations. (W]
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3.9.2 Example. Oroer N log, N ALGORITEM
a. Let N = 2N;. Then each n = 0,1,... ,N — 1 can be written
as n = noN; +ny forny =0,1,...,N; — 1 and ny = 0,1. Hence, if
F : Zyn — C, defined as
N-1

Fln] = 3 fImWg",

m=0
is the DFT of f : Zy — C, then
Fln]= FlnaNi+mi] = . fl2mi+m ]W(2m1+m2)n

mi,mz

where m; = 0,1,... ,N; — 1 and my = 0,1. We compute

1
F[n;Nl -+ n1 Z Z f[2m1 + mg (2m1+m2)'n.

ma =0 m =0
1 N -1

Z z f 2m1 + m2 mlmw&nzm e—:rrimgng’

mo=0mi=0

since
e-27ri2m1n/(2N1) — e~—~27rim1(n2N1+n1)/N; — er\rr'l.llnl
and
e—ZWimgn/(ZNl) — e—27rimg(n2N1+n1)f(2N;)
— e-m'mzn.g 8—21r£m2n1/(2N1} — e-—‘n’imgng W]r\?znl'
Therefore,
Ni-1 ) Ny—1
FlnaNy+m] = Y fl2mi W™ + e ™MW > fl2my + W™,
my =0 ‘mp=1

Consequently, because
e———'ri'in?W;\}l ": 6_2Win2N1/(2N1)W§1 — W;&,
we obtain the FFT algorithm,
(3.9.4)
Ny—1 -1
F[n2N1 + TLI E f QmI]WJ’\’;’l‘"‘ + Wﬂ Z f 2m1 + 1]Wm1'n1

mq =0 prg =1
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for each n = na N1 + ng.

b. Let #(K) be the number of multiplications required to compute
the DFT of f : Zx — C. Clearly, #(K) < (K — 1)*.

In dealing with the right side of (3.9.4), we see that 2#(N;) multi-
plications are required to compute

Ny=1 Ni-1
se(mi) = Y f2mJWEM™ and so(ni) = ) f[2mi + W™
my =0 my1=0

for all ny € Z;,.

Now note that W} = +Wg' depending on whether ny = 0,1 in the
representation n = ny Ny + ny. Thus, N; multiplications are required
to compute {Wy'sp(n1) : n1 € Zn,} for given data {Wg, so(ni) :n €
Zn,}. Consequently, equation (3.9.4) allows us to write

(3.9.5) £(2N,) = 24 (V) + M.

c. Because of (3.9.5) and the fact that #(2) =1 (since the DFT of
{710, F11]} is {£10] + f(1], £I0] + f[1]W3}), we have
#(2) =1
#(4) =2+2=4= j4log, 4
#(8)=8+4=12 = 18log, 8

In fact, if N = 2" then the number of multiplications required to compute
the DFT on Ziy s

N
(3.9.6) Elog2 N.

To prove (3.9.6) we proceed by induction. We just checked the result
for N =2,4,8. Now assume (3.9.6) is true for N = N; = 2”, i.e., make
the induction hypothesis that #(N;) = %rklog2 Ni. Letting N = 2N,
(3.9.5) and the induction hypothesis imply

#(N) = 2#(N1) + N =M 10g2 Ny + N1

== %(10g2 Nl + 1) = ‘]%T'}.ng N,
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and the proof is complete.

d. The FFT algorithm, which achieves (3.9.6), is defined by means
of (3.9.4).

Equation (3.9.4), or the more general (3.9.1), can be viewed in terms
of replacing the DFT N x N-matrix Dy, having no (-entries, in terms
of a collection of matrices with many 0-entries, cf., Frample 3.9.% and
Carleson’s remark at the end of Section 3.2.8.

In this spirit, C. Rader (1968) introduced an important idea, based
on the fact that Z, is a field, which ultimately led to Winograd’s cele-
brated algorithms (1978) for computing the DFT on Z,, e.g., [RR72],
[DV90].

3.9.3 Example. Sparse FFT MATRICES

We shall quantify the remark in Ezample 3.9.2d about matrices
with 0 entries.

The right side of (3.9.4) splits the domain of f : Zy —+ C, N = 2N,
into its even and odd parts. This can be accomplished by a matrix
operation. For example, if N = 8 and

~—
—

CSE

C OO O OO O
[T e B B e I e T e T i
o e i e R en i an B e B
jame Y anc T S i e B e Y cu Y o B oo
jem i e B o L o Bl B = =
[ I e e B e B e Y s N . B o
[ B e B e B o B e B e B o}
|l o I e B e B o Y cune [ wan B e
S

o~

then

(3.9.7)  CsfT = (F10], F12], £14), f16], FI1], F13], FI5], ST

The rule for constructing Cy is obvious,.

The next operation in (3.9.4) tells us that +/NDy is related to two
copies of /N1 Dy, embedded into an N X N array. These two copies
address the even and odd parts of the domain of f, resp. Thus, we
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introduce the N x N matrix

V NIDN1

Il

By

VNDp,

where the first and third quadrants are each N; x Ny (-matrices. For
example, if N = 8 then

BSCSfT = (SC(O), Se(l)z 38(2)1 36(3): 30(0)5 30(1)5 30(2)5 30(3))T1

where the “even” and “odd” sums s, and sy are the DFTs defined in
Ezample 3.9.2b for the case N; = 4.

Finally, we have to introduce a matrix which incorporates the factor
W of s,(n1) (when n = nyNy + n1) and adds it to s.(ny). Recall from
Ezample 8.9.2b that Wi =Wy if ny =0 and Wi = W if ny = 1.
Therefore, if N = 8 we set

/1 0 0 O 1 0 0 0 \
0 1 0 0 0o W 0o o
0 0 1 0 0 0 W2 o
I 0 0 0 W
574171 0 0 o -1 0 0 0
0 1 0 0 -W: 0 0
0 0 1 0 0o 0 -WE 0
\ 0 0 0 1 0 0 0 —-W3
and obtain

AsBsCefT = FT.

The rule for constructing Ay is obvious, and so
.ANB NCN = '\/_N DN

(as easy as ...).
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3.9.4 Remark. BUuTTERFLIES AND BIT REVERSAL

a. Let N =27 and let f : Zy — C have DFT F. Besides the matrix
formulation of the FFT algorithm (3.9.4) in Ezample 8.9.3, we can also
formulate it in terms of diagrams whose basic components are called
butterflies. - ' '

To define a butterfly, we begin by rewriting (3.9.4) as

(3.9.8) F[k| = Folk}+ WER[K], k=0,1,...,(1/2)N ~1

and
(3.9.9) '
Flk+ (1/2)N} = Fo[k] - WER[K], k=0,1,...,(1/2)N -1,
where
(3.9.10)
Folkl= Y flzm]WRfS and Rkl = Y fl2m+ WES,
m=0 m=0
and where we have again used the fact that W2W/2H = Lk ge

pending of whether n, = 0, 1.
The DFT F[k],k=0,1,... ,N —1, written in terms of the calcula-
tions (3.9.8)—(3.9.10), can be visualized as

Folk] — Fylk] + WF Fi[k]
(3.9.11) py
Ri[k] — Folk] - W Rk,
where k = 0,1,...,(1/2)N — 1; and this diagram is called a butterfly.
b. The butterfly (3.9.11) can be viewed as a construction of the
DFT F :Zy — C in terms of the two DFTs, Fy and Fy, on Zyys.

In the same way, Fy and Fi-can each be constructed in terms of
pairs of DFTs on Zyy,. For example,

Folk) = Foolk} -+ Wg Fui k]

and

Folk + (1/4)N] = Folk] = Wiyo Fou[K],
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for k=0,1,...,(1/4)N — 1, where Fp is the DIF'T of

{f[o],f[4]af[8]"" 3f[N“"4]}

and Fy, is the DFT of {f[2], f[6], f[10],..., f[N — 2]}.

Since N = 2" this procedure can be reduced to the consideration of
2r=1 DFTs on Zj. Each of these is the DFT of a pair {f[7], f[k]}, and
the pairs are mutually disjoint. Clearly, the stepwise evolution of F
from these 2! DFTs on Z, can be pictured and understood in terms
of butterflies, e.g., (0575, Chapter 6], [Walk91]. Computationally, it is
convenient to compute the 2-point DFTs first, then the 4-point DFTs,
etc.

c. Suppose f : Zy —» C is given and the computation of its DFT
F is desired in the natural ordering (F[0], F[1],..., F[N —1]), i.e., for
a given f, a computational device will compute an ordered N-tuple
(Fo,...,Fn_1), and we want to be sure that Fj, = F[k] for each k.

From (3.9.10) it is clear that if we begin with the DFTs of the pairs
{fI0], fF[11}, {FI2], f[3]}, etc., we shall not obtain F in its naturing or-
dering. It turns out that f can be ordered in such a way so that the
DFTs of consecutive pairs {f[7], f[k]} in this ordering yield the desired
natural ordering of F'. The procedure is called bit reversal. For exam-
ple, if N = 8 then the DFTs of {f[0], f[4]}, {f[2], F{6]}, {f{1], fI5]},
{f[3], fl7]} will yield the ordered N-tuple (F[0], F[1],...,F[N — 1})
when the halving procedure of part b is implemented.

Bit reversal is defined as follows for N = 27. At level r = 1 the
bit reversal ordering of the set {0,1} is the ordered 2'-tuple (0,1).
At level r = 2 the bit reversal ordering of the set {0,1,2,3} is the
ordered 2%-tuple (0,2,1,3). Inductively, at level m suppose the set
{0,1,...,2™ — 1} has as its bit reversal ordering the ordered M = 2™-
tuple,

(bﬂ, ves :bM—l)-

Then, by definition, at level m + 1, the bit reversal ordering of the set
{0,1,...,2M — 1} is

(2b0,2b1,. .. 2bp1-1,206 + 1,200 + 1, ..., 264y + 1).
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For example the bit reversal orderings at levels 3 and 4 are
(0,4,2,6,1,5,3,7)
and
(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15),

respectively. The term “bit reversal” is appropriate since the coefli-
cients of the binary expansions (part d) of integers are reversed at the
critical step in the above process. This is the reason for the subscripts
0 and 1 in part b.

d. The binary expansion of n € {0,1,... ,2"} is

.
n= Z 6.?'2]-1,
=1

where ¢; € {0,1}. For example, if ¢g = ¢; = ... = ¢, = 0 then n =0,
andifeo=€=...=¢_y =1thenn=3 21 =(2-1)/(2-1) =
2" — 1. Thus, each such n is well-defined by an r-array (e,...,€) of
0s and 1s.

e. Suppose {X]} is a “tree of spaces” where r designates the level,
and where, for each fixed r > 0 there are N = 2" elements X, indexed
by n. Using the binary expansion of part d we write

X; = X(rcl per ,c,.);

and, using the bit reversal ordering, the tree {X]} has the form

X3
X3 Xi
Xoo  Xbom Xt Xty
etc. At level r — 1 the space X(’E:,l___,em_ho) is the (single) parent of

XE;I ) and X(rﬁ sore€m=1,1)"

yoer €10
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Tree models, including some where bit reversal ordering is essential,
abound in mathematics and engineering. There are applications in im-
age compression, channel crosstalk reduction, Walsh functions and the
waveletpackets of Coifman, Meyer, and Wickerhauser, subband cod-
ing and the theory of nonlinear waveletpackets, frequency localization,
multirate systems and bit allocation, C. Fefferman’s proof of Carleson’s
Theorem proving the Lusin Conjecture, etc., e.g., [BA83], [BF94, Chap-
ter 10], [BSa94], [Dau92], [Fef73], [Mey90].

1. With regard to the algorithmic butterflies of part a, recall the lo-
cally lacunary butterfly from Frample 1.4.4 in Chapter 1. Even Chap-
ter 2 has a lepidopteral connection: Laurent Schwartz is not only a
world class mathematician but has seven butterflies named after him!

The extension of Carleson’s Theorem (Section 3.2.8) to 2-dimensions
is true for partial sums taken over squares {(mm,n): —N < m,n < N}.
C. Fefferman’s proof uses butterfly-shaped subsets of Z x Z in a fun-
damental way [Fef71], cf., the proofs by Sjélin and Tevzadze at about
the same time.

3.9.5 Example. CompuraTioNn oF W, N = 2"
Let C, = cos(27/27) and S, = sin(27/27). If r = 1 then C) = ~1
and S; = 0. Using the half-angle formulas,

cosEP' 1+cosz and sinf— 1 —cosz
2 2 2 V2

we can compute C, and S, for large values of » by the recurrence
equations,

1 v 1—-0C,
(3912) Cr+1 - -;C and S,-+1 = ) .

The problem with (3.9.12) from a computational point of view is the
possibility that lim, ,0.(1 — C,) = 0 might lead to computational insta-
bility. On the other hand, since sin®z + cos? z = 1, the double angle
formulas can be written as

1+ cos2zx sin 2z gin 2z

cosr = |———— and sinz = = ;
2 2cosxz 9, [licosiz
2
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EXERCISES

3.2.

3.3.

i

Fy)=7, v€[-2,9).
F(y) =7, 7€[0,20).
F(y) =% ~€[-9,9)
F(y) =+, ve€[-29,0).

c#0, € (0,4),
F(”’):{ 7éo 3@%9231].

P @® o

i. F(y) =~cos ) -0, 0).
i. F(y) = ysin (-—) v e[-0,9).
k. F(y) = [sin (ﬁ-) I, e ,29).

cos (F), 7v€(0,0),
L. F(y) = { ( )0

v € [, 24].
_Jsin(F), v€(0,9),
m. F(v) ‘{ ( )0, ~ € [©2,20).

313

Using MATLAB, graph the Nih partial sums, for N =1,2,4,8,
of the Fourier series of the functions defined in parts a, b, ¢, f, j,

k of Ezercise 3.1.

Designate F in Ezercise 3.1a by F,, and similarly for parts b, ¢, - -,

a. Show that, formally,

S(Fb)' = S(Fa) a.nd S(Ff)’ = 2S(Fd),

where S(F) is the term by term differentiation of S(F).
(This calculation is legitimate when we consider S(F)’ as

the distributional derivative of the function F' defined
periodically on R, cf., Definition 3.1.9.)

b. Evaluate the Fourier coefficients of F,,, — %Fk.,

2Q-
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3.4.

3.5.

3.6.
3.7.

3.8.

3.9.
3.10.

3.11.

CHAPTER 3. FOURIER SERIES

Using (3.1.7), prove that the function G defined in part b of the
proof of Theorem 8.1.6 is bounded in some interval centered at

the origin.

Compute the Fourier series of
. )
F() =52, 5 € [-m,m)

defined 27-periodically on R, cf., Example 3.9.6a and Exercise 3.29.

Prove that the inclusion, L*(Tsq) € L'(T4q), is proper.

a. Compute the Fourier series of the following functions defined
2m-periodically.
i. F(y)=siny, 7€ [0,2n).
ii. F(y) =siny, v € [0,7), and extended evenly to (—=, 7).
b. Compute the Fourier series of F(v) = sinv, v € [0,7), con-
sidered as a m-periodic function. Compare this result with
part a.

Compute
100

Z emn'y/ﬂ

n=-100

L

Prove (3.4.17), which states the continuity of the inner product.

Prove the divergence of the series

2

n[>2 |n| log ]n|

This fact played a role in Frample 3.3.4.

a. Prove that
Z tnr _ Sil’l(N + %)‘T’-
€= sin &

Inl< :
for z ¢ 2nZ. For z = —ny/Q, this establishes (3.4.5).
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b. Prove that
> (1 __In] ) Jne _ L (sin(N +-1)§)2
<N N+1 N+1 sin 3

for x ¢ 2nZ, and complete the proof of (3.4.7).

3.12. a. Let P(y) = Y lnl<N ene" ™/ be a trigonometric polynomial
and let F € L!(Tyq). Compute F x P. Is F'x P a trigono-

metric polynomial?

b. Let F € L'(T3q) and G € L®(T4q). Prove that
I1F % Gllee(myn) < 1) z2(ron [ Gllzo0 (7o)

c. Let F' € L*(Tyq) and G € L(T4q). Prove that
1F % Gllraraey < I1Flz2(ran |Gl (raa)-

3.13.  a. Abel’s partial summation formula is

g g-1
(B3.1) S anbn =3 An(bn — bup1) + Agby — Ap_iby,
n=p n=p

where {an,b,:n=0,1,--}CC,0<p<q, A1 =0, and
A, =% a;. Prove (E3.1).
b. Prove that if p,q € Z, p < q, and z # 2wk for any k € Z,

then
7 1
Nz o .
|§=%e | < |sin~2“3|’
and so
z —miny /S 1
c. Let flp] > flp+ 1] > ... = flg] 2 0. Prove that
' g
—imny/§t f[p]
Yy 20k, |3 finle I < o

[Hint. Use the partial summation formula (E3.1).]
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3.14. Let Q > 0 and let o € (0,Q2). Let F =1 on Ty and define F,)
on Tyq by setting Fia).= 1[_a,a) on [, Q).

a. Compute the Fourier coefficients of F' and of G = F — cF,)

b.

for ce C.
Does there exist ¢ # 0 such that for all o € (0,9),

NF |l Leqmae) = 1GHlz2(Taey?

Let £ € N and let o = Q/k. For which values of n can we
assert that G[n] = F[n] = 0.

The point of part « is that even a small frequency pertur-
bation of a signal causes almost all of the “temporal” data
on Z to change. This is precisely the uncertainty principle
phenomenon discussed in Remark 1.1.4. This lack of time
and frequency localization in Fourier analysis can be circum-
vented to some extent in wavelet theory, e.g., Daubechies’

book [Dau92].

3.15. Prove Theorem 3.3.7. The right side of (3.3.9) in Theorem 3.5.7
is defined for G € L*®(Tqq). Why does Theorem 3.3.7 generally
fail in this case?

3.16. Prove Theorem 3.4.4b. [Hint. Let € > 0 and let G € C(T2q) have
the property that || F'—G/|p1(1,q) < ¢/(2C), where || Ko\ ||z (1,0) <
C, C > 1. Then, by (3.4.1), you can show that

€
1 = F'# Kylle ey < 5 +1IG = G Kyllze(Taa)
+G”G - F”LI(Tm)'

The result follows from Theorem 3.4.4a and by taking a lim.]

3.17. In this excercise we shall approximate Fourier transforms on R
by DFTs (Definition 3.8.1). Consider intervals [a¢,b] C R and
[a, 8] C R, and denote their lengths by T = b—a and 20 = f—o.
Suppose 21'Q = N is a positive integer, and define

tm = a+mAt and v, = o+ nAy,
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3.18.

3.19.

where At = 1/(2Q), Ay =1/T, and m,n=10,1,... ,N — 1. Let
f be a continuous function on {a, b}, set g{m] = f(t,, )e2mma/(2%)
and let G be the DFT of g. Show that

b R .
Vn=0,1,...,N—1, / F(£)e™2mitm gt o %e‘z’"”" Gin).

[Hint. Use a Riemann sum approximation of the left side.]

We can effectively use this exercise to compute Fourier trans-
forms, e.g., Exercises 3.18 and 8.19. The symbol “~” means
that the right side approximates the left side. This imprecise
but meaningful statement can be quantified in terms of the Pois-
son Summation Formula ( Theoremn 3.10.8), e.g., [AG89], [BSS8§],
[BrHe95).

—42

We computed the Fourier transform of the Gaussian g(¢) = %e
in Ezample 1.3.3.

a. Using the MATLAB fft function and the approach in Ezer-
cise .17, verify numerically that G(y) = =™, [Hint. To
begin, let [a,b] = [-32,32)], [a, 8] = [-32,32], At = 1/64,
and Ay = 1/64, and consider the vector

t=-32: (1/64) : 32 — (1/64).]

b. With regard to PSF (Theorem 3.10.8), and in MATLAB
terminology, compare sum {f. * f) and sum (fhat. * fhat),
where f = exp(—t.*t) and fhat = sqrt(pt)*exp(—(pi*t)."2).

a. Using the MATLAB fft function and the approach in Ez-
ercise 3.17, graph the following Fourier transform pairs:

2712w

d,\ — 1[_ A A7,
wy, +— max(l— B—}'ﬁ, 0),
Py = e-zﬂ’ﬂf}\’

gy — eI
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where {d»}, {w,}, {pa}, and {g\} are the Dirichlet, Fejér,
Poisson, and Gauss kernels, respectively.

b. Graph the de la Vallée-Poussin kernel {¢;} which was defined
in Ezercise 1.43, cf., Exercise 1.50 and Example 3.5.3b.

c. For each of the pairs in part a, as well as the de la Vallée-
Poussin kernel, compare the behavior of the function with
its transform as A > 0 increases. Compare the manner and
speed with which each transform converges to 1 as A > 0
increases.

3.20. The following is a recursive MATLAB program (m-file) which
calculates the two step FFT algorithm of Theorem 3.9.1:

function y = myf ft(z)

n = length(z);

if n==1
y=1

else
zo=z(2:2:n)jze=2z(1:2:n—1);
w = exp((—2*pi*t/n)*(0:n — 1));
zohat = my fft(z0);
y = [zehat zehat] + w.*[zohat zohat];

end

a. Make an ascii file called myfft.m in some directory, say e\
mymfiles. Give the MATLAB command

w Mgl g0 path(‘c: \mymfiles’, path);
AL '(Mﬁﬂh o b. Make a vector f of random numbers, e.g., set f = rand(1, 256).
Ednrewnt 3. 186 Compute the DFT of f by means of myfft as well as by the

MATLAB fit function. Compare the results.

3.21. Let f,g € £(Z) have “compact support”, i.e., there are integers
A, B,C, D for which fln] = 0 exceptfor A<n < B and g[r]=10
except for C < n < D. Recall the definition of f * g in Defini-
tion 3.5.1. Part a is a fast convolution algorithm.
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3.22.

3.23.

a. Let N > B—~A4D-C+1, and let F and G be the DFTs of f
and g on Zpy, respectively. Provethat if A+ C <n< B+ D
then

f*gln|= ,FI‘\}I(FG)[TL - A-C],
and that f % g[n] = 0 elsewhere.

b. Prove that a direct implementation of the definition of con-
volution requires (B — A + 1)(D — C + 1) multiplications.

c. Using the FFT algorithm of Section 3.9, show that the method
of part a requires 3N log, NV + N multiplications.

The z-transform F of f : Z — C is the function F(f):C — C

defined by
F(f)(z) =3 fln]z™.

Of course, F(f) may not exist for some z € C. Note that there is
an intrinsic relationship between Fourier series and z-transforms;

in fact, we have f(v) = F(f)(e*™"), vy € R.

Let a,w € C and define z; = aw® for C < k < D. Consider
the sequences f, g, and h, where f[n] = 0 except for A <n < B,
h[n] = 0 except for C — B < n < D — A where it is defined as
hln] = w™'/2, and g[n] = 0 except for A < n < B where it is

defined as g[n] = f[rn]a™™h[n]. Prove that the z-transform F of f
can be written as

F(f)(zk) = hlkl(g * h)[K].
This is the chirp z-algorithm.

a. Using MATLAB, implement the chirp z-algorithm of Frer-
cise 3.22 to approximate [ =¥ e~2" dt, cf., Ezample 2.10.5.
[Hint. Approximate the Fourier transform at the points
v = 4, = nAvy, where Ay = .01 and —100 < n < 100. Use
the values f[m] = e~()" of the Gaussian, where t,, = mAt,
At = .01, and —300 < m < 300. Show that the desired
integral is approximately

F(f)(zk)Ata
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where f[m] = 0 except for —300 < m < 300, and where z; =
(e~2miAtAYYE Finally, invoke the fast convolution algorithm
(with 1024 point FFTs) from FErercise 3.21 to perform the
convolution used in the chirp z-algorithm of Ezercise 3.22.]

b. Compare the number of multiplications required for the chirp
z-transform in part ¢ with the number of multiplications
required in the computation of the same integral in Fzrer-
cise 3.18. Note that the chirp z-transform calculation pro-
vides points 4, on a finer mesh than the FFT approach of
FEzercise 3.18, and requires only 65% of the number of mul-
tiplications.

3.24. Evaluate )

>
nx>l n
n odd

[Hint. Consider Ezercise 3.16.]

3.25. a. Let FF € LY(T)and G € L*(T), and let f = {f[n]} and
g = {g[n]} be their sequences of Fourier coefficients. Prove
that

lim [ P(y)G(ny) dy = f[0]go).

n—teo JT

The Riemann-Lebesgue Lemma ( Theorem 3.1.5) is the
special case of this result for G(v) = ™.

b. Let FF € L'(T) be real valued. Using the notation from
Ezample 3.1.4 and the result from part a, prove that

lim E — = lim Z( n" n2E@n+l) _ =0,

k—00 el n k—yo0 el 2n+1
cf., [Lux62].

3.26. a. Let F € AC(Tq), and let f = {f[n]} be the sequence of
Fourier coefficients of F. Prove that F¥ € L'(Tq), (F)V[n] =
— it fIn] for each n € Z, and limp|_0o nf[n] = 0.
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Thus, if F € C(Tq) N BV (T1q) has Fourier coefficients
fin), n € Z, and if

lim |nf[n]| >0

[nf—rec

then F ¢ AC(T2q).

b. Prove (3.5.3). [Hint. For F € AC(Ta), let G = F' €

L'(T2q) so that GV[0] = 0 and F(y) = [ G(A)dA + F(0)

A on [0,29]. Apply part «, Hélder’s Inequality, and Parseval’s
f'w w,,f,, formula to the right side of (3.5.2).]

- . f
&~ . A:;?: c. Let G € L}{T3q) and suppose G¥[0] = 0. Prove
Ay ' ¢

[* [ emyaray = - [T 460 v

d. Let F € BV(Tqq), and let f = {f[n]} be the sequence of
Fourier coefficients of F. Prove that

IM >0 such that Vrne Z, |nf[n]| <M.

M can be taken as the variation of F,i.e., M = inf{3} |F(v;)—
(7;-1)|}, where the infimum is taken over all finite partitions
{v;} of [0, 2], cf., the definition of bounded variation in Def-
inition 1.1.5.

Part d can be proved by a calculation for step func-
tions and an approximation, but we also recommend an in-
genious calculation due to M. Taibleson (Fourier coefficients
of functions of bounded variation, Proc. Amer. Math. Soc.
18(1967), 766), e.g., [BenT76, page 120].

3.27. Let S(v) = 1/(1 +sin277). Then 1/§ > 0 on T has a zero at
v = ~% + n. Prove that S ¢ L'(T).

3.28. Let P(z) = 2™ 4 ap—12" ' + -+ - + ap be a polynomial of degree
n > 1 with complex coeflicients. By the Fundamental Theorem
of Algebra there is @ € C such that P(a) = 0. The following
facts are well-known.
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i. P(z) has the unique representation
P(;g) = (.’L‘ -— al)(m — (12) e (.’E — an),

where {ai,... ,a,} C C is the set of zeros of P;

ii. the zeros and coefficients of P are related by the formulas,

k13
Gp—1 = - Zaj

i=1
e = Ve
i<y
1<j<k
ag = doajaz...04.

Fill in the details of the following brilliant persuasive ratio-

nale by Euler to establish that 352, & = Z-. The zeros of
sin x z* !
P(z) = =1-— 3T + R

are {nm:n € Z\{O}} Argumg by analogy, Euler obtains

oA (- o).

cf., Fzercise 1.56; and, hence,

1 2 1
3l n;i (nmr)?’
by parts ¢ and .
3.29. a. Prove that
e—frimr/ﬂ
lim
N—-—}ooO(lnlsN n

exists for each v € (0,20). [Hint. See Ezample 3.3.6a.]
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3.30.

b. Let f[r] > fln + 1], for n > 1, and let lim, o f[r] = 0.

Prove that -
S fiHemie
n=1

exists for each v € (0,2f}), and that the convergence is uni-
form on any closed subset of (0,20).

. Let f[n] > fln+1],for n > 1, and assume nf{n] < C. Prove

that
sup|2f sm——| < oo

and that the series converges to a continuous function on
(0,282), cf., Exercise 3.43.

The relation between this exercise and pseudo-measures
supported by arithmetic progressions is found in [Ben71, Sec-
tion 4.3].

. Prove Abel’s original “Abelian theorem”: if 3°72, ana™ con-

verges on [0,1) and Y52, a, = S, then

(£3.2) llm E a,z" = S.

z—+1-—- n=1

[Hint. Use (E3.1}.]

The first Tauberian Theorem, by Tauber in 1897, came
as a response to the problem of finding some sort of converse
to Abel’s result. Tauber proved that if f(z) = 332, a,2"
converges on [0,1), f(z—) = S, and lim,_ o na, = 0, then
T tn = S. The boundedness condition “limp-yeo nan =
0” is the “Tauberian condition” required to effect the con-
verse. This is a special. case of the Tauberian condition
“o € L*(R)” used in Wiener’s Tauberian Theorem (The-
orem 2.9.12), e.g., [Ben75, Section 2.3].

3.31. Prove that

(E3.3) Vv € (0,27), —log(2sin %) => sy

n=1 n
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3.32.

3.33.

3.34.
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[Hint. By a power series expansion we have

Relog (1 1 z) _ Z T cosn’T,

ne=l n

where z = re’ and r € [0,1). Compute

. x=rtcosny .
rl_:}rlm_ﬁé:1 - = —log(2sin 2)

on (0,27). Since the right side of (E3.3) exists on (0,27) by
Ezercise 8.29b, we can apply Fzercise 3.30 to obtain (E3.3).]

Let A(ABC) be a triangle with vertices A, B, C; and let ¢ and ¢
be points on the segments BC and B A, respectively, so that

< (cCB) =< (cCA) and < (adAB)=< (aAC).
Assume |Aa| = |Cc|. Prove that A(ABC) is an isosceles triangle.

[Hint. Use the law of sines.] This is a difficult exercise.

Prove that Y22, cos(2mrny) diverges for all ¥ € [0,1), and that
0 . 8in(2mny) diverges for all vy € (0,1).

Analogous to the definition of the Hilbert transform in Defi-
nition 2.5.11, we define the Hilbert transform of the sequence
f = {fIn]} as the sequence Hf, where

CHCEES s

m¥En

Prove that if f € £2(Z)\{0} is real valued then

(7Sl @y < | flle)-

This is the analogue on Z of Theorem 2.5.1%a.
[Hint. First show that if m,n are fixed and unequal and if j #

m,n, then
D 1 2
F (7 —n)

G-m) (m—n)?
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3.35.

3.36.

3.37.

Use this fact to compute
(E3.4)
2

H%fﬂez(z) Zf Z "‘Z Z fnlfl '"'—'5

i#n (7 - n man (m—n)
for f vanishing off some finite set. Since 2f[n}f[m] < f[n]® +
f[m]?, we can invoke (3.3.8) to bound the right side of (E3.4) by
%Y f[n]?.] This clever, elementary proof is due to [Graf94], cf.,
[HLP52, pages 206ff.,212,226,235] for other proofs, [0S75, Chap-
ter 7] for signal processing applications, and [Ivi85, pages 129 ff.]
for applications in analytic number theory.

Let {z1,...,2,} C C. Prove thereis S C {1,...,n} such that

(E3.5) Z ;] < 4v2| Y 2.

j€8
[Hint. Begin by dividing C into four “diagonal” quadrants, e.g.,

[Ben76, page 217]. In particular, if F(y) = ¥ f[n]e~™*"/% where
f ={f[n]} is a finite sequence and {{,} C R, then

“F”Lw(R) S fllerzy < 4+/2 inf | 3 flnjemin/8
'YE nes
for some finite sequence S C Z, cf., Definition 3.1.8.

Inequalities such as (E3.5) are used in measure theory and to
prove versions of Schur’s Lemma, e.g., [Ben76, Section 6.2]. The
constant 4v/2 can be replaced by m, which is best possible, e.g.,
[BenT76, page 172] for references to more advanced material.

Assume ¥ |eu* < oo and

lim E c e = 0 ae.
N—aeo
|nl<N

Prove that ¢, = 0 for all n, cf., the discussion in Section 3.2.6.

Let 0 < a < b < 1. Prove that [a,b] is not a U-set. In fact, if
E C T is measurable and |E]| > 0 then E is not a U-set, cf., the
discussion in Section 3.2.4.
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1 odt \?
([ )

3.38. a. Prove that

(E3.6)

_fr/tlog(l +cos20) 3 rtlog(l+1¢)
- /0 cos 20 a0 = 4 ./0 1 dt,
e.g., [Ebe83].
b. We know the value of the left side of (E3.6). Expanding
t~!log(1 +t) in a Maclaurin series, evaluate

= 1
1y
S

c. Using part b, evaluate {(2) using the fact that

o0

(2) ~ S (1) s = =),

n=1

3.39. Prove that r is irrational, cf., [Ben77] for history and perspective
on this material. [Hint. Assume n* = a/b, where a,b € N. Define
Falz) = =27 61 [0,1] for each 7 > 1; and set

Fa(z) = 5{n™" fole) — a*" 2 f P (2) + 7P~ f0 () ~ ..
H=1Ya B 10 ) L (1) £ ()}

Compute
d - : 2,n .
E(F"(m) sinwrr — wF,(¢) cosmz) = ma” fo(x) sin we,
and deduce that ‘.
1
Yn 21, 'n“/ fo(z)sinmadz € Z.
0

Obtain a contradiction for large n since 0 < fo(z) < 1/n! and
sinwz > 0 on (0,1).]
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3.40.

3.41.

3.42.

One can also show, more simply than for the case of m, that
e ¢ Q. In fact, e and 7 are not only irrational, but are tran-
scendental, i.e., they are not zeros of any polynomial P having
rational coefficients. It is not known whether or not = 4 e or n°¢
is irrational. On the other hand, €™ is transcendental.

A sequence {r, : n € N} C R is equidistributed modulo 1 or,
equivalently, uniformly distributed modulo 1 if the sequence {(r,)} C
[0,1) of fractional parts of the r, are uniformly distributed in the
sense that

v(I,N)

am = =1,
for every interval I C (0,1), where (I, N) is the number of el-
ements from {(r),...,(r~)} contained in I. ((r) is defined as

r — [r], where [r] is the largest integer less than or equal to r.)

The Weyl Equidistribution Theorem (Remark 1.9.2) asserts
that {r,} is equidistributed modulo 1 if and only if
] e27rinr1 + e27rinr2 A eZ?rinrN
Vn € Z\{0}, ]\171_1;;0 N =0,
e.g., [KK64], [Cha68, pages 84-90]. As a corollary, prove Kro-
necker’s Theorem in one-dimension: if r € R\Q then {(nr) : n €
N} is dense in [0,1). [Hint. Use Ezercise 3.13b.]

The d-dimensional version of Kronecker’s Theorem was stated
in Section 3.2.10. Prove that it is equivalent to the following
assertion. Let {v1,...,74} C R be linearly independent over the
rationals, let vo = 0, and let ¢y, ¢1,... ,¢q4 € C; then

d d
sup | > cje | =3 " ey
teR  ;—p =0

Let F € L}(Tan). Prove the following results.

a. If lim,\_,,g '—‘\ITQ-”T)\F - F”Ll(’][‘zﬂ) = 0 then FF =0 a.e.
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3.43.

3.44,

3.45.
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b. If im;4o ﬁ[”TAF — F||L(T5) = 0 then F is a constant a.e.
c. If there exist ¢, > 0 such that

VA< e, [ImF = Fllnirg < ClAl

then F' € BV(T10).

d. lim,\_m “TAF b F”Ll(Tm) =1{.

Part @ is a consequence of part b; part b follows from
a refinement of FTC, e.g., [Ben76, pages 141-142] and Re-
mark 1.7.9 on the Lebesgue set; part ¢ is due to Hardy and
Littlewood (1928), e.g., [Ben76, pages 124-126]; and part 4
is an elementary and fundamental fact from Appendiz A.
The converse of part ¢ results from a straightforward calcu-
lation using the classical form of the Jordan Decomposition
Theorem (Remark 1.7.4).

a. Let Q@ > 0 and let f € co(Z) have the property that {nf[n]:
n € N} decreases monotonically to 0 after a certain point.
Prove that 3752, f[n]sin Z5 converges uniformly on R, cf.,
Ezample 3.3.4, Exercise 3.29, and [Zygh9, Volume I, pages
182-183].

b. Let f[n] = 1/(nlogn), n > 3. By part «,

F(y) = ni:% ! sin (N;7)

nlogn

converges uniformly on R. Prove that F € C(Taa)\A(T2q),
cf., Ezample 1.4.4 and Ezample 3.3.4a.

Verify the inclusions and inequalities (3.1.8)-(3.1.11). Prove that
the inclusions are proper, e.g., Ezercise 3.43.

Use the Uniform Boundedness Principle ( Theorem B.8), in a man-
ner similar to Frample 3.4.9¢, to prove that there are continuous
functions whose Fourier series diverge at a point, cf., the discus-
sion in Section 3.2.8. This proof, due to Lebesgue (1905), is short
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3.46.

and nonconstructive. [Hint. Define the linear functionals

LN:C(T) — C
F s Sx(F)(0).

Let Fy € C(T) equal sgn Dy except on small intervals about the
discontinuities of sgn Dy; further, construct Fy so that |Fy| < 1.
Then

2wl 2 1Ew(F)l = | [ D) Fw(y) dl,

and the right side is close to ||Dn|lpi(ry. Thus, {||Ln||} is un-
bounded, and the result is obtained analogous to Ezample 3.4.9¢.]

Fejér’'s construction in 1911 of continuous functions whose
Fourier series diverge at a point makes implicit use of the Uni-
form Boundedness Principle. His proof provides divergence at
much larger sets of measure 0 than single points, e.g., [Rogh9,
pages 75-77], [Zygb9, Volume I, Chapter VIIL1], cf., the theo-
rem of Kahane and Katznelson quoted in Section 3.2.8. On the
other hand, Fejér’s type of example has unbounded partial sums.
Using Riesz products, Zygmund (1948) constructed F' € L*>(T)
for which {Sn(F)} is uniformly bounded and S(F') diverges on
uncountable dense sets of measure 0, e.g., [Zyg59, Volume I, page
302).

If F € L*(T), define
M(F)(7) = sup{|Sn(F)(1)]}-

The main part of Carleson’s proof of the Lusin Conjecture (Sec-
tion 3.2.8) is his theorem that

(E3.7) 3C such that VF € L¥(T), |IM(F)llzzery < Cl|F) 2.
Using (E3.7) prove the Lusin Conjecture:
2 : —
VF e L*(T), J\lfl-l;%oSN(F) =F ae.

With regard to (E3.7), compare Zygmund’s result quoted in
Ezercise 3.45.
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3.47. Let F € LY(T) and G € L*°(T) have Fourier coefficients f =
{f[n]} € A(Z) and g = {g[r]} € A'(Z), respectively. Compute
(FG)Y and (F * G)Y in terms of f and g.

3.48. a. Let F € A(T)be nonnegative. With regard to Remark 3.6.5d
on the Fejér-Riesz Theorem, verify whether or not there is a
sequence { By} of trigonometric polynomials on T for which

Tim [IF — [ Byflagry = 0,

cf., the Szegd Factorization Theorem stated in Section 3.7.

b. Let F € C(T), and suppose the sequence f = {f[n]} of
Fourier coefficients of F' is nonnegative, i.e., f[n] > 0 for
each n. Prove that F € A(T).

[Hint. f is a positive distribution of Z so that F' is continuous
and positive definite on T.]

There are also several classical ways of proving part b.

3.49. A fundamental problem in harmonic analysis is to quantify prop-
erties such as support, smoothness, convergence, and decay of f
and its approximants in terms of the behavior of f; and many of
our results can be put in this context, e.g., the Riemann-Lebesgue
Lemma, Ezercise 1.15, Ezercise 3.26, and Erample 3.5.3 where

we proved that CYT) C A(T). In this regard, prove that if
1 < m < oo then

VP e C™(T), Jim |F ~ Sk(F)lums) = 0.
Estimate || F' — Sy (F)| ¢t in terms of N and m.

3.50. Prove the assertions in Definition 3.1.9d.

3.51. a. Let L € L(L*(T)),i.e., L: LAT) — L*(T) is a continuous
linear function (Definition B.6). If F € L*(T), prove that

L(F)(v) = 32 (LaF")[nle ™™
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where

(LaF¥)[n) = 3 mn P

and
b = (Le_p, €n).

Thus, the action (operation) of L on L*(T) is equivalent to
the action of the matrix Ly = {£n, : m,n € Z} on £2(Z).

b. Now, further suppose that L is translation invariant, i.e.,
L(r,F) = 7,(LF) for all v € T and all F € L*(T), Exer-
cise 2.58. Prove that Ly is a diagonal matrix.

Parts a and b allow us to conclude that {e_,.} diago-
nalizes all continuous translation invariant linear functions
on L?(T); and it is also clear that each e_,, s an eigenfunc-
tion of the derivative operator. This fact accounts for the
classical success of Fourier analysis in dealing wilth linear
partial differential equations, since it provides exactly the
advantage of doing matrix calculations in a basis that diag-
onalizes the matrix. In more recent times, parts ¢ and b are
the starting point for the harmonic analysis of singular inte-
gral operators, e.g., the Calderén- Zygmund Theory [Ste70],
as well as LTT systems in engineering, e.g., Definition 2.6.5.

3.52. Let {r; : j = 0,£1,... ,+N} C C satisfy the condition r; = r_;
for each 7, and define the (N + 1) x (N + 1) matrix B = (rj),
where j,k > 0 and rj; = ;. Also, define the functional L on
the trigonometric polynomials F(~) = XN fln]e™2™ " by the
rule

N
= ) flnlra.
n==N
a. Prove that if R >> 0 and 1 < j < N then ro > |ry].

—2miny
3

b. Prove that for each polynomial G(v) = TN_; gln]e

|GI ZT.? kg g[J
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3.53.

3.54.
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c. We shall say that the functiénal L is positive, written L > 0,
if L(F) > 0 and

L(F)=0 implies F =0

for all trigonometric polynomials F(v) = SN__ . fln]e=2™m7.
Prove that R >> 0 if and only if L > 0 cf., Ezercise 2.52a
for the analogous situation in terms of positive semidefinite
matrices. [Hint. Part b is used in both directions, and the
direction to prove L > 0 requires the Fejér-Riesz Theorem.]

Prove that (sinz)™? < z72 + 1 on (0,7/2]. The proof is ele-
mentary, e.g., [Mon71, page 155-156]. This inequality should be
compared with the inequality, 2¢ < sinz on [0, I], which is usu-
ally used in the proof of Jordan’s Inequality (Erercise 2.62).
This inequality can be used to prove the following number
theoretic “sieve theorem” due to Bombieri, e.g., [Mon71, Chapters
2 and 3]. Let & > 0 and R C R have the property that the distance
of r — s to any integer is greater than or equal to § for all unequal

r,s € R; then

5§ IF() < (6N + % +35) 3 leaf?

YER

for all trigonometric polynomials

M4N

F(y) = Z cne” 2y,
n=M+1

Because of the Parseval formula, it is interesting to note that
if the elements of R are (relatively) equally spaced modulo 1 then
6 Xyer|F(7)|? is a Riemann sum approximating ||F||%.(p). The
relation of such approximations to sampling theory is the subject
of [Ben92b, pages 492-494].

a. Prove that if W € L'(T) is positive on T, then logW ¢
LY(T).
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3.55.

3.56.

3.57.

b. Prove that if W € L!(T) is nonnegative, then log W € L*(T)
if and only if

frlog W) dy > —oo.

We discussed the Littlewood Flatness Problem in Remark 3.8.116.
In this regard, prove that if F(y) = ©N=t fln]e2™, then |F|
and |f| cannot simultaneously take constant values on T and
{0,1,... ,N — 1}, respectively.

Consider the following formal calculation for f : R x R — C,
where f(t,u) = f(t — u).

/f F(t, u)e O+ di gy

(E3.8) =[(/ fv)e2milutv)d g—2miny dv) du

= F) [ &0 du = FO)S( +9)

— f(’\)ﬁ if AZ“"’Y?
B 0, if M#—v.

a. Recalling the definition of a Toeplitz matrix R = (r;z), viz.,
ik = T'j_k, prove that the two dimensional DFT of a Toeplitz
matrix is a diagonal matrix, cf., Exercise 8.51.

b. Provide the hypotheses and details to make (E3.8) into a
theorem.

Let 4 € M(T) and assume lim,_,o £¥[n] = ¢ € C. Prove that
limypyeoo #¥[n] = c. [Hint. By subtracting cf from x4 we can
assume, without loss of generality, that lim,_,, 1t¥[r] = 0. By the
Radon-Nikodym Theorem, let 4 = F|u|, where F' is y-measurable
and |F| =1, e.g., [Ben76, Chapter 5]. If @ = F'/F then

(E3.9) WVT=nl = [ € Gly) du().
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3.59.

3.60.

3.61.
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If G is a trigonometric polynomial the right side tends to 0 as
n -—+ oo, and so the result is obtained by (E3.9). The result for
G = F/F follows by the Weierstrass Approximation Theorem.
(Theorem 8.4.6 and Remark 3.4.8) and approximation properties
of bounded g-measurable functions (such as ) by continuous
functions, cf., [Ben76, pages 201].]

Complete the proof of the Classical Sampling Theorem which
uses the PSF, i.e., provide the mathematical justification for the
formal steps in Proof 1 of Theorem 3.10.10.

Let 5(t) = dan(t) = 50222 and assume equation (3.10.21),

ks

f= TZf(nT)TnT'S,
is true for all f € PWy. Prove that 2702 < 1, e.g., [Ben92b, page
450].

Let F € L*(T), and let f = {f[n]} be the sequence of Fourier
coefficients of F'. Assume

> (X 1mr) <o

n=1 |kj=n

Prove that F' € A(T).

We have commented often on the difficulty of characterizing
A(T). The result of this exercise can be considered the first step
in a fairly sophisticated classical line of thinking, e.g., {Ben75,
pages 150-154].

We shall say that L € £(L%(T)) is translation invariant if
VF € L*(T) and Yy€ T, L(%F)=n=,(LF),

cf., Definition 2.6.5. Prove that the translation invariant contin-
uous linear operators L : L*(T) — L*(T) are precisely of the
form

(E3.10) VFe L¥T), LF=Gx%F,
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where G € AT), ie., g = GY € £°(Z); and also show that
lglle=(zy = || ]|, where |]L[| is defined in Definition B.6. [Hint. If
L is defined by (E3.10) then it is easy to see that L € L(L*(T))
and that L is translation invariant; and it is elementary to prove
the norm equality. The converse is a consequence of Ezercise 8.51.
In fact, if L € L(L?*(T)) is translation invariant, then (LF)¥ =
Laf, where Ly is the diagonal matrix of Ezercise 8.51 which has

entries g[n] = (Le_n,e_,) on the diagonal. If ¢ = {g[n]} then
GY = g € £°°(Z) since |g[n]| < ||L||, and LF = G * F for this G']

In Ezample 2.6.6 we stated the L! analogue of the above re-
sult. In the L! setting, A’'(T) is replaced by M(T). In L*(T),if L
is also a projection, i.e., Lo L = L on L!(T), then the correspond-
ing measure ¢ € M(T) is an idempotent measure. Idempotent
measures were discussed in Remark 3.10.13.

Let T > 0 and define x4 = 3 €*"™/T on SR) by the rule

ves®, u)=fim (3 ) 0)

N—ooo In[<N

Recall from Chapter 2 that g(f) denotes [ g(t)f(t) dt.

a. Prove that u € S'(R).
b. Prove that y € M(T) and

TZ JnT —_ Z eZ'rrinth.

¢/
— K(R)

— Skt O
WT,/\/M
N Fean e
ale tvticd,

~

A e
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