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Among the various points of view in harmonic analysis, we shall define and empha-
size the analysis and synthesis of functions in terms of Aarmonics. My goal is to
present harmonic analysis at a level that exhibits its vitality, intricacy and simplic-
ity, power, elegance, and usefulness. Despite an array of deep thecretical results
and important abstract structures associated with harmonic analtysis, [ believe the
subject lives because of its essential role in understanding a host of engineering,
mathematical, and scientific ideas. Goals and beliefs are not always realities, but
this book is my attempt to quantify the preceding aspiration and sentiment.
Harmonic Analysis and Applications is both a textbook and essay.

Textbosk

The listing in Frologue I provides the material for an upper level undergraduate
cotirse in harmonic anatysis and some of its applications. We refer to this course as
Course I, and I have taught such a course for many years to engineering, physics,
conputer science, and mathematics students. The first 30 exercises in each chapter
are appropriate for Course I. The exercises range from elementary to difficult and
froma theoretical to computational and/or computer oriented. Those that ars not
assigned might provide extracurricular and titillative reading, without the burden
of proof (and grading).

Prologue II describes Fourier transforms for various settings such as the real
line R, the integers Z, finite intervals, or finite sets of points. Hopefully, it will be
useful and provide perspective.

Chapter I presents the Fourier analysis of integrable and square integrable (finite
energy) functions onR. Chapter 3 presents the Fourier analysis of finite and infinite
sequences as well as of functions defined on finite intervals. Chapter 2 presents
distribution theory. In my opinion, distribution theory provides a usefut vantage
point for dealing with many ideas from engineering, physics, and mathematics;
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and, in my experience, the calculational presentation herein is assimilable at the
undergraduate [evel,

Notwithstanding the importance of Chapter 2, Thave sometimes adjusted Course I
by going directly to the Course I material in Chapter 3 after finishing the corre-
sponding material in Chapter 1. This has given me time to present elementary
wavelet theory and various algorithms and computer exercises associated with
wavelets. The blend of Fourier transforms and Fourier series from Chapters 1 and
3 is an ideal background for discussing wavelets.

Besides wavelet theory, the topics from Chapters 1 and 3 have also served as a
natural background for presenting results from the following areas:

The theory of frames and their applications;

Regular and irregular sampling theory, and applications;

Uncertainty principle inequalities;

Fourier analysis and signal processing,

Essay

It is natural to seek the fundamental components of complex phenomena, and
then to describe such phenomena in terms of these components. With regard to
our opening sentence about the analysis and synthesis of functions in terms of
harmonics, the analysis is the determination of the harmonics or components for
a given function, and the synthesis is the reconstruction or decomposition of this
function i terms of its components.

Historically, there are the atoms (components) and atomic decompositions of
the ancient Greek philosophers as well as of physicists and modern harmonic
analysts [FJW91]. There are Leibniz’ ultimate components or elements of the
universe, the so-called monads or individual centers of force; and there are No-
bel Laureate Dennis Gabor’s elementary quanta or components of information,
the so-called logons [Gabod6]. There are the basic primary forms of cubists
such as Gris, Braque, and Picasso, whose paintings were created (a veritable in-
spirational synthesis) in terms of simple, often geometrical, components, e.g.,
[Gold59]; and there is a comparable musical paradigm in terms of harmonics
as originally discovered in antiquity [Pie83]. There is Riemann's decomposition
of the number theoretic psi function in terms of certain elementary components,
which are nontrigonometric waveforms; and this decomposition is used to in-
vestigate zeros of the Riemann zeta function {Bom92], <f,, Example 2.4.6g and
Exercise 2.32.

This is a book about classical harmonic analysis. The fundamental components
are rrigonometric functions; and we shall deal with these components and the cor-
responding spectral trigonometric decompositions inherent in Fourier’s original
approach [Zyg59]. Classical harmonic analysis arose naturally in eighteenth and
nineteenth century mathematical physics, in studies about the propagation of heat
and the decomposition of electromagnetic waves. In our own century, classical
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harmonic analysis has continued to flourish, with a magnificent array of applica-
tions and with profound theoretical developments including a fundamental role in
wavelet theory [Dau92], IMey90].

The general area of harmonic analysis has many other personalities and themes
and levels of abstraction than that of classical harmonic analysis. Alas, we shall
not deal with most of them in this book. For example, although harmonic analysis
at the time of Fourier could be described in terms of the spectral theory of a
second-order differential operator, that subject has modern-day group-invariant
versions of which we have just said our last word. Similarly, we shall not deal
with representation theory, Banach algebras, or locally compact groups G, even
though these subjects have a significant relationship with harmonic analysis. On
the other hand, our treatment of classical harmonic analysis does have a Banach
algebraic fiavor, and is a substantial part of the harmonic analysis of phenomena
defined on G ip the case G is commutative.

We shali present a systematic treatment of classical harmonic analysis, and
give careful proofs of the basic theorems. - A feature of our presentation is that
we are also providing expositions and perspectives on many topics. Some of
these are extensive, such as our treatment of Wiener's Generalized Harmonic
Analysis in Section 2.9. Further, there are several lengthy historical comments,
e.g.. Section 3.2. Becauss of the proofs and perspectives and exercises, this book
can also serve as a textbook for courses more advanced than Course I.

Our mathematical emphasis bas been in the direction of real analysis with very
litthe complex apalysis; and our point of view has been to deal thoroughly with
central spaces such as L! and L?, as opposed to reporting on some of the impor-
tant results concerning BMO or Triebel-Lizorkin spaces. We have not stressed the
group-theoretical underpinnings of harmonic analysis (even in classical terms),
since there are other fundamental (nonalgebraic) characteristics of classical har-
monic analysis. Our applications are limited by the usual constraints; author
prejudice and author limitation. This is compensated to some extent by a serious
biblivgraphy, referenced at appropriate junctures in the text. We have also intro-
duced some applications, not only because of their importance, but because of their
inuinsic relationship with theoretical developments, e.g., Sections 3.6 and 3.7.

Notation and Idiosyneracies

The excessive number of references to {Ben xx] should not lead a newcomer
to false conclusions about this author’s contributions. On the other hand, [ can
attest that these references will contain thorough bibliographies highlighting the
real contributors and will serve to keep our own bibliography for this book more
manageable. .

The sections labeled, x.y.z Definition, will always define a term, and that term
will be italicized. However, they may also contain some elementary calculations
and examples, and some exposition about the term being defined.
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We sometimes use the symbol “=" to define notation. For example, we write
“we first evaluate ¢ = f0°° e~ du” so that we can deal with “a” instead of the
more complicated right side in the ensuing calculation. Generally, we use “=" to
define notation in displayed items or when the context is clear,

C is the set of complex numbers, R is the set of real numbers, Q is the set of
rational numbers, Z is the set of integers, and N is the set of natural numbers, i.e.,
N={(1,23 ...} -

Instead of denoting integration of a function f over R by [ f(t)dt, we shall

often write | f(r)dt,ie.,
f fydt = / f@ydr.

@ designates the empty set. Rec, resp., Imc, is the real part, resp., imaginary
part, of ¢ € C. sgnt is 1 or —1 depending on whether f > Oor¢ < 0. f X C R,
then X° = R\ X, the complement of .X;, and 1y is the characteristic function of
Xequalto 1ift € X and equal to 0 if # € X°. Other notation and notions are
introduced as needed or in the Appendices, and they are referenced in the list of
notation or in the index.
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Course I

No proofs of theorems, propositions, or lemmas are required unless indicated.

Definition 1,1.1

Definition 1.1.2

Remark 1.1.3

Remark 1.1.4

Definition 1.1.5

Theorem 1.1.6

Remark 1.1.8

Proposition 1.1.9 and proof

Proposition 1.1.10 and proof

Proposition 1.1.11
Remark 1.1.13

Theorem 1.2.1
Example 1.2.2

Example 1.3.1
Example 1.3.2
Example 1.3.3
Example 1.3.4

Theorem 1.4.1
Remark 1.4.5

Definition 1.5.11
Proposition 1.5.2 and proof
Remark 1.5.3a

Definition 1.6.1

Proposition 1.6.2 and proof
Proposition 1.6.3 and proof
Proposition 1.6.4a

Example 1.6.5a

Example 1.6.6

Theorem 1.6.9 and proofs of parts b,c
Proposition 1.6.11

Remark 1.7.1

Theorem 1.7.6 (= Theorem 1.1.6)
Theorem 1.7.8

Example 1.7.10

Exarmple 1.8.1
Example 1.8.2
Example 1.8.3

Remark 1.9.1
Remark 1.9.2
Remark 1.9.3

Definition 1.10.1
Theorem 1.10.2
Proposition 1.10.3 and proof
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Proposition 1,10.4 Propesition 1.10.9
Example 1.10.5 Example 1.10.13
Remark 1.10.8 "Example 1.10.14
Proposition 2.1.] and proof Definition 2.4.3
Remark 2.1.2 Theorem 2.4.4
Definition 2.1.3 ' Definition 2.4.5a
Proposition 2.1.4 Example 2.4.6 a,b,c,d
Example 2.1.6 Definition 2.4.7a
Example 2.4.8
Definition 2.2.1 Example 2.4.9
Example 2.2.2a, b
Definition 2.2.3 " Definition 2.5.1 a,b
Definition 2.2.5 Definition 2.5.3
Example 2.2.6 Proposition 2.5.5 and proo
Definition 2.2.7 Definition 2.5.6 ‘
Definition 2.5.7a
Definition 2.3.1 Definition 2.5.10a
Remark 2.3,2 Theorem 2.5.11
Example 2.3.3
Notation 2.3.4 Theorem 2.6.1
Proposition 2.3.5 and proof ‘
Example 2.3.8a, b Theorem 2.10.1 and proof
Example 2.10.2
Remark 2.4.1 Theorem 2.10.3a
Definition 2.4.2 Example 2.10.5
Definition 3.1.1 Proposition 3.4.2
Remark 3.1.2 Definition 3.4.3
Remark 3.1.3a,b,c Theorem 3.4.4
Example 3.1.4 _ Example 3.4.5
Theorem 3.1.5 Theorem 3.4.6 and proof
Theorem 3.1.6 and proof Corollary 3.4.7
Remark 3.4.8a
Example 3.3.1 Definition 3.4.10
Theorem 3.3.2 Thecrem 3.4.12
Corollary 3.3.3 Theorem 3.4.13
Example 3.3.4a Definition 3.5.1

Definition 34.1a Proposition 3.5.2
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Proposition 3.5.4
Example 3.5.8
Theorem 3.5.9

Definition 3.6.2a,b
Theorem 3.6.3
Theorem 3.6.4
Theorem 3.6.6
Example 3.6.7

Definition 3.8.1a,b,c.e
Theorem 3.8.2 and proof
Theorem 3.8.4 and proof
Example 3.8.5a,b,c
Theorem 3.9.1
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Example 3.9.2
Example 3,9.3

Definition 3.10.1a,b,c

Example 3.10.2a,b
Definition 3.10.3a
Example 3.10.4a
Theorem 3.10.5
Theorem 3.10.6
Definition 3.10.7
Theorem 3.10.8
Theorem 3.10.10
Definition 3.10.11
Remark 3.10.12
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Fourier Transforms, Fourier Series, and Discrete Fourier Transforms

Domain of the Definition of the Domain of the
function Fourier transform Fourier transform
f f=F F
R Fiy)=fy) = f FDe ™™ dy R=R

Inversion Formula: f(¢) = [ F(y)e*™ dy

Notes. e Integration is over R.
o The domain of the Fourier transform is
denoted by R,

z Fyy=Y | flnleminri® Toq = R/207

Inversion Formula: f[n] = 5'5 ffﬂ F(y)eminy/ 4y,

Notes. o 22 > 0is fixed and summation is over Z.
e F is a Fourier series with Fourier
coefficients f = {f{n}:n e Z).
e I is 2Q-periodic on ]ﬁi, and
Twg = R/ZQZ denotes this domain,

1 [® : .
T Fln]l=— iR g Z
0 [n] 70 f_g f»e ¥

Inversion Formula: f{y) = }_ Fln}e"™*/®

N-1
Zy Fln] = Z flm]e2mimn/t Zy

nr=()
N-1

Inversion Formula: f[m] = % ZFG

F[n‘}ebriﬂm,lh'

Notes. e F is a Discrete Fourier Transform (DFT). -
e F is N-periedic on Z, and Zy denotes
this domain.

Xix

XS s 5Bond



Chapter 1

Fourier Transforms

1.1 Definitions and formal calculations

1.1.1 Definition. INTEGRABLE FUNCTIONS

Set

Lh(R)={f R C:Va<b, [ |f(t)]dt< oo}
and -
LR ={{:R>C: |flug= [ If®)]dt < 0}.

Li,.(R) is the space of locally integrable functions on R and L'(R) is

loc

the space of integrable functions on R.
Let g € LL.(R). [ g(t)dt, which we designate frequently by

ioc
J 9(#)dt, is
T
L
The Cauchy principal value, pv [ g(t) dt, is
_ T
’Il'l—{It}o .[—T g(t) dt.

If [g(t)dt exists then pv [ g(t)dt exists and the two integrals have
the same value. In the opposite direction, pv [ g(t) dt may exist while

1
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[ g(t) dt does not, e.g., g(t) = t. On the other hand, if pv [ g(t) dt exists
and either g is even, i.e., g(t) = g(—t), or g > 0 on R then

pv f glt)dt = f g(t)dt,
e.g., Erercise 1.1.

We have been purposely vague about the definition of [’ g(t)dt. If
you know the Lebesgue integral, then fine! If not, the Riemann integral
works for most of our calculations and most of the functions we shall
consider.

1.1.2 Definition. FouriEr TRANSFORM _
The Fourier transform of f € L*(R) is the function F' defined as

Fy)= [~ fwe™dt, yeR(=R),

cf., Ezercise 1.15. Notationally, we write the pairing between the func-
tion f and F in one of the following ways:

~ \%
f +— F, f = F, f =F,
The space of Fourier transforms of L!-functions is denoted by A(E’@), ie.,

AR)={F:R—C:3f ¢ LY(R) suchthat = F}.

1.1.3 Remark. Inversion ForMuLA
Let f € L*(R) and let f = F. The Fourier transform inversion
formula is

(L.1.1) () = [ F()e¥™ dy.

We shall prove (1.1.1) in Section 1.7, but let us formally derive it
now.
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1.1.4 Remark. FormMaL CALCULATION OF THE INVERSION FORMULA
The Dirac § “function” (actually, it is a probability measure) can
be thought of in terms of the “formula”

(8) v, ()= [ Fw)b(t - u) du;
and a model of the uncertainty principle is the “formula”
(UP) 8(t) = f 2t gy

If the Fourier pair f <+ F' is given, then (§) and (UP) allow us to make
the following formal calculation:

/F(,Y)eZ'rrit'y dy = // f(u)e--Zﬂiu'ye27rit'y dudy
(1.1.2) = /f Fu)e2T =97 dydy
= [ £(u) 8( — w) du = £(2).

(6) and (UP) are nonsense as they stand, but do have a sense intu-
itively. () is easily motivated, e.g., Section 1.6 and Section 2.1. The
rationale for (UP) involves the fact, f'(t) + (2miv)F(y) (which we
shall verify shortly), which in turn allows us to use R as the domain
of the momentum and thereby to invoke the usual interpretation from
physics of the uncertainty principle, e.g., [vN35, Chapter I11.4, esp. page
235], [Wey50a, page 77 and Appendix I|. Mathematically, (UP) can be
given a precise meaning in terms of the notion of “oscillatory integral”
[Hor83, Volume I, Section 7.8, especially (7.8.5)].

In a more elementary, but also fundamental way, we can think of
(UP) in terms of the following idealized piano experiment. The stan-
dard for concert pitch is that the A above middle C' should have 440
vibrations per second. Thus, the A four octaves down (and the last
key on the piano) should have 27.5 vibrations per second. Suppose we
could strike this last key for a time interval of 1/30 seconds, i.e., the
hammer strikes the string and 1/30 seconds later the damper returns
to the string, thereby stopping the sound. In particular, a complete
vibration for this key does not occur. We then have very precise time
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information, represented by é(t) on the I!i;eg‘*‘:h: side of (UP), but corre-
spondingly imprecise frequency information since the emitted sound is
anything but the desired pure periodic pitch of this low A. In fact,
this imprecise frequency information can be thought of as the “noisy
sum” of many pure tones, represented by the integral on the right side
of (UP).

Even assuming the validity of (something like) (§) and (UP), the
calculation (1.1.2) leaves something to be desired becanse of the casual
switching of order of integration we have made, cf., Section 1.7.

1.1.5 Definition. BounNpED VARIATION
A function f : R — C has bounded variation on an interval I C R if
there is a constant M such that for every finite set tp < t; < --- < 1,
t; € I, we have
2oUSt) = F(tima)l < M.
1=1
In this case we write f € BV(I), and note that we could have I = R.
If f: R — C has bounded variation on each interval of finite length
then f locally has bounded variation, and we write f € BV(R).
Functions having bounded variation on bounded intervals I have
graphs of finite length; and such functions are a natural generalization
of continuously differentiable functions, e.g., [Ben76, Chapter 4].

One form of the inversion formula that we shall verify in Section 1.7
is the Jordan pointwise inversion formula.

1.1.6 Theorem. JORDAN THEOREM
Let f € L'(R) and assume f € BV[t —¢€,t + ¢ forsome t&€ R
and €>0. Then

— Q R
(1.1.3) ! (H)';f (=) _ Jim [ F(y)e™dy,

where [ <+ F. If f is continuous at t then the left side of (1.1.3) can
be replaced by f(t).

Another important pointwise inversion formula, but one which we
shall not verify, is the following result due to Pringsheim, e.g., [RL55].

et t
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1.1.7 Theorem. PRINGSHEIM THEOREM

Let f e BV(R) and assume
lion (1) =

Jtf=o0
Then .
F(y) = [ f&)e > de
exists for all v except possibly v =0, and

Vi e R, f(t+) + f(t_) = lim / F(,y)efz:rit'y d’y.
<jvl<f

2 N—ro0,e—0 J¢

For the remainder of Section 1.1 our statements and proofs are for-
mal, in the sense that we have not been concerned with correct mathe-
matical hypotheses for asserting the existence of the Fourier transform
or using the inversion formula.

1.1.8 Remark. FORMAL CALCULATIONS FOR [ ¢+ F'
Consider the formal pairing f ¢ F, where f = fi +if; and F =

Fy + i F;. Then, AT we obta.m
' f"’(@ﬂﬁnﬁan of
Fi(y) + i (v f(f1(t) + 1 f2(t))(cos 2wty — isin 27rt7) dt, o

and so

Fi(v) = / (fa(t) cos 2ty + fo(t) sin 2y di

and

Fo(y) = f (falt) cos 2wty — f(t) sin 27ty) dt.
Similarly, we-beve 4y (/. /1./), cot Lot ——
AW +ifat) = [(Fi(y) + iFa(7)(cos2mty + isin 2wty) dy
and, hence,
A1) = [(Fa(y) cos 2ty — Fiy(y)sim 2mt) dy

and

= f(Fg(fy) cos 2nty + Fy(v) sin 27ty) dy.
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1.1.9 Proposition.
Consider the formal pairing f & F. f is real and even if and only
if F'is real and even. In this case

F(y) = 2-/:0 f(%) cos 2mty dt

and

f(t) = 2/000 F(v)cos 2ty dvy.

Proof. Suppose f is real and even. Then f; = 0 and f = fi; and we
apply the calculations of Remark 1.1.8 to obtain

F(y)= ff(t)(cos 2ty — i sin 2mty) di
= ff(t) cos 2wy dt = Qf:o f(t) cos 2mty dt.

In particular, F' is real and even. A similar calculation works for the
opposite direction. O

1.1.10 Proposition.
Constider the formal pairing f <+ F. f is real if and only if F(y) =

F(=7).

Proof. If f is real then f = fi; and we apply the calculations of
Remark 1.1.8 to obtain

F(y) = /fl(t) cos 2mty dt

and
Fa(vy) = —[fl(t) sin 2wy dt.

Thus, we have Fi(—v) = Fi(y) and Fy(—v) = —F3(y), and, hence,

F(—y) = Fi(—7) + iFo(—7) = Fi(—v) — iF(—7)
= Fi(y) +iFa(y) = F(v).

For the converse, suppose F(y) = F(—v). Therefore,

Fi(y) —iFa(y) = Fu(—y) + iF(-7),
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ie, Fi(y) = Fi(—v) and Fa(y) = —F3(—~); hence, F} is even and
F, is odd. Using these facts and the calculations of Remark 1.1.8, we
calculate

f2(t) = f(Fl('y) sin 2mty + Fa(-y) cos 2miy) dt = 0;

from which we conclude that f is real. : O

1.1.11 Proposition.
Consider the formal pairing f < F and write

Fy) = A(y)e ",
where A(y) > 0 and ¢(v) € R. If f is real then
1) = [ Aly) cos(@rty + $(x)) d.
Proof. We calculate

cos(2mty + ¢(7)) = cos 2wty cos P(y) — sin 2wty sin ()

and so
A(7) cos(2mty + $(7))
= A(7y) cos ¢(y) cos 2mty — A(7y) sin () sin 2wy
= Fi(7) cos 2rty — Fy(7y)sin 2mty
since

F(v) = Fi(y) +iF2(7) = A(v)(cos ¢(7) + i sin &(7)).

Using this fact and the hypothesis that f is real, we see from the cal-
culations of Remark 1.1.8 that

J() = f A(7) cos(2mty+4(y)) d.
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1.1.12 Remark. AMPLITUDE AND PHASE

Consider the formal pairing f ¢+ F and write F(y) = A(y)e,
A(~y) is the amplitude and ¢(v) is the phase angle of F(v).

The inversion formula (1.1.1) allows us to think of a signal f as a
“sum” (integral)

“F(t) = T (A()e#) it

¥

of exponentials ™7 with complex coefficients A(y)e®(™). Different
phase angles ¢ can produce quite different looking signals f even if
A(y) remains the same. As an elementary example, note that if ()
is replaced by ¢(y) — 2mu~y for some fixed u € R, then f(£) is replaced
by the translate f(¢t — u), cf., Theorem 1.2.1d.

The amplitude squared |A(y)[?* can be thought of as the amount
of energy of f in the frequency band about a small neighborhood of

«v; and |AJ* is often a measurable quantity in signal processing, spec- -

troscopy, fluid mechanics, etc. The physical measurement is based on
ideas about correlations and translations of f, e.g., Ezercise 1.883, Ex-
ample 2.8.10, and Michelson’s invention of the interferometer [Loe66],
[Mic62]. The resulting 0-phase information or some windowed form of
it is called the spectrogmm@ periodogram or power spectrum of f, e.g.,
Section 2.8 and Definition 2.9.5. A basic methodology in engineering
and the sciences is to approximate a reconstruction of f from its spec-
trogram. This is a first step in harmonic analysis signal reconstruction
technology.

1.1.13 Remark. A TABLE
Consider the formal pairing f <+ F, where F' = Fy +{iF}.

f real if and only if F(y) = F(—v),
F(y)= ff(t) cos 2miy dt — sz(t) sin 27ty dt,
flt) =2 fo “(Fy(y) cos 2nty — Fy() sin 2mty) dv,

= 2Re f - F(y)e*™dy,
0

oy

(roman )
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f real and even if and only if F real and even,
F(y)= 2/00 f(t) cos 2miy dt,
0

ft)=2 f:o F(7y) cos 2ty dry.

f real and odd if and only if ' odd and ¥ imaginary,

F(y)= -2 fm f(t) sin 2nty dt,
i)
o

f(t) = Qz'f F(v)sin2rty dy.

f imaginary if and only if Fi(y) = —F(—v),
e.g., Ezercise 1.2.

In light of Remark 1.1.13 we ask:

QQuestion. Can we characterize the case when f is not only real but
is also non-negative?

Answer. Yes, but the answer is not simple, and involves the notion
of positive definite functions which play a key role in theoretical con-
siderations associated with spectral estimation, e.g., Ezample 2.7.9b,
Theorem 2.7.10, and Sections 3.6 and 3.7.

1.2 Algebraic properties of Fourier trans-
forms

Notationally, for a fixed v, we set
ey (t) = "™,
and, for a fixed v and a given function f, we set
(ruf)(t) = F( ~u).
T.f 1s the translation of f by wu.
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1.2.1 Theorem. ALGEBRAIC PROPERTIES OF FOURIER TRANSFORMS
a. Linearity. Consider f; <+ F; and let ¢; € C, 7 = 1,2, where
fi € LN(R). Then (e1fi + c2f)"(7) = (e1fr + e2fa)(7), t.e.,

cifi+afs ¢ aFy 4 e Fy.

b. Symmetry. Consider f » I, where f € L'(R) and F € L'(R).
Then F(vy) = f(—), i.e.,

F(t) & f(—).

¢. Conjugation. Consider f + F, where f € LYR). Then

—

(M) = f(=7), e,

f(t) = F(=7),

cf., Proposition 1.1.10.

d. Translation (time shifting). Consider f <+ F, where f € L*(R),
and take u € R. Then (1, f)*(y) = e 7™ f(y), i.e.,

(ruf)(t) ¢ e—u(7) F'(7)-

e. Modulation (frequency shifting). Consider f « F, where f €

o~

LY(R), and take A € R. Then (™ f(tW My) = F(y = A), i.e,
ex(t)f(t) «—= F(y = 2) = nF(y).

f. Time dilation (time scaling). Consider f ++ F, where f € L'(R),
and take A € R\{0}. Define the A-dilation of f by

At) = Af(x).

Then Ji(y) = 47(3), i,

£ = PG,
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The formal proof of this result is easy, but we should comment on
the hypotheses of part b. It turns out that the integrability of f and
F is sufficient for the validity of the pointwise inversion formula (1.1.1)
which is used in the proof of part . The verification of this sufficiency
requires some work, and we shall deal with it in Theorem 1.7.8.

1.2.2 Example. DILATION AND MODULATION
a. Dilation. Let 1;_7,1) be the rectangular pulse on R defined as

1, -I'<t<T,
1["'TfT)(t) =

0, otherwise.

IfT =1 we write 1 = 1_;;. Now define the function f% =
hl_rr8, h > 0. To fix ideas, take A € (0,1). Then the graphs
of f and f) are —

Figure 1.1

b. Modulation. Consider a carrier wave cos 2mt~yy, where v > 0 is
the carrier frequency. If f € L}(R) then f(t) cos 2m7y, is the resulting
modulated signal. '
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Figure 1.2

We shall compﬁte the Fourier transform of f(t)cos2mty, in terms

of f(v) = F(v) = A(y)e"®:

ethqro + e—2mt'm

f(t) cos 2mtyy = f(t) 5

1 i
— 5(F(y =) + F(y+ %)) = Ad(v)e e

where A.(v) is the amplitude of Z(F(y —v0) + F(v+ %)) and ¢.(7) is
its phase angle.

Suppose f € L*(R) has the property that f vanishes off the interval
[—Q,Q]. In this case, we say that f is Q-bandlimited, and we use the
notation !—BL to designate this property of a function. To fix ideas,
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consider the amplitude A as in Figure 1.5.

Figure 1.3

If v >0, A, has the following graph, indicating that A splits into
two parts, each having half the amplitude of the original.

Figure 1.4

If v < £, then the two lobes in Figure 1.} overlap, leading to
aliasing problems, e.g., Fzample 1.9.4 and Remark 3.10.12.
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1.3 Examples

1.3.1 Example. THE Smvc or DIRICHLET FUNCTION
Let f(t) = 1i_r,7y(t). Clearly, we have 1|_r7y(7) = imfr—:T'I Nota-
tionally, we write

_siny
) ==
and .
X _sinmy
sincy = —_—
so that 1{—TT)(’Y) = darr(y). If A > 0 then ﬁ___ A= dy. We re-
fer to d as the Dirichlet function, and shall see “Ihat Jd(v)dy =1

(Proposition 1.6.8), noting that d ¢ L'(R) (Brercise 1.6).

Figure 1.5

1.3.2 Example. Tue Porsson FuNCTION
Let f(t) = e~2™¥ r > 0. To compute f we calculate

T 2nr|t 2mwit
/ e~ 7rr||e— mivy It
T ;

0 . T .
— f e21rrte—2mt~,' dt +[ e—27rrte--2'mt'r dt
-T o

1 . 1 )
=~ (1= =22 (r—iy)y _ & o —2wT{r4iy) 1
= ) )

1 1 1
).
27r(r +r+i7)+c( )
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Clearly, J11_:;1& ¢(T) = 0 since r > 0; and, hence,

- 1 T

f(’Y) - -TFT2+’)’2-
We write

PV R

so that pi(y) = f('y) Thus, if A = 1/r > 0 then

™2 s pa(y).
We refer to p as the Poisson function, and observe that [p(y)dy =1,
e.g., Frample 1.6.5.

Note that the exponential decrease of f is transformed into the
polynomial decrease of f , cf., Ezercise 1.5 where the point of nondif-
ferentiability in this example is replaced by a discontinuity.

1.3.3 Example. THE GAUSSIAN

Let f(t) = e™™, r > 0. We could calculate f = F by means of
contour integrals, but we choose a real, and by now classical approach
[Fel66, page 476]. By definition of F', which is real and even, we have

(1.3.1) F,('Y) = __zﬂ.z'/te—wrt?e—zqriw dt.
Noting that
d —mrt2y J—
E( )= —2nrte ,

we rewrite (1.3.1) as

F’("){) = ——271'?:'['2—1';(6_””2)’8_27”” dt

r

_/e-—'rrrtz(_zﬂ,z',y)e—mrit'y dt

P o g
____l:e 'n'rte 2mity

-0

—27
= —F(y).
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Thus, F' is a solution of the differential equation,

(1.3.9) F(y) = =2 p(y),

r

and (1.3.2) is solved by elementary means with solution
F(y)=Ce™"/n,

e.g., Exercise 1.9.
Taking v = 0 and using the definition of the Fourier transform, we

see that
C = j e ™ dt.

In order to calculate C' we first evaluate @ = f° e~ du.
a “/ - dm/ e ¥ dy
:f“f“’ —-(z2+y)dxdy_f”2f e rdrdd
o Jo
= Z/(‘]ooe‘“du: T

fe““2 du = /.

Thus, a = %’—? and so

Consequently,
—mrt? ]' —u
C= f dt = e du = —.
Therefore, we have shown that
6—1'rrt2 .

We write

g(t) = 75
so that if A > 0 then
() ¢ e7
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In particular,

v T

and hence g _ +— ¢ e We refer to g as the Gauss function or Gaus-
sian, and note that [ g(vy)dy = 1. '

1.3.4 Example. Tug Frikr FuNcTION

Let f(t) = max(1 — [t],0). On [-1,1], the graph of f’consists of the
equal legs of an isosceles triangle of height 1; f vanishes outside [-1,1],
e.g., Figure 1.6, The Fourier transform of f is

F@) = W=t [ 01(1 +1)e=2m d
1 1 : 1 1 :
- [27”'7 t G - 1)] + [_2m'7 " Gt T )
—242cos 2y 2(1 — cos 2m)
R N s
_ 2(1 — [cosmycoswy —sinwysinTy]) sin? ey
- (2my)? T ()2

i.e.,

Notationally, we set A = f and

o= (%)

so that wa,(y) = 5.(7), ie.,

(1.3.3) o A wa.

Thus, if A > 0 then

|27t ]

A
3 ,0) = é';Azw/A(t) — wr(7)-

(1.3.4) max(1 —
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We refer to w as the Fejér function, and note that

f w(y)dy =1
( Proposition 1.6.3). Fejér's surname at birth was Weiss.

Besides the integrability of w), a key difference between d; and w,
is the fact that wy > 0.

Figure 1.6

1.4 Analytic properties of Fourier trans-
forms

1.4.1 Theorem. ANALYTIC PROPERTIES OF FOURIER TRANSFORMS
Let f € L'(R), f +— F.
a. Boundedness. For each v € R, |F(7)| < LIl gy
b. Continuity. F is uniformly continuous on R, i.e., for all ¢ > 0,

there is § > 0 such that for each y and each A for which |A] < 4, we
have |F(y + A} — F(v)| < €. In particular, F is continuous on R.
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¢. Riemann-Lebesgue Lemma. lllim F(y)y=0.
¥ |—+oo

d. Time differentiation. Suppose that f™, m > 1, erists every-
where and that f™) € L*(R). Assume

(1.4.1) floo) = -+« = f™ D (to0) = 0,

where f(do00) = 0 indicates that limg 100 f(£) = 0 and limy, o f(t) =
0. Then
FE () = (2min)™ F(v).

e. Frequency differentiation. Supposet™f(t) € LY(R). Thentf(t), -,
mif(t) € LA(R), FO),-.. , F™) erist cueryuhere, and

Vi=0,1,---,m, (=2mit)’f(t) «— FU(5).

Proof. a. [F()| < [ 1F®)]1e*dt < | fllusce
b. We begin with the estimate,

[F(v+2) = F(y)l
(1.4.2)
< [l (e 1]t = [17(1)] [ 1] d.
Let fiq(t) = [f(1)|le”** ~ 1| so that %i_r}réf[,\](t) = 0 for all ¢t and
|fin(2)] < 2|f(t)]. Thus, LDC (the Lebesgue Dominated Convergence

Theorem, Theorem A.9 from Appendiz A) applies to the right side of
(1.4.2), which is independent of v € R. Consequently, we have

Ye>0, 3xo>0 suchthat VAe (0,X) and VyeR,
|F(y+X) = F(y)| < e

This is the desired uniform continuity.

¢. Suppose f =1p4 and 7 # 0. Then

1

|f(’T) = ;‘r|—7‘|,

/b e-?.m't"y d‘t‘ — 1 |6—2ﬂ'ib’r _ 6—2'11'1'11'1[ S
a 2m|y|

and this tends to 0 as |y| tends to infinity.
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Therefore, Jim 7| = 0if f =%, ¢jlp, 4, where b; < ajq1.
Yoo

For arbitrary f € L'(R), f ¢+ F, we take ¢ > 0; and we shall find
4. > 0 such that if |y| > 4, then [f(y)] < ¢. To this end we invoke
Theorem A.5 and choose .

9= ¢l 9+ G,
i=1

where b; < ajy4, for which |[f — gllz1(ry < €/2. Consequently, we have

VyeR, [FMI<IF(y) =G+ 160
€
<IF = ol + 160 < £ +1GG)!
From the previous step we can take 4. > 0 such that |y| > ~. implies
|G(7)| < €/2. This completes the proof.

d. By integration by parts ( Theorem A.22), we compute

T . |
/‘Sf(m)(t)e-2rtt7 dt = f(m-—l)(t)e—27rtt'y

-5
T

T R )
+ 271.2,},] f(m—l)(t)e-—mrttqf dt = f(m—-l)(t)e—th'y
-5

-5
T

+ 27!‘2’? (f(mu-z) (t)e—Z'm't-T

T ,
somiq [ D (geiei dt)

m-—1

== E(Zm"y)i

3=0

-5

% (f(m-—(j-i-l)) (T)e—Zm'T'}' _ f(m—(j+1)) ( _ 8)627&51')

T .
+ (2min)™ f_ St

Letting 5,7 — oo, the right side converges to (27miy)”F(y) and the
result is proved.

e.Without loss of generality let m = 1 and fix ¥ € R. Then

F(y+ ’\))\ — F(v) — ff(t)e-zwitv (&) dt,
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and we designate the integrand by f(t, ) (v is fixed).
By the mean value theorem we have the estimate

e"2mith _ 1 _ |cos 2wt — 127rt N iSin 27rt)\27rt
A - 2wt 2wt
cos2mwiA —1
< B S—— 1
< 27|t ARy I+27r[ ]
| sin€||272A|
< 2mr|tf——— 4 27|t < 47|t
< 2rfe R s oy <
Consequently,
(1.43) 7N < dnltfD)] e
and we also know that
. — . —2mity
(1.4.4) %1_13] f(t,A) = =27itf(t)e a.e.
since Ot — 1 1
. cos2mth — . cosa —
RS
and _
. =i 8in 2wt ,
hm ————————— = —2mit,
A0 p

By (1.4.3) and (1.4.4) we can invoke LDC and assert that

3 limyyo LOENFO) = 1(_2mit) f(t)e~2m dt. [

1.4.2 Remark. THE RoLE oF ABSOLUTE CONTINUITY
a. Suppose fi™) exists a.e. and f™ ¢ L}(R). Ifa,b€ Randce C
then

F)=c+ [ * 7™ () du

is absolutely continuous on [, b] and F(a) = ¢. FTCI (Theorem A.20)
implies F' = f0™ ae. on {a,b]. This does not imply that ™1 ¢
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ACioe(R); and closely related to this phenomenon is the fact that it is
not necessarily true that

(1.4.5) (fY(y) = 2mivf(y) on R

when f, f' € L'Y(R). For example if fo is the Cantor function for
the usual 1/3-Cantor set C on [0,1], e.g., [Ben76, page 22], then [ =
T-1fc+{1— fo)1[,y defines a continuous compactly supported function
of bounded variation on R for which f' = 0 a.e. In particular, f, f' €
L'(R) and (1.4.5) fails.

In this regard, note that if f, f' € L*(R) and f € ACi,(R) then

[ Fwd=0

[Ben76, Theorem 4.16].
b. The formula,

(1.4.6) [ 1™ @2 dt = (arigy™ fl),

is true by the proof of Theorem 1.4.1d if we replace the hypothesis,
0 e LMR), by f™ e Li (R). In either case, the application of
integration by parts in the proof, “going from m to m — 17, is subtle
since the everywhere differentiability of f™} allows us to conclude that
F=1 € ACi.(R) [Ben76, Theorem 4.15], and this smoothness allows
us to integrate by parts.

¢. Equation (1.4.6) is also valid, without the aformentioned subtlety,
if the hypotheses, that f(™ is everywhere differentiable and f(™ ¢
. L'(R), are replaced by the hypothesis that f(™ be piecewise continu-
ous, cf., the example of part a and the delicate issues that can arise in
[Ben76, Section 4.6).

d. The hypothesis (1.4.1) of Theorem 1.4.1d is not required. For
simplicity, let m = 1 and assume f, f/ € L*(R) and f € AC1,(R), cf.,
part b. For fixed a € R and ¢ € C, set F(t) = c+ [2 f/(u) du. By FTC]I,
F e AC(R) and F’" = f" a.e. Since f € AC\o(R), we have f = F+C

on [a,o0) and so

Vi€ [a,00), f(t)=F(a)+C + / () du
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Therefore, f(a) = F(a) + C and

1) = f@) = [ F(w)du

Thus, f' € L}(R) implies Jim f(t) = Lz, and we have Ly = L_
since f € L'(R). This is (1.4.1). Also, this calculation shows that

VaeR, fla)= /f’ ) du.

=0

e. In our proof of Theorem 1.4.1d we did not require that fU) ¢
LY(R) for 0 < j < m. We only used the fact that each such fU9) ¢
AC1oo(R). It is true, however, that if f, f™) € L'(R) then f) € L}(R)

for 0 < j < m, e.g., [BC49, pages 29-30].

Proposition 1.4.3below is an extension for m < 0 of Theorem 1.4.1d.

1.4.3 Proposition.

Let f € LY(R), f + F. Define g(t) = [*_ f(u)du and assume g €
LMR). (Note that [ f(t)dt = 0 since g € L'(R), e.g., Ezercise 1.10.)

Then F(vy) = 2mivg(y) for v € R, and so

vy e R\{0}, d(v) = —F(’r)
ie.,

o) = [ fu)du = =P (o),
where limy F()/(2rix) = §(0).
Proof. We calculate

T .
f gf (t) e—2mtry dt
-5

= g(t)(=2min)e "

+f t)(2miy)e —ImEY 4t

Since g(£oo) = 0 and ¢'(¥) = f(t) a.e. by FT'CI, we can conclude

that 2mivg(y) = F(v).

U
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1.4.4 Example. Co(R)\A(R) # o
Theorem 1.4.1b,c allow us to conclude that A(R) - C’O(R) where
Co(R) is the space of continuous functions F on R for which

lim F(y)=0.

¥l—oo

It is relatively easy to check that this inclusion is proper. For example,
if F'is defined as

if v>e,

(1.4.7) F(y) = {

1 if 0<y<e,

on [0,00) and as —F(—) on (—o0c,0] then F € Cy(R). The fact that
F ¢ A(R) depends on the divergence of [~ 'ﬁ%' Instead of providing
the details we refer ahead to Ezample 3.8.4a where the analogous calcu-
lation for Fourier series coeflicients is not only verified, but motivated,
cf., [Gol61, pages 8-9].

The function in (1.4.7) is not an isolated example. In fact, although
A(R) is only a set of first category in Co(R), we do have A( R) = Co(R),
Fzercise 1.40. Even more, a Baire category argument can also be used
to show the existence of F' € C.(R) for which F ¢ A(R). Explicit
examples of such functions are more difficult to construct, but it is
possible to do so, e.g., define

Lsin(2r4t), f it <l < 55,
B(t) =

0, if t=0or |f|>1,

[Her85]. (“B” is for “butterfly”.)

It is natural to ask for an intrinsic characterization of A(I,R:’.), ie., to
seek a theorem of the form “F € Cy(R) is an element of A(R) if and
only if ...”, where “...” is a statement about the behavior of F' on R.
This is an open problem, e.g., [Kah70].
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1.4.5 Remark. PErRSPECTIVE ON THE OPERATIONAL CALCULUS

Theorem 1.4.1 1s a major component of the operational calculus
used in classical electrical engineering and in solving various differential
equations. Typically, a calculus problem, e.g., a differential equation,
is transformed into an algebra problem by Theorem 1.4.1d; the alge-
bra problem is solved and the solution is transformed by an inversion
formula into the solution of the original problem. A feature of this
formalism is the notion of convolution.

1.5 Convolution

1.5.1 Definition. ConvoLUTION

Let f,g € L*(R). The convolution of f and g, denoted by f * g, is

frgt)= [ £t = w)g(w)du= [ f(u)g(t — u) du.

It is not difficult to prove that f*g € L'(R) (Ezercise 1.31). Later, we
shall demonstrate the role of convolution in the method alluded to in
Remark 1.4.5. The algebraic properties of convolution are the subject
of Exercise 1.32.

We illustrate convolution as follows.
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Figure 1.7

1.5.2 Proposition.
Let f,g € LY(R), with corresponding Fourier pairs f < F and

g+ G. Then f+ge€ LY(R) and (f*¢)" = fg, i.e.,

f+*g+— FG.

Proof. As indicated in Definition 1.5.1, the assertion that fxg € L(R)
is the task of Erercise 1.81. Assuming this fact, we use the Fubini-
Tonelli Theorem (Theorem A.14) to compute

(£ 9)(1) = [[ £t = w)g(u)e= dudt
= [ / F(t = w)g(u)e Y ¢=2mivy gy gt
= / ([ ft - u)e“%ﬂ'(f—uh dt) g(u)e‘z“’”‘” du
= [ Fng(u)e ™ du = Fx)a(). 0

1.5.3 Remark. PERSPECTIVE ON THE OPERATIONAL CALCULUS
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a. Proposition 1.5.2 is another key ingredient in the operational
calculus recipe mentioned in Remark 1.4.5. The complete story unfolds
when we discuss distributions in Chapter 2.

fean

] b. A critical step in the proof of Propesition 1.5.2 involved the
translation invariance of the integral (the penultimate equality). This
feature accounts for the effectiveness of time invariant systems in elec-
trical engineering. Mathematically, it has to do with the fact that R is
a (locally compact) group with an invariant measure.

1.6 Approximate identities and examples

The following notion is critical in approximating the unit impulse
and for providing examples in applications including signal processing
and spectral estimation.
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1.6.1 Definition. APPROXIMATE IDENTITY

An approzimate identity is a family {kpy : A > 0} C LY(R) of
functions with the properties:

a. YA > U,fk()\)(t) dt =1,

b. 3K such that VA > 0, ||kuylh £ K,

C. VT] > 0,}3‘.& f|5|ZTJ |k()\)(t)| dt = 0.

Caveat. The subscript “(A)” in Definition 1.6.1 does not necessarily
denote a dilation. The following result, however, shows that dilations
vield a large class of approximate identities.

1.6.2 Proposition.

Let k € LYR) have the property that {k(t)dt = 1. The family
{kx : ka(t) = Ak(AE), A > 0} C LY(R) of dilations is an approzimate
identity.

Proof. To verify the conditions of Definition 1.6.1a, we compute

fk,\(t) dt = )\fk(,\t)dt = fk(t) dt =1,

For part b we compute
f|kA(t)| dt = A] k()] dt :f|k(u)|du =K < oo,

where K is finite since & € L*(R).
For part ¢, take > 0 and compute

L NCCIEEE f k(M) dt = flu]ZAn|k(u)|du;

this last term tends to @ as A tends to oo since n > 0 and because of
the definition of the integral. |

1.6.3 Proposition.

% gint o gin t

—d—

(Contrary to our conszstent notatwn, we have written the limits of in-
tegration oo since the first integral is an improper Riemann integral.)
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Proof. a. To prove that these integrals are equal, let u = sin?¢ and
dv = ;1_2: in the second integral so that

o gin?t in®t |~ % 2
f s aft=-~—Sln +f —sintcostdt
o t |, Jo ¢
o gin 24 o gin t
— f sin2t [ 0° g,
0 t 0 t

b. We now show that

% sin f T

—dt = —

b =3
to complete the result. There are several ways to accomplish this com-
putation including a contour integral calculation. We choose the fol-

lowing method.
Let F(o) be the Laplace transform,

gin?

Flo)= /0 Tt “T‘” dt = £(2) (o).

We assert that F'(o) is a continuous function on [0,00) and that the
formal calculation,

Vo> 0, IF(e)=— " e~tsint d,
1]

is in fact true. (The verification of these claims involves uniform con-
vergence.) The convergence of F(0) is clear by an alternating series
argument.

It is easy to see that L{sint)(c) = H_ﬁ,a > 0, either by direct
calculation using integration by parts or by use of the general Laplace
transform formula, £(g'?){o) = 0?L(g){(0) — og(0) — o¢'(0), for the
special function g(t) = sint. Thus, using FTC, we compute

Fo)=F(©)= [ F(n)dn =~ [ Lisint)(n)dn

__ [T _dn
T Jo 142

We know F(oo) =0 by LDC, and so

= —tanlo, o >0.
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) - 1
F(O)'-:allglota.nla:g. O
1.6.4 Remark. THE DirRICHLET AND FEJER KERNELS

a. The family {d\} of dilations of d(t) is the Dirichlet kernel, and the
family {w,} of dilations of w(t) is the Fejér kernel. The Fejér kernel is
an approximate identity by Propositions 1.6.2 and 1.6.3. The Dirich-
let kernel is not an approximate identity since dy ¢ L!(R), whereas
- Proposition 1.6.3 highlights a similarity between dy and wy, cf., Ezer
cises 1.17 and 1.46. Although {d)} is not an approximate identity, it
does possess the property that its “mass” accumulates at the origin,
while its Fourier transform tends to the function identically 1 on R as
A —+ co.

b. By definition of convolution,
(1.6.1) %1[‘_%'%) *1[_%'_2_)(t)=max( —-—I%—I,O).
Thus, by FEzample 1.3.1 and Proposition 1.5.2, we have another proof
of the Fourier transform pairing (1.3.4), viz.,

t
max (1 - ]T—l, 0) —+ warr(y),
since the-right side of-(1.6-1)-is-

% ‘rrT('?’)2 = w21rT(7)'

(1.6.1) asserts that the “convolution of rectangles” is a “triangle”. Fur-
ther steps are carried out in Ezercise 1.17.

Yet another way to prove (1.3.4) is to introduce the following trans-
lation and dilation of the Haar wavelet, viz.,

%: if tE[—T,O),
Fty=4{ =L, if teo,T),

0, otherwise,
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An elementary computation gives
t 2]
g(t) = / f(u)du = max {1 - —T—,O ;

and, in particular, f,g € L'(R). From Proposition 1.{.8 we obtain the
Fourier transform pairing,

(1.6.2) max ( —~ %0) ot ,Yf(’r)

s )), we can easily compute

2m,yf(7) Warr (%),

and so (1.3.4) is obtained from (1.6.2).

1.6.5 Example. THE PoissoN KERNEL
a. The family {py} of dilations of p(t), e.g., Ezample 1.5.2'is an
approximate identity by Proposition 1.6.2 and the fact that

(1.6.3) fw_a% ~1

{p»} is the Poisson kernel.

b. We can do the elementary computation (1.6.3) by means of direct
integration, cf., [Rud66, page 4] or in the following more complicated
way. In Ezample 1.3.2 we verified that e=2™  p(v) so that, once
we have the inversion theory of Section 1.7, we shall have the pairing
p(t) + e ¥ = P(y). Thus, p(0) = P(0) = 1 by Theorem 1.1.6
( Theorem 1.7.6), and this is (1.6.3).

c. The Paley-Wiener Logarithmic Integral Theorem is the following
assertion. Let ¢ be a non-negative function for which [ ¢*(v)dy < oc.
There is a function f vanishing on (—o0,0) for which [|f(t)|*dt < oo
and |f| = ¢ a.e. if and only if

| log ¢(7)!
f 112 dy < oo,
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cf., Section 1.10 for the definition of f in this case. A function f is
referred to as a causal signal in the case it vanishes on (—o0,0); and a
function f is a signal of finite energy in the case [ |f(t)|* dt < co.

A - —m
pa(t) = m Pa(y) = e 2l

Figure 1.8

The Paley-Wiener Logarithmic Integral Theorem is used to charac-
terize causal signals, e.g., [0S75], [Pap77], cf., Remark 8.7.10. We have
stated it now to highlight the appearance of the Poisson function, to
mention finite energy signals which we shall study in Section 1.10, and
to give an explicit result which alludes to the profound uniqueness and
uncertainty principle properties of Fourier analysis, cf., Ezample 1.10.6.

1.6.6 Example. THE GAuss KERNEL

The family {g,} of dilations of ¢g(t), e.g., Example 1.3.3, is an ap-
proximate identity by Proposition 1.6.2 and the fact that [g(¢)dt =
(1//7) e dt = 1. {gx} is the Gauss kernel.
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A -~ —(m
at)= 7= Gy =V

Figure 1.9

1.6.7 Example. PROPERTIES OF THE Po1ssoN FUNCTION

a. If {ps : A > 0} is the Poisson kernel then 7y is not differentiable
at 0 even though p) € L'(R) and decreases like 1/¢% as |t| — oo, cf.,
Theorem 1.4.1e. The verification of nondiflerentiability is elementary
from Ezample 1.3.2; in fact, expanding P in a Taylor series, we have

i 2 =P(0) _ 27
0k ~ -0 A

Further, p) is even, convex, and decreasing to 0 on (0, c0).
b. Because of Evample 1.6.5a,c, we next note that

I /logl'rld
142

In fact, integrating over (0, c0) and letting A = 1/ we see that /2 =
—1/2, cf., [AGRA8S] for a unifying principle to calculate such integrals
by real methods.

(&,

A

Y (r)
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. . z—1
c. The linear fractional transformation w = —— maps the upper

z2+1
half-plane onto the unit disk with R mapped onto the unit circle. As
such, the Poisson function p(t) assumes the role of the Jacobian:

1

o [ st do = [ ropit)at

where g(e') is defined on the unit circle and
: t--1
= 10 = — -
1) = 9" = 9 ()
d. Note that if a,b > 0 then
PL*PY = Pol;
because of Frample 1.53.2 and Proposition 1.5.2.
For a host of other examples we refer to [Harr78]

1.6.8 Example. CENTRAL LIMIT THEOREM

a. We can compute

[

: t\"_ _ep
(1.6.4) VieR, lim (cos 7) =e "/

[Hint. We approximate the cosine by the first two terms of its Taylor
series, and have the approximation,

RN 1 \GED
(COS *—“) ~ (1 + ——Zn) .
Vn (=)

The right side converges to the right side of (1.6.4) by the definition
of e. The “error terms” can be shown to tend to zero by a variety of
methods.]

b. The Central Limit Theorem in probability theory is equivalent
to the following result. Let f € L'(R)N L=(R) be nonnegative and
continuous, and assume that
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ff(t)dtzl, ftf(t)dt:@, and

(1.6.5)
[tzf(t) dt = 1.

Define fi = f, fn = ffa-r for eachn > 2, and g,(t) = n'/2f(n'/%¢).

Then , ) )
. _ —t2/2
Ya < b, n1_113J fa gu(t)dt = m\/2_7r /; e dt.

There is a dazzling treatment of this material in [K6r88, Chapter 70].
The hypotheses (1.6.5) are equivalent to the statement that f is the
probability density function of a random variable X having mean 0 and
variance 1. We shall explain this terminology in Section 2.8. The
Central Limit Theorem deals with the asymptotic behavior of sample
means as the sample size increases, and it quantifies the remarkable fact
that the sum of a large number of independent random variables ap-
proximates a normal, i.e., Gaussian, distribution, e.g., [Kac59], [Lam66,
Chapter 3], [Pri81]. It will not come as a surprise that (1.6.4) is related
to the Central Limit Theorem.

The major elementary property of approximate identities is given
in Theorem 1.6.9a. Theorem 1.6.9b is the special case for the Fejér
kernel, and part ¢ is the Fourier transform uniqueness theorem. We
prove the uniqueness theorem as a corollary of part b.

1.6.9 Theorem. APPROXIMATION AND UNIQUENESS
Let f € IMR).
a. If {kpy: 2 >0} CLYR) is an approzimate identity then
Jim [|f = f* koo ey = 0-
b, We have

Af2n T - .
im [ 17— [ (1= Z) fipetrinan e = o

A—rco —X/2n
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¢. Uniqueness. If f = 0 on R then f is the 0-function.
Proof. a. We use the fact that [ k)(¢)df = 1 to compute

If = f = kpyllzm)
=/ \ [y ()f(t) du— [ k() £t~ u) du

< [ Ikos@I( /1760 = o) ) .
Let € > 0. By Theorem A.5, there is 7 > 0 with the property that
(1.6.6) Viul<n, If —rufllimw <e€/K,
where ||k ||z1ry < K. Therefore, we have the estimate

1 = 7% koollsry < 2 flewy [ o)l

€
+— oy (uw)|du
Ve |u|5n| o ()]

<t 2flmm [, o)de

Consequently, by the definition of an approximate identity, we have

dt

Lm [|f = f*koyllm < &
A—co

and so we obtain part a since € > 0 can be chosen as small as we like.
b. To begin with, the calculation in Frample 1.5.4 shows that
A 27 Y]\ g
g= [V - 2l gy
)= [ -l

Then, by the definition of convolution and an application of the Fubini-
Tonelli Theorem, we compute

£ wn(t) = f’\/% (1- 27 |y|

g 27rit'yd i
e (e dy

Since {w,} is an approximate identity, part & follows from part «.
Part ¢ follows from part b. In fact, the hypothesis and part b imply
lflty = 0; and so f is the O-function by Theorem A.5. O
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1.6.10 Remark. InvErsioN ForMULA ForR L!-NorM

Theorem 1.6.9b has the flavor of the inversion results discussed in
Section 1.1. For example we could compare Theorem 1.6.96 with The-
orem I1.1.6. There are two differences:

i. Theorem 1.1.6 is a pointwise result whereas we deal with L!-
convergence in Theorem 1.6.9b;

ii. the Dirichlet kernel is used in the statement of Theorem 1.1.6,
whereas the Fejér kernel is used in Theorem 1.6.9b.

1.6.11 Proposition.
Let f € L®(R) be continuous on R. If {kpy: A >0} C L'(R) is an
approzimate identity then

VteR, )\li;m f=* k(A)(t) = f(1).
(L°(R) is defined in Definition A.10.)

Proof. We first compute

£ = b (8)] = | [ By ) (0) = 7t = w)
< [ e 1(2) = (¢ = w)l du,

for a fixed t € R.

Let € > 0. Since f is continuous, there is n > 0 such that if 0 <
|u} < #n then |f(t) — f(t — u)| < ¢/K, where ||kpy|lpimy < K. This
yields the estimate,

19 = k(O] < e+ 20 fllsmwy [ ko) o

Consequently, by the definition of an approximate identity, we have

Iim |f(t) — f*koy(t) < 6

A—roo

and so we obtain our result since € can be chosen as small as we like.

]
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1.7 Pointwise inversion of the Fourier trans-
form

1.7.1 Remark. MoTIVATION FOR THE INVERSION THEOREM
The inversion formula in Theorem 1.1.6 for f continuous is:

Q2 .
(1.7.1) f#) = lim QF(’y)e%’t"’ dy, [+ F

To see that this formula is reasonable we begin with the formal calcu-
lation:

/F(T)ez‘m‘tq d’)’ — fff w e27ri(t—u)'y du d’)(

(1.7.2) = ff(fu, [{%l_{{.lof edmilt—u)y d,.},] du
L sin2m(t —w)
= &520 fu) g du = nh_l;glo [ dana(t).
20
ngg-,rg L T+ Elﬁ

Figure 1.10



1.7. POINTWISE INVERSION OF THE FOURIER TRANSFORM39

Observe that the area L of the major lobe of 7idarg in Figure 1.10
remains constant for all £2:

t+35 L
ft . Tedeng(u) du =/ . dann(u) du
- 35 ~ 55

20

(1.7.3)

b0 311127ruQ 1 pm sinu
—f = —f du
7 U

L
20

The calculation (1.7.2) involves changing orders of operations and

a principal value argument. These steps must be justified. The basic

idea, however, is clear. We expect that Qll}m f * daag(t) = f(t) (and
o0

this is (1.7.1)) since L remains constant as the major lobes converge
to ¢ and since the oscillations of the minor lobes on either side of ¢
become increasingly rapid as 8 — oo. The intuition is that the total
contribution of the minor lobes will be negligible for large {} since the
Dirichlet kernel take positive and negative values. This intuition is not

quite correct since
1 (7 sinu

M= U

du>1

(why?) - see Ezercise I.4; but the cancellation is such that we can
verify (1.7.1) under the conditions given in Theorem 1.1.6.

We shall have more to say about the phenomenon associated with
the integral in (1.7.3) in Section 1.9. Another issue that arises in the
calculation (1.7.2) is the fact that f need not be in L!(R) for f € L*(R).

1.7.2 Example. f € L}(R) Dogs Nor Ivey f € L(R)

Let f(t) = H{t)e ** where r >0 and H is the Heaviside function
defined as H = 1jycc). Then fly) = 2W(r+w) ¢ LY(R), e.g., Ezercise 1.5.
This should be compared with the fact that if f(t) = e=2ll then
F=pyr € LY(R), <f., the end of Erample 1.3.2.

Having made these introductory remarks, let us begin the proof of
Theorem 1.1.6, which is Jordan’s pointwise inversion formula for the
Fourier transform. Theorem 1.1.6 and Theorem 1.7.6 are the same.
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1.7.3 Lemma. SEcoND MEAN VALUE THEOREM FOR INTEGRALS OR BoNNET THEOREM

Let g be continuous on [a,b] and let f be increasing on [a,b]. There
is £ € [a,b] such that

b 5
[ 100y dt = fab) [ g de+ £6-) [ o),
e.g., [Apob7, page 217] and Exercise 1.48.

1.7.4 Remark. JorpaN DECOMPOSITION

The classical form of the Jordan Decomposition Theorem for a func-
tion f : [a,b] +— C asserts that f € BV{a,d], e.g., Definition 1.1.5, if
and only if f can be expressed as the difference fi — f2 of two increasing
functions on [a,b]. The proof is not difficult. We set fi{(a) = 0 and
define

Vi€ (a,8], filt)=sup {3 17(t;) - Ftin)l},

where the supremum is taken over every finite set a = fp < #; < ... <
t, = t. It is easy to see that f; is increasing, and straightforward to
check that f, = fi — f is increasing. This completes the proof.

There are standard measure theoretic generalizations of this result,

e.g., [AB66], [Ben76, Section 5.1], [Rud66].

1.7.5 Lemma.
Let g € BVI[0,€], € > 0. Then
. ¢ 1
(1.7.4) dim | 9(t)dama(t) dt = 5g(04).

Proof. a. By the Jordan Decomposition Theorem stated in Remark 1.7.4,
we assume that ¢ is increasing on [0, ¢]; and, in particular, from the def-
inition of bounded variation, g is bounded on [0, €].

b.i. Assume g(0+) = 0 and let 7 > 0. Since [d(t)dt = 1 for the
Dirichlet function d { Proposition 1.6.3), there is C > 0 such that

b't
fﬂwka

VYa,b € R, —
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We shall verify that

(1.7.5) Tm

Q=00

[ s daxalt) df) < nC:

and this will complete the proof of (1.7.4) for the g(0+) = 0 case since
n > 0 is arbitrary.

b.ii. Since g(0+) = 0, there is v = v(n) € (0, €) such that |g(t)| <7p
for all t € (0,v). Also, by Lemma 1.7.3, using the continuity of darq
and the boundedness and monotonicity of g, there is £ € [0, v] for which

/ﬂ " 9(t)dana(t) dt
= 9(04) [ dana(t)di + o(0-) [ dacat)at

2n8dv ginu
= g(V—)/ du.
27838 MU

Consequently,

(1.7.6) fo " g(t)dara(t) dt| < Cla(v—)| < nC.

b.iii. Note that (g(¢)/#)1},q(f) € L'(R) since we don’t have to deal
with the origin. Therefore, by the Riemann-Lebesgue Lemma,

Jim f 9()dana(t) dt = 0.

Using this fact, (1.7.6), and the inequality

’ fo " g(t)dana(l) dt‘

3

< ‘fo g(t)dzra(t) dt"i' /ug(t)dznn(t) di
we obtain (1.7.5).
c. Finally, suppose ¢g(0+) # 0. Let A(t) = g(t) — ¢(0+) so that
h(0+4) =0 and
lim | A{t)damq(t)dt =0
0

—tco



42 CHAPTER 1. FOURIER TRANSFORMS
by part b. Also, we know from Proposition 1.6.3 that

270
lim- / darn(t) dt = lim d(t)dt = ?13-

Q—o00 Q—}oo

Combining these facts, we compute

lim [ g(t)dzrn(t) dt

Q—oo Jo
i 6 g(04)
= fm ( /0 (A(t) + 9(01)) danaa(?) dt) -2,
since both limits exists when we expand the middle term. O

We can now complete the proof of Jordan’s theorem.

1.7.6 Theorem. JorpAN THEOREM
Let f € L*(R) and assume f € BV[t —€,t 4 €] for some t € R and
€ >0. Then

f(t+) + f(tﬂ) — 1 f 2mity
2 - Al_{lg'o -0 F(’T)e df)l?

where f < F. If [ is continuous at t then the left side can be replaced
by f(t).

Proof. For each 0 > 0, define the “partial sums”

2 .
Sat)= [ ™Ry dy

_ ff(U)(f_!; (2milt—u)y d,},) du = f * dyra(t).

The calculation is jusﬁfﬁed by the Fubini-Tonelli Theorem since the
double integral on R x [, 0] is absolutely convergent. We write Sq(t)
as

Salt) = [ £(t — w)dzea(u) du
= [T+ w4+ £t - w)dann(w) du
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Let g{u) = f(t +u) + f(t — ), noting that t is fixed, and let € > 0.
The result will be proved when we show

(1.7.7) Jim /G © g(w)dmar (1) du = £0F) ; F(t-)
and
(1.7.8) Jim ™ g(w)dara(u) du = 0.

Equation (1.7.7) is an immediate consequence of Lemma 1.7.5. Equa-
tion (1.7.8) follows from the Riemann-Lebesgue Lemma and the fact

that @’I}H(t) € L}(R), since f € L}(R). ]

1.7.7 Remark. THE JORDAN THEOREM AND PARTIAL SUMS

a. We could use other kernels besides the pairing, dyrn ¢ 1-q0),
to obtain analogues of Jordan’s Theorem. The advantage of Jordan’s
Theorem is that we really are dealing with the “partial sum” Sg and
not some weighting of F', such as the factor,

2m |yl
(1— \ )15-%,%](7),

in Theorem 1.6.95.

b. Jordan’s Theorem is the analogue for Fourier transforms of
Dirichlet’s Theorem for Fourier series. Dirichlet proved his result much
earlier in the 19th century, and his work contains the first proper defi-
nition of the notion of “function”. We shall prove Dirichlet’s Theorem
in Theorem 3.1.6.

If f e L}R)and f € LI(I’E&), we can use Theorem 1.6.9 to obtain

the following pointwise inversion theorem, cf., Ezercise 1.37.

1.7.8 Theorem. Inversion Formura For f € L'(R) N A(R)
Let f € LYR)N A(R). Then

(1.7.9) VieR, f(t)=[F(nemray.
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Proof. Since f € LY(R) then g defined by the right side of (1.7.9) is
uniformly continuous Theorem 1.4.1b.
Note that

‘ff 27t iy /‘E( 27r)£7[)f(7)ezm~, dvy

< ” fl F()er™ dy

Eer

L= (R)

Lo (R)
(1.7.10)

w 2y

+ Fn)e? ™ dy

L=(R)

- o 2 ~
<[ e+ [Z T A ay

I'Yl>'2—"

We shall apply LDC to the second integral on the right side of

(1.7.10). Let

o) =20 Foi

so that lim F) =0 a.e. and |F\] < 2n]f] € LY(R). Consequently, LDC

—}
applies, and hence

25(7)

’21r

) 21r|’y[
tim [ 2 o) ar =0,

From the definition of L!(R), the first integral on the right side of
(1.7.10) also tends to 0 as A — oo. Therefore,

Afen
(1.7.11) lim ”g(t) __/ (1 2W|7[)f( Yerritr o =,
Ao -Af2m L (®)
We now invoke Theorem 1.6.9b, viz.,
22w
(1.7.12) lim [l - (1 2“"”) el =0
A~too —Af27 LU(R)
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to obtain a pointwise a.e. result in the following way. Equation (1.7.12)
implies that

(1.7.13)
M2 : ~ .
lim (I — Q—W)E:-Z-l-)f(')r)szaz’"t'lr dy = f(t) in measure.

Aroo J_)[or

(By definition, AILm fr = f in measure if
Ve, lim [{t: 10— FOI = e}l =0,

e.g., [Ben76, page 89].) A basic result due to I. Riesz is that con-
vergence in measure implies convergence a.e. of a subsequence, e.g.,
[Ben76, page 106] and Ezample A.11, cf., [RN55, page 100] for a mo-
tivating footnote from the master. Thus, (1.7.13) can be changed to
convergence a.e. for some ), instead of A. Combined with (1.7.11), for
A, instead of X, this adjustment of (1.7.13) yields the fact that f = ¢
a.e.; and the result follows since f and g are confinuous. O

1.7.9 Remark. TeeE LEBESGUE SET
As remarked in the proof of Theorem 1.7.8, if f € L(R) then there
is {A.} € (0,00) such that

An/2m (1 _ 2my|

.7.14 i
(1.7.14) lim o

An—+oo —nf27

)f (M dy = f(t) ae.

It turns out that ), can be replaced by A in (1.7.14), and that the
convergence a.e. can be enlarged to include all ¢ in the Lebesgue set for
f, e.g., [Gol6l, pages 14-16]. The Lebesgue set L for f € L (R) is the
largest set of points ¢t € R for which

fim 2 [ 172 +) = F(2)] du = 0.

h-30

Refining FTCI we see that |[R\L| = 0 and that L includes all points of
contimuity of f, e.g., [Ben76, Section 4.4].
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1.7.10 Example. CoMPuTATIONS WITH THE INVERSION FORMULA
a. Using the Jordan Theorem we have
1 [ cos 2wty < ysin 2wty
T fa 14 2

0, if <0,

dy
(1.7.15)
= 1,0 t=0,
e, if t> 0.

To see this, let f(t) = e7?™ H(t), and note that f € L'(R), and
that f € BV(I), not only for bounded intervals I but also for R. Thus,
by Theorem 1.7.6,

1.7.1 t = lim —
(LT.16) VtER, 2 Qmroo 270 —al+iy

d,

S ) _ g L[

since f(y) = sy Clearly, the left side of (1.7.16) is the right side
of (1.7.15), so that it remains to verify that

1 [00 cos 2wty + vy sin 2wty g
2m Jo 14 ~+2 7
(1.7.17) :
1' Q eth‘ d
o 2m (1 + iy) i
We have
e2mity _ cos 2wty + ysin 2mty + i(sin 27ty — ycos 2miy)
144y 1++7 ’

the imaginary part is odd so that the integral on the right side of
(1.7.17) is

1 8 cos2miy + ~sin 2wty J
2_7r/—n 1442 7
and this yields (1.7.17) since the integrand is even.
b. Similarly, we can use either Theorem 1.7.6 or Theorem 1.7.8 to

verify that
2r oo cos2miy

w Jo 1?42
e.g., Exercise 1.23a, cf., (1.7.15).

—27rr]t[)

dy=e
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1.8 Partial differential equations

Harmonic analysis and partial differential equations (PDE) have a
profound relationship and interaction, e.g., [H6r83]; and the subject of
harmonic analysis owes its existence and formative years to PDE, e.g.,
[Foul822]. As a result, the literature on harmonic analysis and PDE
is extraordinarily extensive, e.g., [BMc66], [CB78], [Dav85], {Gus87),
[Weib5] for some elementary books. For this reason, and because of our
lmitations (both space-time and neuronal) and goals, e.g., Preface, we
have only selected the following small collection of PDEs. These give
a flavor of the aformentioned interaction, but perhaps so little as to be
misleading!

1.8.1 Example. A DiFrusioN EQUATION
Consider the heat equation with convection,

Ou k 6%*u ¢ Ou

(1.8.1) ot =10 T amiss

with initial and boundary conditions,

(182) u(2,0) = f(2)
and
(1.8.3) Vt>0, u(too,t)=u,(too,t)=0,

respectively. u(z,t) represents the temperature at & when the time s ¢.
The domain of u consists of R x[0, co) and f(z) is the given temperature

on R when the process begins at time t = 0. The term "2"%'3& is the
T

convection term, and the constants satisfy & > 0 and ¢ € R. We shall
compute u(z,1).

Formally, we assume there is a solution u(-,t) € L'(R) for each
t > 0 and we let U(, ')/) be its Fourier transform, i.e., for each ¢ > 0, we

£
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have the pairing u(z,t) ¢ U(y,t). We also assume f, F € L*. Taking
Fourier transforms of the functions in equation (1.8.1) we obtain

Ut(’y, ) 4k2 fuzm(a: t) -21rm:’yd + _______,fum 2’,' t)e 2mizy dx

= k luz(m, t)e“'g”"”"’

ypo +27ri'yfux(a:,t)e_2m'm dm]
T

— o
[= ]

[
o

. ~2mizy
3 -|—2mfyfu(m, t)e d:c]

u(z, t)e 2me '
-0

o0

e -

+eyU(y,t) = (=kv* + ev)U(y, 1),

where we have used (1.8.3) and assumed (-, ?), tzo(-, ) € L'(R) for
each t > 0. Consequently, for each fixed v € R we have the ordinary
differential equation

Uf('th) = (_k'Yz + C’Y)U(7yt)& t >0

-|—27rifyfu(m,t)e_2m'“‘"” dw]

—C0

and, as in Ezample 1.3.3, we can solve it by elementary methods to

obtain

(1.8.4) U(v,t) = C(y) exp([—k7" + o] t).

Hence, U(y,0) = C(y) so that, since U(«,0) = (’y), we can write
(1.8.5) U(v,1) = F(7) exp(l—k7* + e7]1)

for all (y,t) € R x (0,00). (At this stage we do not choose to be
careful about letting t = 0 in (1.8.4).) By completing the square,
(1.8.5) becomes

(1.8.6) Uly,t) = exp(t ) f(’y)exp( —th(y — 2‘;)2)

for all (7,t) € R x (0, o0), and, in particular, f(7)exp(—tk(y — £)?) €
Ll(]R) for each fixed ¢t > 0. Thus, we can apply the inversion theorem,
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Theorem 1.7.8, to obtain our solution

(1.8.7)  u(w,t)=exp (ffg) [f(y) 3 Gy gfr/(tk)lfz(y))] (z)

by taking the inverse Fourier transform of (1.8.6) for each ¢ > 0.
The calculation of (1.8.7) depends on the convolution formula, Propo-
sition 1.5.2, and the fact that

/e—tk('y—i)z e21r£y‘y d’)’ — em'yc/k / 6—(tk),«\2827riy)\ d\

— emive/k gfr/(zk)lﬁ(y)-
We now have to check that u(z,t) in (1.8.7) is really a solution of
the system (1.8.1)-(1.8.3). We leave this as Ezercise 1.39. Technically,
we have no right to begin with a function u, as we did, unless we had
available an existence theorem, which, in fact, does exist (sic).

1.8.2 Example. A DIRICHLET PROBLEM

a. Consider Laplace’s equation

Pu  Pu

=50 T

(1.8.8) Au

on the upper half-plane R x [0, co) with boundary condition,

(1.8.9) u(z,0) = f(z),

where f(z) is a given function. The Dirichlet problem is to determine
whether or not the system (1.8.8) and (1.8.9) has a unique solution in
the upper half-plane.

To focus on the problem mathematically, we assume equation (1.8.8)
is valid ol R x (0,00). Other natural assumptions will arise as we
proceed with the calculation.

Physically, the system (1.8.8) and (1.8.9) models a steady state
temperature distribution problem. “Steady state” indicates that the
average temperature doesn’t change with time, i.e., the rate at which
heat flows into the upper half-plane is 0. This should be compared
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with Ezample 1.8.1 which is not a steady-state problem as reflected by
the presence of the term “2%” on the left hand side of (1.8.1). (Lest
there be any confusion, Ezample 1.8.1is a one-dimensional temperature
distribution problem, and this example is 2-dimensional.) Condition
(1.8.9) indicates a known temperature distribution along the boundary,
and the Dirichlet problem is to determine if a steady state system with
a known temperature distribution on the boundary, e.g., predictable
radiators along the walls of a room, characterizes the temperature in
the interior.

Formally, we assume there is a solution u(z,y) and that u(-,y) €
L'(R) for each y > 0. If U(+, y) is the Fourier transform of u(-,y) then
(1.8.8) yields |

~ d?
(1.810)  VYVyeR, —4r’4*U(v,y)+ a7 Uy, y) =0.

For each fixed v € R we view (1.8.10) as an ordinary differential equa-
tion in y. The corresponding characteristic equation is r? — 47?42 =0
so that r = £27|y|. Hence, we have

U(7,y) = a()e’™M 4 b(y)e>m.

Now, we refine the assumption, u(-, ¥} € L'(R), to include the estimate,
M  such that Yy >0, f]u(:c,y)] dz < M.

As such we see that a(y) = 0 for v # 0 since

Uyl < [ lu(z,y)ldo < M.

Thus, we obtain
U(7,y) = b(v)e” ™M,

Formally, we have

(1.8.11) b(v) = F(7)

and

(1.8.12) u(z,y) = | o
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In fact, (1.8.11) is clear by (1.8.9) and the equation for U; and equation
(1.8.12) follows by the calculation

u(z,y) = [f * (e72M)V)(2) = f * piyy(2),

which is valid by Theorem 1.7.8 when f,f e L.

The right hand side of (1.8.12}) is the Poisson integral formula for
the upper half-plane. It is easy to check that u(z,y) so defined is a
solution of Laplace’s equation on R X (0, co). Further, since f € L*(R)
and {p,} is an approximate identity, we know that

limu(a,y) = J (2)

in L'-norm. In this sense we have solved the Dirichlet problem as far
as obtaining a solution.

The uniqueness of this solution is intuitively clear for the following
reason. Suppose f = 0 on R, the boundary of the upper half-plane.
By the definition of a steady state system, the temperature u(z,y)
would also have to be 0 since the temperature of the upper-half plane
is not influenced by any other heat flow. Of course, there is a highly
developed mathematical theory of uniqueness for solution of partial
differential equations, e.g., [H6r83].

1.8.3 Example. A DirrusioN EQUATION AND IMAGE PROCESSING
Combining the two-dimensionality of Erample 1.8.2 with the time
dependence of Fzample 1.8.1, let us consider the diffusion equation

_ Ou

B.1 Ay = —
(1.8.13) u o

on R? x [0, co) with initial condition,

(1.8.14) u(z,y,0) = f(z,y),

where A is defined by (1.8.8), f is a given function, and (z,y,s) €
R? x [0,00). Since such problems are a well established part of par-
tial differential equations and classical physics, we choose to look at
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(1.8.13) and (1.8.14) in terms of a more recent interpretation in émage

processing.
Let

(1.8.15) ug(2,y,5) = ¢ /()9 /(v).

We are using “s” instead of “t” in the dilations of the Gaussian on R
to denote scale instead of time. Note that if we define the function &
on R? as

k(z,y) = g(z)g(y)

then
ka(z,y) = M E(Az, Ay), A >0

is the L'(R?-dilation of k by A; and {k:} is an approximate identity
for L'(R?) as A = oo. By (1.8.15), we see that u, is the dilation

Uug(T, Y, 8) = k\/dT_a‘(m, Y).

Further, for this © we have

Buy

(1.8.16) Auy(z,y, ) = 5=,

that is

Bk () = 5ok r(@0)

It is easy to see that u = u, * f is a solution of the system (1.8.13)
and (1.8.14) when f satisfies natural hypotheses. If f is an image to be
processed then u(-,-,s) is a blurred image of f, more blurred for larger
s. An idea in image processing is to reconstruct f from blurred versions
of f, which may not require too much data or “expense”, along with
available detailed data. This is associated with the notion of multires-
olution (in wavelet theory) due to Mallat [Mall89] and Meyer [Mey90],
and the discrete version of this scheme due to Burt and Adelson [BAS83].

The convolution u, * f is, in engineering terms, filtering the image f
by the Gaussian wu,. Now, it also makes sense to filter the image f by
Au, for the following reason [KJ55]. An elementary calculation shows
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that f[f Aug(z,y,s)dxdy = 0. For small s, we can think of Au, as being
concentrated in a small region; and so if the image f is constant in a
region R of comparable size (or larger), then (Au,) * f(z,y) = 0 for
(z,y) near the center of R. Similarly, if f is not constant on R then
this convolution procedure can have the effect of detecting edges in the
image.

Thus, since filtering by Au, is potentially important, we see the
value of (1.8.13} in image analysis for the following reason. Because
of (1.8.16) we can estimate Au, by considering a scaled difference of
Gaussians, thereby reducing computational complexity, e.g., [HM8&9].

1.9 Gibbs phenomenon

1.9.1 Remark. DescripTION OF GIBBS PHENOMENON
Let f be a function on R and suppose f is continuous on

I=[to=T,to+T], T >0,

except for a jump discontinuity at to, i.e., f({o+) and f(to—) exist and

Fto+) — fto—) # 0.
In the case f € L*(R) N BV(]), we showed in Jordan’s Theorem
(Theorem 1.7.6) that

f(te+) + fto—)
5 .

We shall now investigate this limit more closely and shall detect a
remarkable behavior of the “partial sums” Sq = f*dz,q. This behavior
is called Gibbs phenomenon.

To fix ideas let f = H, the Heaviside function. Even though H ¢
L'(R), the method of Jordan’s Theorem is valid; and the partial sums
Sq = H * dyrq exist and satisfy

H(t+)+ H(t-)
5 .

vVt e R, él_}l‘go Sal(t) =
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(et

In fact, (f )
(&) .
oo gin 272t —
Sn = H * dgwn(t) = -/; Slnﬂ_?t -E u) U) du
(1.9.2)
27w§2t Sinu 2752t Sln u
- [—oo mu ) +/

noting that ¢ can be negative. Clearly, for a fixed {2, the last integral
achieves its maximum (on [0,00), say) at ¢ = 1/(2Q2) since for larger
t the integrand alternates between “decreasing” negative and positive
values. Thus, for each Q, H * dirq is maximized at ¢ = 1/(20)), and,
similarly, is minimized at £ = —1/(26). The values of H * dsro at these
points are the two constants,

T sin u

G= H*dz,rn(m) 2 [o du>1

and

~1 1 T sinu
H*dgwg(zg)ﬂ“z'—/‘; " du < 0.

These two inequalities are clear from our knowledge of the Dirichlet
function d.

Figure 1.11
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The fact that the convergence of {H *d;,q} to H on R\{0} involves
the intrinsic “overshoot” G (and the corresponding behavior on the neg-
ative axis) is the Gibbs phenomenon, e.g., Figure 1.11. This pointwise
convergence is uniform on closed bounded subintervals K C R\{0}; but
the behavior of the “partial sums” H *dy.q near the jump discontinuity
always exhibits a fixed rise G > H(tf) =l at t = “(7157 as {) increases to
infinity.

Note that

VO >0, H *dgma(0) = .

1.9.2 Remark. HistoricaL Norg

All of the early work on Gibbs phenomenon was in the context of
Fourier series, e.g., [Car30], [HH79]. The term “Gibbs phenomenon”
is due to Bocher (1906), who also provided a proof of Gibbs’ origi-
nal assertion, cf., [IIH79, pages 155-156] for a later less-than-civilized
development.

Apparently, Henry Wilbraham (1848) was the first to understand
the presence of the overshoot G in the Fourier analysis of functions
having jump discontinuities. Wilbraham dealt with the function

1, if |t|<in
(1.9.3) Z( 1)k_°°szik +1)t { 2
+1 1, if lr<lt<m,
defined 2m-periodically on R, e.g., Definition 8.1.1. Without knowing
of Wilbraham’s work, Gibbs made his fundamental contribution fo the
topic on April 27, 1899, as part of a lively interchange in Nature (Vol-
umes 58-60, 1898-1899) initiated by Michelson, and also involving Love
and Poincaré. They dealt with the function

o

(1.9.4) Vite(—m,n) Z '=+*‘°’mkt =t

defined 2m-periodically on R.
For perspective, it is interesting to note that in 1898 Michelson
and Stratton designed their harmonic analyzer, complete with graphs
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of partial sums of the series in (1.9.3) and (1.9.4). This work proba-
bly inspired Michelson’s letter to Nature. Michelson and Stratton had
collaborated on X-ray research; and Stratton was the founder of the
National Bureau of Standards. Their harmonic analyzer machine was
used for the decomposition of sound and electrical waves into simpler
components, cf., our remarks on harmonic analysis in the Preface. Har-
monic analyzers and synthesizers were first designed by Lord Kelvin,
cf., Ezxercise 1.47, for tidal analysis.

The study of tides received its scientific basis with Newton’s law of
gravitation for the sun, moon, and earth — even the ancient mariner
knew that tidal phenomena were related to astronomical factors. Then
Laplace was able to separate various cyclic influences of the sun and
moon {on tides) by defining a model of the sun, moon, and earth hav-
ing a number of tide-affecting satellites; and the Newtonian solution of
this model associated an elementary tidal constituent with each satel-
lite in such a way that the tide was viewed as a combination of these
constituents. Lord Kelvin systematized this method, and the analyz-
ing and synthesizing machines he designed were meant to determine
the constituents and to reconstruct the tide (from the constituents),
respecitvely, e.g., [God72], [Mac66]. These mechanical analyzers and
synthesizers may be on view at your local science museum!

Instead of the standard partial sum, as in (1.9.2), it is possible to
consider functions f having a jump discontinuity in the case that an
approximate identity {k)} replaces the Dirichlet kernel {d;zq}, e.g.,
Theorem 1.6.9. In this situation, if each k() is nonnegative and even
then H k() (0) = % and

VLER, 0<Hxky)<L,
i.e., the Gibbs phenomenon s eliminated for nonnegative approzimate
identities. o
Using the Gaussian approximate identity, Weyl (1910) studied what
he called heat conduction partial sums,
I * Gryiryisa-

From our discussion in Ezemple 1.8.1, these functions are solutions of
the heat egquation, i.e., the convection equation (1.8.1) for ¢ = 0, cf,,
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Ezxercise 1.47. Weyl was interested in a two temperature boundary
value function f, e.g., f is either & = 100°C or 8 = 0°C [Wey50b],and
the corresponding eigenfunction expansion, cf., Frercise 1.27. He made
note of the Gibbs phenomenon for such expansions; and had to deal
with rational approximation of irrational numbers (at specified rates)
to complete his analysis for arbitrary & and . Such approximations
are part of Diophantine Approximation, a branch of number theory.
Later, because of work by P. Bohl and the problem of mean motion
in Lagrange’s linear theory of perturbation for the planetary system,
Weyl (1916) generalized the aforementioned approximation procedure;
and gave his definition and characterization of equidistribution mod 1,
e.g., Ezercise 3.40, [HW65], [KK64], [Sal63]. This characterization,
the Weyl Equidistribution Theorem, is not only an important result in
nurnber theory, but has a host of applications in a variety of fields in-
cluding Wiener’s Generalized Harmonic Analysis, e.g., [Bas84], [KK64,
pages 23-28, by J.-P. Bertrandias], cf., Section 2.9. Our point in high-
lighting Wey!’s work is to trace the intellectual excursion relating Gibbs
phenomenon to heat conduction problems to number theory.

1.9.3 Example. CompuTATION OF (&

We can estimate G by expanding sinu in a Taylor series, noting
that m € (3.141, 3.142) and estimating the integral [ Si:u" du, e.g.,
Ezercise 1,29, In fact,

g smu
Lyl
2t

:"+ ./ Z(—)nz T

1 [o'e} :’T2n+1
‘+ = 2 G e

72 mt 8 w8
+

1
_§+{1"3-31+5-51_7-7! 9.9l




58 CHAPTER 1. FOURIER TRANSFORMS

1.9.4 Example. PERSPECTIVE ON BANDLIMITED APPROXIMANTS

Let f be a function and let 2 > 0. A basic approximation problem,
associated with the notion of eliasing in engineering, is to approximate
f in a realistic way by an £— BL function, this latter notion having been
defined in Erample 1.2.2. Of course, the criterion for approximation
must be specified.

Suppose the criterion is pointwise convergence. Then our discus-
sion of the Gibbs phenomenon shows that, because of the overshoot
and undershoot, the natural } — BL approximant f % dy.q of f is poor
in a neighborhood of any jump discontinuity of f, even when the band
[0, Q)] is large. As we saw in Remark 1.9.2 the overshoot and under-
shoot are obviated when dealing with the ! — BL approximant f*ws.gq,
cf., Remark 1.10.8, Proposition 1.10.9, and Remark 1.10.10.

Another pointwise approach involves dealing with the continuous
function f x (?IT-I[_T,T)), and then defining the 2 — BL approximant

Jra=1[+* ( 1I-TT)) * darg.

Notice that f = (515:1{..T,T)) (t) is the average value,

1 T
ﬁ ~[t—T f(u) du‘)

of fon [t —T,t+ T). In this case, frg can be a good pointwise (or
even uniform) §} — BL approximant of f if {2 is large and T is small.
For example, if f € L*(R) N A(R) then

ViR, 17(t)~ fra)
Fonldr+ [ Fin = S5

=&

An important case of our approximation problem deals with an
approximation criterion motivated by physical considerations such as
variance and energy. The mathematical setting is L*(R), the space of
square integrable functions.
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1.10 The L*{R) theory

1.10.1 Definition. L*(R)

P®)={1:R = C:lflow = [ 170P ) " oo},

L*(R) is the space of square-integrable functions f or signals f having
finite energy | fllZ2ry:

The major result about L*(R) is the following theorem [Plal0],
[Plalb].

1.10.2 Theorem. PLANCHEREL THEOREM
There is a unique linear bijection F : L*(R) — L*(R) with the
properties

a. Vf € LZ(R): ”f”Lz(R) = ”ff”m(ﬁ);

b. Vfe LNR)NLA(R) and Vy € R, f(7) = (FN)(7),

c. V€ LA(R), H{fa:n=1,---} C LYR)N L*(R) for which
lim ||fn ~ fllzem) = 0 and Jim [|f, — Ffll 2@ = 0.

n—oo

Proof. Our outline of proof, which is one of the usual schemes to prove
the Plancherel Theorem, has four steps: verification that | f||z2m) =
“f”m(@) for f € X C L*(R) (part ), closure results on R and R (parts
i and 17, respectively), and a routine functional analysis argument to
obtain the result from parts i, i4, iii (part ). There are trade-offs in
difficulty between parts ¢, #, and iii depending on which space X one
chooses to use.

i. Let X = C,(R), the space of continuous functions (on R) having
compact support, and consider the involution f(¢) = f(—t ) of f €
C.(R). We shall prove that f € L*(R). Clearly, f € A(R) since
C.(R) C L'(R). Define g = f * f so that g is continuous, ¢ € LI(R),
e.g., Definition 1.5.1 or by a direct calculation, and

(1.10.1) 9(0) = L fl|Z>g).
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Also,

(1.10.2) VyeR, 30 =IFP

by the Fubini-Tonelli Theorem and the translation invariance of Lebesgue
measure {on the group R). By Proposition 1.6.11 and (1.10.2), since
g € L*(R)N L>(R) is continuous, we have

A 209N 72 g —
a3 [ (1- 2 opar = g0,
The Beppo Levi Theorem and (1.10.3) allow us to assert that { € L2(R)
and that

”f”ia(ﬁ) =g(0) = ”f”LZ(ﬁ)a
where the second equality follows from the definition of g.

ii. We shall now note that L*(R)} N L*(R) is dense in L*(R), and
prove that C.(R) is dense in L*{R)NL*R) taken with the norm || -- - || =
- Hlor@y + || - - llz2r)y. These facts imply C.(R) = L*(R).

Let f € L*(R) and define fr = fli_r7). For this proof, fr does
not designate dilation. fr € L*(R) since |fr| < |f], and fr € L'(R) by
Holder’s Inequality. Clearly,

1/2
If = fellowy = ( f,,,1rOPar)

and LY(R)N L*(R) is dense in L(R).

Let f € LY{R)NLAR). Then limr_c || — fr|| = 0 by the argument
of the previous paragraph. Next,set fs7 = fr*Ag (Ag is the dilation of
the triangle function A defined in Fzample 1.8.4), so that fsr € C.(R).
Letting ¢ > 0, we shall find S, T > 0 such that ||f - fsr] < e

First, there is T' = T, for which ||f — fr]| < ¢/2. We keep this T

fixed, and have the estimate
1= fsrlloa < [[ As()lfz(t) = fo(t = u)l dudt
= As(u) (/ IfT(t) - fT(t —_ u)[ dt) du.

lui<t/8
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Next, choose 57 such that
Y5> 5 and V|u| < 1/5, ”fT — TufT”Ll(R) < 6/4.
Thus, for such S,

(1.10.4) | fr — fS'T”Ll(R) < /4.

Finally, we use Minkowski’s Inequality { Theorem A.16) to obtain the

estimate
2 1/2
dt) du

Wb~hﬂm®5/(f(hﬁ%dﬂﬁngdﬂ

= [ As@)lfr - mufrllzae) du.
We can choose § > S) for which

Yjul <1/S,  |fr — mufrlleem) < €/4;

and, therefore,
(1.10.5) "fT - fS,T”L2(R) < 6/4.

Combining (1.10.4) and (1.10.5) with the above estimate ||f — fr|| <
€/2, we have the desired inequality, viz., ||f — fs7]l < e

iii. We shall now prove that C,(R)* C A(R) N L*(R) is a dense
subspace of L*(R).

Let G € L*(R) and suppose

(1.10.6) ¥ f € C.(R), f F(4)G) dy = 0.

If f e C(R)then 7,f € C.(R) and so (1.10.6) implies

(L10.7)VS € Co(R) and VueR, [ J(n)Gh)e > dy=0.

By Holder’s Inequality, fG € L'(R), and so (1.10.7) allows us to invoke
the uniqueness theorem, Theorem 1.6.9c, to conclude that fG =0 a.e.

for each f € C.(R).
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Note that
VfeC.(R) and YVye R, & f(t) € C.(R).
Thus, C.(R)" is translation invarjant, i.e.,
VfeC(R) and YyeR, =feC.(R)"

From this we can conclude that for each v € I@, there is f = f,, €
C.(R) for which |f] > 0 on an interval I centered about ~,. To verify
this claim, suppose there is 4, such that for each f € C,(R) and for each
interval J centered at vo, f has a zero in I. Consequently, f (v0) = 0 for
each f € C.(R). By the translation invariance of C.(R)", 7, fe C.(R)*
for each v € R, and so

Vf € C(R) and Yy €R, (nf)(10)=0.

ie., f =0 on R for each f € Cs(R). This contradicts the uniqueness
theorem, Theorem 1.6.9c (for just one f € C.(R)\{0}), and the claim
is proved.

Therefore, if we assume (1.10.6) we can conclude that G = 0 a.e.
Consequently, by the Hahn-Banach Theorem ( Theorem B.12) and the
fact that L2(R)Y = L2(R) (Theorem B.14), we have that C.(R)" is
dense in L*(R).

iv. We have shown that F is a continuous linear injection C.(R) —
L?(R) (part 1), when C.(R) is endowed with the L?>-norm, and so F has
a unique linear injective extension to L?(R) (Theorem B.7) by (part
i). Also, F(C,(R)) is closed and dense in L*(R) by parts ¢ and ii.
Thus, F is also surjective. The remaining claims of the theorem are
now immediate. : L]

Notationally, because of the Plancherel Theorem, we refer to F f as
the Fourier transform of f € L*(R), and we write the pairing between
f € L*(R) and Ff in one of the following ways:

(1.10.8) Ff=f=F f«sF, f=F"
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1.10.3 Theorem. PArsEval FORMULA
Consider f & F and g & G, where f,g € L*(R). Then we have
the formulas

(1.10.9) 1Al = 1Pl ae
(1.10.10) [ 1eyg@at = [ F)GH) do,
(1.10.11) [ 109ydt= [ Fa)G(=) dr,
and

(1.10.12) ¥y € B, / F(t)g(t)e ™ dt = f F(N)G(y — X) d.

Proof. (1.10.9) is part of Theorem 1.10.2. (1.10.10} is a consequence of
(1.10.9) and the fact that 473 = |f+g|*~|f — g|*+:|f+ig|*—i|f—igl

(1.10.11) can be proved similarly or by the following formal calcu-
lation, which can be made valid, e.g., Ezercise 1.44. This calculation
actually gives (1.10.12), from which (1.10.11) follows for v = 0. Note
that fg € I*(R) and F x G € A(R). We compute

(F+0)(1) = [ FxG)e™ dy
= [[ F0)G0 - et dyax
= g(t) f F(Ne™ dx = f(t)g(t),

and, hence,

[ 1@g@e > dt = [ FO)GH-2)dr 0

We shall refer to Theorem 1.10.2 and Proposition 1.10.3 as the
Parseval-Plancherel Theorem, and we shall refer to equations (1.10.10)
or (1.10.11) as Parseval’s formula. Parseval was a French engineer who
gave a formal verification of the Fourier series version of (1.10.9) in
1799; the publication is dated 1805.

The following version of (1.10.10) is required in Erample 2.4.8.
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1.10.4 Proposition.
Consider f «+ F and g <> G, where f € LY(R) and g € A(R), i.e.,
G € LYR) and g(t) = [ G(y)e*™*1dt. Then

[ s@atat = [ FGGYd

and

[1wswydt = [ Fo)G(—) .
Proof. Consider the first formula. The right side is
[ re Gy didy
= [ 10([ 6t ar) e [ seiaas

where the first equality is a consequence of the Fubini-Tonelli Theorem.

O

1.10.5 Example. Powers oF THE DIRICHLET KERNEL
Consider the pairing,

sint
—— et T'Tl[__L ERY
t FEAVL
noting that (sint)/t € L2(R)\(L}R)N L*(R)). We can compute
sin” ¢
t'ﬂ-

dt, n 2> 2,

by means of the Parseval-Plancherel Theorem.

For example,
. 3 )
sin” gt = §£
3 4

because of the pairing,

sin?t
t2

+— wmax(1l — |7v],0),

and by the Parseval-Plancherel Theorem.
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Similarly,

e.g., Ezercise 1.17.

1.10.6 Example. A Fourier UNIQUENESS PROPERTY
Do there exist f € (L*(R)n L*(R))\{0} and a € C for which

(1.10.13) VieR, af(i)II_T‘T)(t) = [ % darq(t)?

To answer this question we distinguish two cases, a = 0 and a 3 0.
Also, we say that a function % is supported by [A,B] C R if k& =
0 on [A, Bl = R\[A, B]; in this case we write suppk C [A, B], cf,,
Definition 2.2.1a.

a. If ¢ = 0 then fl[_g'g] = 0; and so any f € L}(R)Nn L*(R), for
which f = 0 on (=, ), is a solution of (1.10.13).

b. If @ # 0 and a solution f is constrained to be supported by
[T, T], then (1.10.13) implies af = f].[_glg]. Thus, ¢ = 1 and
supp f C [—0,8]. This contradicts the analyticity of f unless f = 0;
in fact, if supp f C [T, T], then f is entire, and so supp f C [, Q)
can only occur if f =0 on R.

c. Generally, let @ # 0, and let ¢ denote af1j_y,1) and f * darn. In
particular, supp g C [~7,T] and supp g C [—2, 1], so that g =0 as in
part b. Consequently, f = 0 on (=T, T) and f = 0 on (—0,Q). It is a
remarkable fact that there are functions f € (L}(R) N L%R))\{0} with
this property, e.g., [Len72], [ABe77], [Bene84, Theorem 6]. This result
is related to topics about the uncertainty principle and uniqueness, e.g.,
[Pric85, pages 149-170].

1.10.7 Example. AN IpEmpoTENT ProBrem N L'(R) ano L*(R)
Consider the equation

(1.10.14) f=Ffxf.

a. If we ask whether (1.10.14) has a solution f € L'(R)\{0}, the
answer 1s “no” for the following reason, cf., Proposition 2.1.1. If there
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were such an f then f = (f)? so that f takes values O or 1. If f =0 on
R then f = 0 by the uniqueness theorem. If f = 1 on R then f ¢ L'(R)
since L} (R)* C C’o(lﬁi). If f takes both 0 and 1 values we contradict
the continuity of f. -

b. If we ask whether (1.10.14) has a solution f € L*(R)\{0}, the
answer is “yes”. In fact, let f = 15 where |E] < co. (We are using the
Parseval-Plancherel Theorem here to assert the existence of f € L*(R)
for which fz 1g.)

1.10.8 Remark. Roor Mean SqQuarRE (RMS) PROBLEM

In Fzample 1.9.4 we defined an approximation problem, and alluded
to a case which we now give.

For 2 > 0, let PWo = {g € L*(R) : suppg C [—$,0]}; this
means that g € L*(R) and § = 0 on [-Q,Q]° = R\[-Q, )}, cf.,, Defi-
nition 2.2.1a. PWy is the Paley-Wiener space. Let f € L*(R). The
approximation problem in this setting is to find gy € PWgq such that

(1.10.15) Vg e PWa, |If —gsllee@ S If —gllrem) = e;/?'-

It is not clear that such a “minimizer” g; exists. The quantity e, is the
RMS error corresponding to f and g.

1.10.9 Proposition.
For f € L*(R) and Q > 0, let g5 = f * dyra. Then g € PWy,
(1.10.15) is valid, and the RMS error corresponding to f and gy is

fmgn |f(’7)|2 dy.

Proof. We take ¢ € PWy and compute

I1f = gllfemy = I1F - allz

(1.10.16) = Joisa |F()I? dy

+ [ (Fon - a0) () = 56)
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This last term is zero when g = gy; and since the integrand, ( f —
g)( f — ), is non-negative we have verified (1.10.15). Also, because of

(1.10.16), the RMS error corresponding to f and g is f,5q |F(1)? dry.
B 0

1.10.10 Remark. PERSPECTIVE ON BANDLIMITED APPROXIMANTS

We saw in the case of a jump discontinuity that f*w,.q was prefer-
able to f * dyr0 as an approximant to f under pointwise convergence.
On the other hand, Proposition 1.10.9 shows that f * dy.q is the best
approximant to f in the sense of minimizing the RMS error.

Another aspect of the approximation problem discussed in Ezam-
ple 1.9.4 is the following result.

1.10.11 Theorem. TIMELIMITED AND BANDLIMITED APPROXIMATION
Let T, > 0 and let

Lr(R)={f € L*(R) : supp f C [T, T1},
i.e., f € L*(R) and f = 0 on [-T,T)° = R\[-T,T]. Then

Y ={F:[-0,0] — C: 3k € LA(R) such that
k=Fae onl[-00]}
is dense in L*[-Q,0)].
Proof. Suppose the result is not true. Then by the Hahn-Banach The-

orem (Theorem B.12} there is G € L*[-Q,Q)\{0} = L?[-§,]\{0}
such that for all K € Y, where k & K, we have

0= [ GEGIH
= f(Gl[—n,n))(’Y)md’Y = ‘[_Z;(Gl[*ﬂ,n))v(t)mdt-

Since this is true for all £ € LZ(R) we have (G].[._.Q’Q))V = 0 on
[—T,T], and, by definition, Gli_qq) = 0 off [-, 1], i.e., supp G1_g,q)
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is compact. This last property implies (G1_q,n))" is entire and so
(Gl[_g‘g))v = 0 on R. By the L!'-uniqueness theorem and the fact
that Glj_qq) € Ll(lﬁ) we have Gli_gq) = 0 on R and so G = 0 on
[—Q, ], a contradiction. Thus, we have the desired density. O

One proof of Theorem 1.10.2, due to Norbert Wiener, e.g., [Wie33],
involves defining f, for given f € L2 (R), as an eigenfunction expansion
where the eigenfunctions are the so-called Hermite functions. For this
reason we give the following example.

1.10.12 Example. EIGENVALUES OF THE FOURIER TRANSFORM

a. Suppose we are given the pairing f +» F and that we can compute
A, M, ete. Formally, we have

) = f(=),
and
) = F(=0") = f(=7)
and, hence,
f/\/\/\ = f.
b. Next, consider the operator,
F:I¥R) — IL*R),
f— 1
defined on a sufficiently well-behaved subset of L*(R), e.g., the space
S(R) defined in Definition 2.4.3. Consider the eigenvalue problem,
Ff=Af.

We have f = Af, f* = Af = X2f, fA = A2f = )3f; and so, from part
a, we obtain f = JAA = A3f = Mf. Consequently, the eigenvalues
of F are A = 1,1,—1, —t; and the Hermite functions arise in this set-
ting as the eigenfunctions of F, e.g., Frercise 1.26, Fzercise 1.27, and
Remark 2.4.11.
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c. If g is Gaussian, we saw in Ezample 1.5.9 that g 7 = g7 By
part a, we see that there are many functions & for which k=k In

fact, for any f € L'(R) N A(R), let ‘
k=f+7+7+
cf., Fxzcercise 1.28.

1.10.13 Example. CoMPUTATION OF INTEGRALS
Using the Parseval-Plancherel Theorem we can compute integrals

of the form
f at a,b>0
(24 a?)(t2 402" 7

[Hint: pyj, +— e~2mN1]

1.10.14 Example. CompuTATION OF L*-FOURIER TRANSFORMS

a. Let f € L*(R) and let f, = f1[_, . Clearly, f, € L}(R)NL*(R)
(by Holder’s Inequality) and limp—yoo || f — fallz2®) = 0. Thus, by the
Parseval-Plancherel Theorem,

(11017)  Lm Fn) = [ F(6)e7 dtfragm) = 0.
b. We saw that the Dirichlet function
dar € DAR\(L'R) N L(R)).

By (1.10.17),
1.10.18)  lim ||d; "I somtydt| =0
( A ) A 211'(7)“/;“ Tt CO8 27ty L2(}R)— 1
and it is easy to see, by Theorem 1.7.6, that
YyeR, lim " sin 2t cos 2mty dt
n—eo J_ g hig
(1.10.19)
1, if |t <1,
=< L if =1,

2

0, if [H>1,
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e.g., Fzercise 1.28b. Combining (1.10.18), (1.10.19), and F. Riesz’s
result used at the end of Theorem 1.7.8, we see that the L?-Fourier
transform of dy, is dor = 1[-1,1] a.e., which, of course, is the way it had
to turn out!

Chapter 1. Exercises

FEzercises 1.1-1.80 are appropriate for Course I. Recall that H is the
Heaviside function.

1.1. Suppose that pv [ g{t)dt exists. Prove that if g is even or ¢ is
non-negative then [ g(¢) dt exists and

[g(t) dt = p’u/g(t) dt.

1.2. Consider the formal pairing f ++ F. Verify (formally) the follow-
ing.

a. If f is imaginary then F(v) = —F(—v) and
f(t) =2 Im/w F(y)e*™ dy.
0
b. f is imaginary and odd if and only if F is real and odd.

1.3. Let f € L*(R) be real-valued, f < F.

a. Verify whether or not |F'|? is even, odd, or neither.

b. Verify whether or not |F|? is even, odd, or neither.

1.4. Prove that

L,y
M- U

1.5. Prove that f ¢ LY(R) for f(t) = H(t)e™*™*, where r > 0.
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1.6. Verify whether or not the following functions f defined on R are
elements of L'(R). For those that are not, verify whether or not
they are elements of L} (R). '

a. f(t) = H{t). You may assign H(0) any value you like; it will
not affect the validity of your answer.

b. f(t) = 1;12'
& if t#£0,
Qﬂ”={h,%tiu

L oif ¢4£0,
ifmz{ﬁ,;ti&

e. f(t) = cos2mtryy + sin 2wty = €20,
f. f(t) =sgnt, where sgnt = H(t) — H(~t).
g. f(t) = d(t), the Dirichlet function.

1.7. Let f R — C be a function. The even part of f is the function
Je(t) = 3(f(t) + f(~1)), and the odd part of f is the function
fo(t) = 3(f(t) = F(=1)).

a. Compute f, + fo.

b. Compute the even and odd parts of the functions in Ezer-
cise 1.6.

c. For functions f and g, verify that

(fg)e = fege + foGo-

What is the corresponding decomposition for (fg),?

1.8. Compute the Fourier transforms of the following functions.

a. f=mnlrm).
b. f(t) = &f_‘_’s;). [Hint. Evaluate 1,/2 d.]
2

C. f - Tu(l[_T'T)H).
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1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

CHAPTER 1. FOURIER TRANSFORMS

d. f = 1[—T,T)(TuH)-
e. f = Tugy, where g is the Gaussian.

Solve the differential equation F'(y) = =22 F(y), r > 0, in Ez-
ample 1.3.8.

Prove that [ f(t)dt = 0 in Proposition 1.4.3.

[Hint. lim |g(¢)] > 0 implies ¢ & LY{(R).]
t=roo

Let f € L'(R) and let g(t) = f(at + b) for fixed a,b € R,a # 0.
Compute § in terms of f.

Compute the Fourier transforms of the following functions.
a. f(t)=5e " H(t), r>0andneN

b. f(t) =€ ™ H(t)sin2mty, 7> 0.

Let m,n > 0 and let f € L'(R). Suppose that t"f(¢) € L'(R)
and that the m* derivative (¢ f(¢)){™ exists everywhere and is
an element of L'(R). Verify the Fourier transform pairing,

(" F@E)™ = (1) @mi)™ ™ ().

Use this result to show that

vy e R0}, 1) < sl ™l

Using the methods of this chapter, compute

f di
B4 T2 46
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1.15. We have defined the Fourier transform in Definition 1.1.2 and Re-
mark 1.1.8 using the kernels e=2™* and e?***", when the latter is
required to ensure the validity of the inversion formula. These are
the kernels of choice in major theoretical treatises, such as Stein
and Weiss’ masterpiece on Euclidean harmonic analysis [SW71],
as well as in fundamental tools and algorithms such as the Dis-
crete Fourier Transform (DFT) and the Fast Fourier Transform
(FFT), e.g., [Walk91] and MATLAB. We find the above pairing
to be computationally convenient. Other pairings in the litera-
ture include ™" and €™, and %e"‘” and ﬁe“”'. For this
exercise, do not use any of these latter kernels, or their variations
in any of the other exercises!

1.16. Let f(t) = e*H(t), g(t) = e *H(t), and k(t) = e H(—t).
. Compute f *--- % f, where there are n factors.

a
b. Compute g * - -- % g, where there are n factors.

Compute k * -+« x k, where there are n factors.

o

s

Compute f* g and g * k. Comment on f * k.
e. Compute H=* f, H x g, and H * k.

1.17. a. Compute darq * - -« * d3nq, where there are n factors and
where d is the Dirichlet function.
b. Compute and graph (1[_9,9))” = 1_qu)* - ~*1{_q,q), where
there are n factors, for the cases n =1,...,6.

The n-fold convolution of part b is an example of a
spline supported by [—n§),nl], e.g., [dHRI3], [Scho73], cf.,
Ezercise 2.48. The general formula,

*n n (o) (—1)*F
(l{mg‘g)) (f) = Z (k) ((nl_) 1)| (t—(n—2k)9)n—11{(n—2k)ﬂ,oo)(t):

k=0
is not difficult to verify.

1.18. Find the values of n € N for which d{"}, € L*(R). [Hint. Use
Theorem 1.4.1¢ and the Parseval-Plancherel Theorem.]
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1.19. Let g(t) = 5= e~*’, the Gaussian.

a. Compute g, * ¢ for a,b > 0.

b. Determine the points of inflection and regions of convexity
and concavity of {gx}.

1.20. Let f,x = 7mad) + T—od), where d is the Dirichlet function.

a. Compute f, 5 * fo .

b. Compute ILm far# fay, for ag=0,00.
z-3dg

1.21.  a. Compute the Fourier transforms of tgx(t) and fw,(¢), where
g 1s the Gaussian and w is the Fejér function. [Hint. The
fact that {wy(t) & L*(R)is not a problem. Begin by guessing
at the answer using Theorem 1.4 Ie, and then justify your
guess.|

b. Graph the functions of part a and their Fourier transforms.

1.22. Let g(t) = ﬁe‘tz, the Gaussian. Compute the Fourier transforms
of the functions,

le
<16 (9o * 98)

d° d®
(ﬁ gu) * (ﬁ gb)a

1.23. Use the inversion theorems to prove the following:

and
where a,b > 0.

2r o cos 2wty
mJo 1?4472
. 1, and [¢| <1,

b g/ sin 27y cos 2mwisy dy = %, and |t| =1,
m Jo 2 0, and |¢|> 1.

d,r — e—2ﬁr[t|’ r> 0.
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1.24. Let finy(t) = 1[-1,1)(t) cos 2mtf). Compute

lim [ 1fi) () = Tan () d.

-0

1.25. Compute the Fourier transform of
f(t) = g.() sin2wbt, a >0,

in terms of a hyperbolic trigonometric function. g is the Gaussian.

1.26. The first six Hermite polynomials are

Ho(t)=1, Hi(t)=t, H(t)=1"~1,
HL(t) =& — 3¢, Hy(t) =t* —6t2 4+ 3,
Hg(t) = 5 — 10> — 15¢.

In general,
2

2 dr
Vn 2 O, Hn(t) = (——1)"8T%e"7,

e.g., [Wied3], [CH53], [Jac4l].
a. Verify, in fact, that H, is a polynomial of n** degree with the
coefficient of t* equal to 1. [Hint. Hnyi(t) = tH,(t)— H/(t).]

b. Prove the orthogonality relations, viz., if 0 < m < n then

f Ho(8) Ha(t)e ™0/ dt = 0.

1.27. If the convection term in (1.8.1) is replaced by V(z)u, where V
is a potential energy, then (with an adjustment of constants) we
obtain the one dimensional Schrédinger equation,

0%u du

@ —V(il?)u—(!gt- = 0,
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1.28.

1.29.

1.30.
1.31.
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e.g., [Weyb0a, pages 54-60]. Assuming solutions of the form
u(z,t) = X(2)T(t), the separation of variables method leads to

1 d°X(2) c dT(t)

XG) @ VO =T a

and, if —A is a constant common value of both sides of this equa-
tion, we are led to the problem of determining eigenvalues A and
eigenfunctions X for which the oscillator equation,

d2XA(:L‘)
dz?

is valid, cf., [Str88, pages 243~253] to see the rclationship between
the solution of differential equations and eigenvalue problems.
Solve this particular problem for the potential energy V{(z) =
z2/4. [Hint. Let X,{z) = e~/* H,(z) (Ezercise 1.26), and ob-
tain A, = (n+ 3}, n > 0]

+ (A = V(2))X\(e) =0,

Let f(t) = e="#/")* 4 re~m("*, For what numbers r € R\{0} do
we have f = f7 Note the case r = —1.

Compute the Gibbs “overshoot” G (from Remark 1.9.1 and Ez-
ample 1.9.8) accurately to 6 decimal places.

Compute (H(u)sinu) * (H(u)sinu)(t) for t = £m/2.
Let f,g € L*(R).
a. Verify that
(EL.1) f 1f(t — u)|lg(w)| du < 00 t-ace. in R.
b. For the set X of t € R which satisfy (E1.1) in part a, define
frgt)= [ £t~ u)g(u) du.
Prove that f * g € L!(R), and that

If * gllzeey < Nfllvwyllgllor m)-
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1.32.

1.33.

The set R of real numbers satisfies the commutative and associa-
tive laws under both addition and multiplication, and it satisfies
the distributive law under addition and multiplication. Prove
that L'(R) satisfies the same properties when multiplication is
replaced by convolution, i.e., show that

frg=g9+f, fxrxg=g+*]
(f+a)+h=F+(g+h), f+(gxh)=(f*g)xh,
frlg+h)=Fxg+F+h

for f,g,h € L}(R).
Let f,g € L'(R) and define the L'-cross-correlation
F@gt)= [ f(t+u)glu)du
of f and g. Which properties of Ezercise 1.32 are valid? Note that

f®g = f*g, where § is the involution defined as g(t) = g(—1).
Clearly, f~ = fand f+xg= (g* ).

1.34. Using the methods of this chapter, verify that

1.35.

4[ _sin W’Ye—%hf-!-m'v dy = .
v

a. Let f € L*(R)n1 L®(R). Prove that f € L*(R).

b. Construct f € L*(R) N L*(R), resp., f € L{R)N LA R)N
L (R), such that f ¢ L'(R), resp., f ¢ L=(R).

c. Clearly, if f =1 then f € L®(R) and f ¢ L'(R)U L*(R).
Construct f € LYR), resp., f € L*(R), such that f ¢
LAR)U L**(R), resp., f ¢ LY(R)U L(R).

d. Are the comstructions of part ¢ possible if L}(R), resp.,
L*(R), is replaced by LY(R)N LZ(R), resp., LA(R)N L2 (R)?
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1.36. Verify Viéte’s formula

(F1.2) 1T cos X -2

In particular,

= wl~y.
darr(y) = 2T H cos( ka)'

k=0

Viéte proved the case v = m/2:

2 VEy2+vEY2HV2 2
T2 2 2

T

Frangois Viéte was a lawyer from Poitou, who became one
of the foremost mathematicians of the 16th century because of
his contributions to algebra, e.g., [Kli72]. He was also the ma-
jor “codebreaker” for Henry IV of France [Kahn67, pages 116-
117] amidst the Holy League, the Huguenots, the Hapsburgs, the
demise of the House of Valois, and the death of the Dark Emi-
nence, Catherine de Medici.

1.37. Prove the following results, where f € L'(R) and {kg)} is an
approximate identity.

a. There is {A,} C (0, 00) such that
nlggof * ko, = f ae
b. For each v € R, AIEEJ E(A)('y) =1.
c. Assume f € L} (R), E(A) € LY(R), and
(E1.3) ViER, koyt) = f Ty (7)€274 dy.

Then

Lim H /f(?)ezm’ dy — f* kpy(2)

Le(R)
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1.38.

1.39.

1.40.

1.41.

[Hint. Add and subtract [ f('y)z()\)('y)ez'”it"' dvy, use part &
and LDC for one part and the Fubini-Tonelli Theorem for
the other part.]

The Gauss kernel {g»} is an example of an approximate
identity where we have already verified that (E1.3) is satis-
fied. There are also direct calculations for the Poisson and
Fejér kernels.

The point of this exercise is to illustrate the idea behind
the proof of Theorem 1.7.8. In fact, we obtain that proof by
combining parts a and c.

Let f € LY(R) and assume that | [ f(¢)dt| = 1. Prove that
{H*=H}

is an approximate identity, where fy, A > 0, is the L'-dilation of
f-

Let f € L'(R), and let u(z,t) be defined by (1.8.7). Prove that u
is a solution of the system (1.8.1)—(1.8.3). For the case of (1.8.2),
prove only that

lim ”u(m’t) - f(x)”z,l(m) =0

a. Prove that A(R) is dense in Cy(R).
b. Prove that A(R) is a set of first category in Co(R).

Let f € LY(R), g € L*(R). Prove that f * g € L*(R) and that
(E1.4) If * gllze@) < Nl @llgllze @)-

[Hint. Use Minkowski’s ineql.{ality.] Verify that (f * g)* = f3.

(E1.4) should be compared with Ezercise 1.315. (E1.4) is a
special case of W. H, Young’s inequality,

Lf * gllzem) < | fl|zewllgll ),
+1-1,eg., [SWT1, pages 178-183].
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1.42. Let f € CR). Verify whether or not f x f is a function of
bounded variation. If f % f is a function of bounded variation
then we can use the Jordan inversion theorem in place of Propo-
sition 1.6.11in Theorem 1.10.2. [Hint. Using the Cantor function
f = fo, eg., [Ben76, page 22| and Remark 1.4.2, we can show
that f* f need not be absolutely continuous. It is more difficult to
prove that fx* f need not have bounded variation, cf., the remarks
on continuous nowhere differentiable functions in Sectzon 3.2.4.]

1.43. The de la Vallée-Poussin function v is defined as v = 2w, — wy,
where w is the Fejér function. Note that [v(t)dt = 1.

a. Verify that the dilations vy are equal to v(y), where vy =
2wgy, — wy. Clearly, the de la Vallée-Poussin kernel {v)\} is
. an approximate identity.

b. Graph .
c. Clearly, 1 < ||vallzir) = ||vllz1®). Estimate |[v]fr: ®).

1.44. Prove (1.10.11) and (1.106.12).

1.45. Verify that
) t
Qli}ngo (sn; ) dorq(t)dt =1

for j € N. [Hint. Consider the integral over (0, 00), verify that
1 [/sint\? 1
: [(T) - 1} cLG.1,

and use the Riemann-Lebesgue Lemma.]

I f (sint)j sinrtdt
t 1

for j € N and real r > j. This generalizes the n = 2 case of
Ezample 1.10.5, cf., Ezercises 1.17, 1.34, and 1.45. [Hint. By
Parseval’s formula,

_WJ+1./" 1[ 211"211' *1[ 21r’21r}(7) d'}l.

1.46. Compute
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1.47.

1.48.

The support of the integrand is contained in [—-2-%, 5%], e.g., Fz-
ercise 2.11. Thus,

I= 'lTjHi[__._L. L (O)j'}

2mi2r

I the potential energy V of the Schrodinger equation in Erer-
cise 1.27 is a constant b, we obtain the fundamental equation
of linear cable theory. Equations such as this were used by Lord
Kelvin (1856) to analyze electric current flow in submarine cables,
cf., [K6r88, pages 332-337] where the heat equation, i.e., b = 0,
is analyzed vis a vis the success of the transatlantic cable. Solve
the cable equation

0*u Ju
gz "M =t

for a given forcing function f(z,t). Nowadays, the cable equation
plays a critical role in electric models of neuron excitation, e.g.,

[INT75].

Prove Lemma 1.7.8. [Hint. The proof is based on the following
argument in the case that f is not only increasing but also abso-

lutely continuous. Without loss of generality, let g be real-valued
and let G(t) = [} g(u)du. Then FTC and integration by parts

give X )
[ #e) dt = GE)1E) - [ GOF @ .
Since f’ > 0 a.e. and G is continuous on [a, b] we have
m/b F(t)de < /b G(E)f'(t) dt < M/b £(t) dt,
where m = inf{G(¢)} and M = sup{G(t)}. Thus, by the inter-

mediate value theorem there is ¢ € [a,b] such that

fab f(t)g(t) dt = G(b) f(b) — G(£) j; b HOL2

Another application of FTC gives the result.]
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1.49. Let g € L*(R), and, for s > 0 and (t,7) € R x R, set

2mwiuy

Gotr(w) = gs(u — t)e

Compute G, 1., cf., Theorem 1.2.14d, ¢, f and Ezercise 1.11.

The algebraic (and geometric) operations of dilation, mod-
ulation, and translation are the fundamental “invariants” under
the action of the Fourier transform on R (Theorem 1.2.1). As
such it is natural to attempt to “synthesize” or reconstruct func-
tions f in terms of scale-time-frequency harmonics {gsy @ s >
0 and (¢,v) € R x R} for a given “analyzing” function g. For a
fixed frequency v € R, this program of signal reconstruction is a
fundamental part of wavelet theory [Dan92], [Mey90]; and for a
fixed scale s > 0, this program becomes the Weyl-Heisenberg or
Gabor theory [Gabo46], [vN55], [BW94]. The signal processing
program for the complete set {g,+~} has important applications,
e.g., [MZ93}, and theoretical developments in terms of the meta-
plectic group, e.g., [HLY5}. There have been many contributors
to the whole program, and we refer to [HL95] for an overview.
The metaplectic group contains the Heisenberg group as a sub-
group, as well as an isomorphic copy of the affine group. These
two groups correspond to the Gabor and wavelet theories, respec-
tively.

1.50. Let 0 < a < @ and let K be the trapezoid

1, if |y|<La,

K(y)= 0, if |y[=8,
linear, if a<|y|<8.

a. Compute k = KV, cf., Ezercise 1.43.
b. Show that [|Kl|,g < 212 and hence 1K gy < 8 when

= o’

8 = 2a, cf., (3.5.4) in Ezample 3.5.5.

c. Besides the estimate in part &, it is obvious that || K|, . ® =
1. Compute ”K”Li’(ﬁ)‘



EXERCISES
1.51. Let f € PWj. Prove that
ViR, f(t)= ] Fly)er it dy,

cf., Theorems 1.1.6 and 1.1.7.
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Chapter 2

Measures and Distribution
Theory

2.1 Approximate identities and ¢

InR,weknowthat T x 1 =7, nx1=n,0x1=0,.--. 11s the
multiplicative unit for R. In L'(R), convolution is the multiplication
(Section 1.5), and the norm ||+ - - ||L1(r) is the absolute value (measure
of distance).

2.1.1 Proposition.
LY(R) does not have a unit under convolution.

Proof. Suppose u € L'(R) were a unit. Choose f € L*(R) for which
f never vanishes, e.g., f(t) = e~*"l. Then ||f — fﬁ”Lw(ﬁ) < |f -
f*ulprw) = 0, and so @ is identically 1 on R. This contradicts the
Riemann-Lebesgue Lemma, and so u ¢ L'(R). N

On the other hand, we did show in Theorem 1.6.9 that there are
families {k(x)} C L'(R) of functions, appropriately called approximate
identities, with the property that

(2.1.1) VfeL(R), lm |If—fxkpyln@ =0

85
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Similarly, recall from Propesition 1.6.11that if f € L*°(R)is continuous
on R and {k(»)} is an approximate identity, then

(2.1.2) Vi € R, )‘Iglgt)f * k()\)(t) = f(1).

2.1.2 Remark. MoTivaTion FOR &

We can think of “f+k) — f” in (2.1.1) or (2.1.2) as a set {f*k)}
of functions approximating the function f; or we can think of the family
{k(»)} as approximating something, call it &, which plays the role of an
identity under convolution for elements in L'(R), i.e., “f %8 = f” even
though & & L(R).

In order to quantify this latter interpretation, assume each k) is
an even function. Then fix the point { = 0 in (2.1.2), and think of the
integral f * k(yy(0) as a function,

k(,\):Cb(R) — C
o Fxky(0) = [hey(t)f(2) dt,

whose domain C,(R) is the set of bounded, continuous functions on R.

(2.1.3)

2.1.3 Definition. é
a. & is the function

J:Cb(R) — C
fo— £(0),

i.e., for each f € Co(R), 6(f) = f(0). A function (such as (2.1.4)),
whose domain is a set of functions and whose range is a set of numbers,
is called a functional, cf., Definition 2.2.8c.

§ is often called the Dirac d-function in spite of the fact that it was
neither discoverd by Dirac nor is it an ordinary function on R. It is also
called the unit impulse. We shall refer to ¢ as the Dirac measure. The
concept of a measure generalizes that of a locally integrable function,
i.e., an element of L{ _(R), and is a special type of distribution. We
shall see that ¢ is a measure (Definition 2.3.6¢).

b. We sometimes write § = & since the definition of § in (2.1.4)

specifies values of functions f (in the domain of 4) at 0. Similarly, we

(2.1.4)




2.1. APPROXIMATE IDENTITIES AND ¢ 87

define the Dirac measure 6, at r € R as the function, with domain
Cy(R) (not R},
&, : Cb(R) — C
f o= f(r),

ie., for each f € Cy(R), 6,(f) = f(r). We also write 7,.¢ in place of §,
for reasons that will become apparent in Definition £.5.5.

c. Recall our introduction of § in Remark 1.1.4 and the “formula”
(8) there. The point of that formula was that if & were an ordinary
function then it would be 0 everywhere except at the origin, where it
would be so large that “fé(u)du = 1. This is of course nonsense
because of the definition of the integral. It is not nonsense from the
point of view and needs of engineers and physicists {such as Dirac!); and
the definition (2.1.4), motivated by the theorems expressed in (2.1.1)
and (2.1.2), is a mathematically sound way to legitimize the ingenuity
of these scientists in their formulas such as (4).

d. To be consistent, (2.1.3) also tells us that any element f/ € Ll (R)
can be thought of as a function whose domain C.(R) is the vector space
of all compactly supported, continuous functions on R. In fact, in this
case, we can formulate the notation g(f) to mean

(2.1.5) Ve Ce(R), g(f)= fg

cf., Section 2.2, The domain C.(R) is used instead of C3(R) so that the
111tegral on the right side of (2.1.5) is well-defined for f;G Li (R).

e. This approach of defining objects such as 4, which beg to exist
but do not exist as ordinary functions, as functions (functionals) whose
domain is a space of functions, is rooted in ideas associated with Parse-
val’s formula and weak solutions in physics. These generalized objects
are called distributions or generalized functions; and in this chapter
~we shall develop their elementary properties, especially those used in
applications.

The following result is expected in light of Remark 2.1.2; its proof
is part of Ezercise 2.38.

Le,

Ze.
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2.1.4 Proposition.
Let {kpy} € L'(R) be an approzimate identity. Then

VFEGR), lim [kon(t)f(E)dt=8(1).

2.1.5 Remark. §(¢) axp ComposiTion

In spite of the fact that the domain of § is a space of functions,
we shall sometimes write 4(¢) instead of 6, and in this case we replace
the notation &(f) (after (2.1.4)) by the seemingly more cumbersome

notation
S()(f(1)).

The reasons for doing this are that & is intuitively perceived as an
ordinary function by the (technically false) description of it in Defi-
nition 2.1.8c, and ¢ is also approximated by ordinary functions as in
Proposition 2.1.4.

The theoretical rationale in the previous paragraph would be an
effete exercise if it were not for the importance of composition in math-
ematics, e.g., [AZ90], in neural nets, e.g., [Hay94], for compression prob-
lems in signal processing, etc. We shall illustrate a role of composition
for data compression in Fzample 2.8.10, but for now are interested in
giving an intelligent meaning to the compelling notation “é 0 g”, noting
that if g(t) = t then we are really dealing with ¢ itself, cf., [AMS73],
[Jon82].

2.1.6 Example. 6&(atf +b)
We give a reasonable meaning to “6(at + b)”, where a 5 0; and in
the process we show that

1 b 1
2.1. dat + b) = — =} = = T_p/44,
( 6) (a + ) la|5(t+ a) |a| T—b/
cf., Ezercises 2.10 and 2.21. Let {k(y} be an approximate identity.
Then, by (2.1.5) and Proposition 2.1.4, it is reasonable to define §(at+b)
by the limit,

Vfe CuR), lim [kay(at+B)f(t) dt = S(at+B)(S(1)).




2.2. DEFINITION OF DISTRIBUTIONS 89
The integral on the left side is

1 foe —b
S hwr () au

and this converges to 1/|a| f(—b/a). (2.1.6) follows by definition of
5_ba-

2.2 Definition of distributions

The purpose of the theory of distributions is to provide a uni-
fied setting and calculus for many of the objects arising in analysis.
These objects include the customary functions, viz., the elements of
the space Ll _(R) of locally integrable functions. They also include im-
pulses (Dirac measures), dipoles, and other notions from the sciences,
whose role and mathematical identity could not be assimilated by the
17th century calculus, or the spectacular 18th and 19th century devel-
opments of this calculus, and the 19th and early 20th century theory
of real analysis.

A key feature of the theory of distributions is that all of these ob-
jects (distributions) can be differentiated in a natural way inspired by
the integration by parts formula, e.g., Section 2.3 and Theorem A.22.
Further, some of the important results from real analysis allowing for
switching of operations, such as summation and differentiation, are true
without hypotheses in the case of distributions, e.g., Frercise 2.46, cf.,
Ezample 2.2.2b.

2.2.1 Definition. C°(R)

a. C%(R) denotes the space of infinitely differentiable complex-
valued functions on R. "

If f:R — Cis any function on R then the support of f, denoted
by supp f, is the smallest closed set outside of which f vanishes, e.g.,
Ezample 1.2.2b.

Let

CP(R)={f:fe€C®R) and supp f is compact}.
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(Compact sets of R are precisely the closed and bounded sets of R, cf.,
Definition B.1. A set B C Ris bounded if thereis T' > 0 such that B C
[-T,T). C CRis closed if its complement R\ is @; and U CRis
open if U is the countable union of disjoint (open) intervals (a,b). The
structure of open sets in R? is more complicated, e.g., [Ben76, pages
15-16]. Clearly, closed intervals [T, T} are compact.)

b. Just as C5(R) allowed us to define the object 4, the even smaller
space C°(R) will allow us to define more unusual distributions T than
8. T exists as an element of a large space of distributions (which we
shall soon define), but can generally only be realized or evaluated by
operating on a “test function” f € C(R).

2.2.2 Example. C>(R)

C>(R) is not the trivial set {0}. This statement is not so absurd
since there are no analytic functions in C*(R). Why? (Ezercise 2.5).
In fact, C>°(R) is an infinite dimensional space, so let us write down at
least one element.

a. Let
et if t<0,

¢(t)={ 0, if ¢>0,

and define f(t) = ed(Jt|* - 1). Clearly, f(t) = 0 if |t] > 1 so that
supp f € [—1,1]. The constant cis chosen so that [ f(¢)dt = 1, and it is
a straightforward calculation to show that f is infinitely differentiable,
e.g., Frercise 2.5.

Of course, the set {fi} of dilations is an approximate identity since
Jfit)dt=1.

b. To generate other examples of elements in C®(R), take any
g € LYR) having compact support. Then f* g € C*(R). To see this
we must verify that supp f * g is compact and that f * g is infinitely
differentiable. The first fact is routine to prove and the second involves
checking conditions to switch the operations of differentiation and in-
tegration, e.g., [Apo57) for the conditions and [Fey86, pages 72 and 93]
for motivation.

c. We shall have occasion to need elements of C°(R) with special
properties such as vanishing moments, etc. In this regard let N € N.
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We shall construct real valued even functions k € C°(R) such that

(2.2.1) V0<n <N, ft”k(t) dt=0
and

" o . d
(2.2.2) vy € R\{0}, fo FOwPS =1

Let h = f(29) for some j > N/2, where f € C®(R) is real and
even. Clearly, h € C°(R), b is real-valued, and supp k is compact. By
definition of the derivative, one computes that A is even. Noting that
n < N < 23, we compute

f " FE () dt = —n / ¢t FE-1) (1) gt
= (=1)n(n—1) [ $n~2 f(2i=2) (1) dy
= (—1)"n!ff(2j““)(t)dt=0

by integration by parts, using the facts that 27 — n > 0 and that
f e CP(R). This is (2.2.1) for k = A.

Since h € C(R) then ﬁ()\’y) is rapidly decreasing as A — oo
for any fixed v € R\{0}, e.g., Ezercise 1.13. Thus, [° B(/\fy)z% is
an absolutely convergent integral. By (2.2.1), [A(t)dt = 0 and so
E(O) = 0. Clearly, & € C*(R), and so, for a fixed v € R\{0}, E(A*yf/)\
is bounded in a neighborhood of 0 since E(G) = 0 and by the definition
of derivative. Thus, f}h()\y)? % is an absolutely convergent integral.
We compute

(223) wyeR\(o}, [TA0w)y “- 7Ry Do

using the fact that h is even. Note that c # 0 since the integrands of
(2.2.3) are positive. (2.2.2} is therefore obtained by setting k = ¢ 'A.

s s

i, D 2.8 Definition. DISTRIBUTIONS
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a. C®(R) is a vector space. A linear function,

T:0*R) — C
,?F’ — T(f),

is a distribution or generalized function if lim,—. T(fn) = 0 for every
sequence { f,} C C°(R) satisfying the properties:

i. 3K C R, compact, such that ¥n, supp f, C K,

i. V& > 0, limyeo ”ff(ik)”Lm(R) =,

b. A distribution T' is positive, written 7' > 0, if T'(f) > 0 for all
nonnegative functions f € C*(R).

c. The space of all distributions on R is denoted by D'(R). We
incorporate the prime “’” in this notation to continue established no-
tation and to emphasize the fact that D'(R)is the dual space of C=(R),
i.e., the space of all continuous linear functionals on CZ(R).

We use the word “functional” just as we use the word “function”;
the only reason we make any distinction is because of our new situation
dealing with a space of functions as domain and C as range, e.g., (2.1.4)
and (2.1.5). We denote the operation of T on f by T'(f). The linearity
of T means that

loe f

T(erfi + eafe) = aT(fi) + aT(f)

for all ¢1,¢; € C and fi, f» € CZ(R).
d. D'(R) is a vector space. In fact, if T}, T; € D’'(R) and ¢;,¢2 € C
then ¢;T1 + ¢T3 is a well-defined distribution, defined by the rule,

Vie CPR), (afy+al2)(f) = ali(f) + T (f).

e. Occasionally we shall have to keep track of the underlying vari-
able t € R in dealing with the notation T'(f). In such cases, as in
Remark 2.1.5 and Ezample 2.1.6, we shall denote T'(f) by

T

2.2.4 Remark. HISTORICAL AND BIBLIOGRAPHICAL NOTE e
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Laurent Schwartz received the Fields medal in 1950 for developing
the theory of distributions. His classic book is Théorie des distribu-
tions [Sch66], [Sch61]. The first edition was published in two volumes
in 1950 and 1951. These volumes are a compendium of diverse past
accomplishments, a unification of technologies, an original formulation
of ideas both new and old, and a research manual leading to new math-
ematics and applications.

Two other monumental contributions are Gel%and and Shilov’s
Generalized Functions, in five volumes, and Hoérmander’s three vol-
umes, The Analysis of Linear Partial Differential Equations, e.g., [Hor83].

The origins of distribution theory are based in the operational cal-
culus from engineering, e.g., Section 2.6, and the concepts of “turbu-
lent” and “weak” solutions of partial differential equations from physics.
Schwartz’s Introduction and Ge{‘fand and Shilov’s bibliographic notes
give a nice overview.

A great number of books has been written on the theory of distri-
butions, running the gamut from pure topological vector space presen-~
tations [Hor66)] to applications in optics and supersonic wing theory
[deJ64]). We hesitate listing excellent books that we know, since our
omissions would surely include comparably excellent ones.

2.2.5 Definition. EQuALITY OF DISTRIBUTIONS
a. Let 71, T2 € D'(R). T\ equals T3, i.e., T} is the same distribution
as Ty, if
VfeCER), T(f) =Tu(f).

Notationally, in this case, we write Ty = T3. In particular, T = 0 if
T(f)=0forall f € CZ(R).

b. This notion of equality can be explained mathematically in func-
tional analytic terms, e.g., Definition B.6. Intuitively, however, the
idea is clear: T'(f) = 0 for all f in the domain C®(R) of T implies
T is the 0-distribution just as g(¢) = 0 for all ¢ € R implies g is the
0-function.

Another compelling reason to accept this notion of equality is that
if g € LL(R) and g(f) = 0 for all f € C*(R) then g is the O-function,
e.g., Erercise 2.8.
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2.2.6 Example. LocaLLy INTEGRABLE DISTRIBUTIONS
a. Let g € L1 _(R) and define the functional,

T,: Ce(R) — C,
fo— T,

where T} is defined as

(2.24) Vfe CRR), T,(f) = [o)f(yds,

cf., (2.1.5) where we wrote g(f) instead of T,(f). It is easy to check
that T, € D'(R).

b. Not only does T, define an element of D'(R), but the linear
mapping

L: Lt

(225) loc(R) — D’(R)

g — L(g) =T,

allows us to identify Lj,.(R) with a subset of D'(R).

To see this, we must show that the mapping L is injective, i.e., a one-
to-one function. This means we must prove that if T,, = 7}, in D'(R)
then g1 = g2 a.e., or, equivalently (by the linearity), if g(= g1 — g2)
is not the O-function in L} (R) then there is f € C®(R) for which
Jg(t)f(t)dt # 0. As pointed out in Definition 2.2.5b, this fact is a
consequence of Ezercise 2.8.

Since the mapping is injective, there is no ambiguity in identifying
g € LL (R) with L(g) =T, € D'(R).

c. Examples of such distributions T, arise from g = H and ¢(¢) =
1/1t|/%. On the other hand, g(t) = 1/t ¢ LL (R), cf., Ezample 2.3.8c.

d. The domain of the Dirac measure defined in (2.1.4) can be re-
stricted to C2°(R), in which case we have '

§:C*R) — C
fo— 8(0) = f(0).
It is easy to check that ¢ defined by (2.2.6) is a distribution. We hasten

to point out that the Dirac measure is not an element of L. _(R),i.e.,d is
not in the range of the function I defined in (2.2.5), e.g., Ezercise 2.39.

(2.2.6)
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2.2.7 Definition. Surrorr

a. We have defined the 0-distribution. We now “localize this defi-
nition in the following way. T € D'(R) is zero on the open set U C R,
written 7= 0 on U, if

Vfe CP(R), suchthat suppfCU, T(f)=0.

The support of T, denoted by supp 7', is the smallest closed set €' =
R\U outside of which T' is 0.

b. The definition in part a is usually easier to check than you might
imagine. In particular, we have

(2.2.7) Vr € R, suppé, = {r}
and
(2.2.8) supp Ty = supp g,

where g € Li,_(R) and where the right side of (2.2.8) was defined in
Definition 2.2.1, e.g., Ezercise 2.25, cf., Frercise 2.83.

2.3 Differentiation of distributions

2.3.1 Definition. DisTRIBUTIONAL DIFFERENTIATION

a. The duality between the small space C2°(R) and the large space
D'(R), allowing us to define so many objects 7' in D'(IR), can be coupled
with the integration by parts formula to provide a definition of “T"”,
the distributional derivative of T, in part b below.

Let C'(R) be the space of continuously differentiable functions on
R. If f € C°(R) and g is sufficiently smooth, e.g., if g € C'(R) or even
if g is only an element of AC),.(R), then

(2.3.1) /g(t)f(t dt = fg () f'(¢) dt.

The integration by parts formula in (2.3.1) is the distributional “duality
formula”

(2.3.2) Vi€ CTR), ¢(f)=-9(f)
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Since the right side of (2.3.2) is well-defined when g is replaced by any
T € D'(R), we are motivated to make the following definition.

b. The distributional derivative 17 of T € D'(R) is defined by the

formula
(2.3.9) Ve CR), T(f)=-T(f).

c. To establish the viability of (2.3.3) as an effective definition of
the notion of derivative we must prove the following:

(2.3.4) T' e D'(R),
and
(235) Vg & ACIOC(R)) T; - TD.GH

where Dg denotes the ordinary pointwise derivative. The verification of
(2.3.4) and (2.3.5) is routine, e.g., Ezercise 2.7. In concert with (2.3.3)
we write T, = ¢'.

d. For each T' € D'(R) we define T, the nth distributional deriva-
tive of T, as the distribution defined by the formula,

(2.3.6) Vfe CPR), TW(f)=(-1)"T(f™).

2.3.2 Remark. DEFINITION BY DUALITY

a. The use of “duality formulas” such as (2.3.2) to define an analytic
operation (such as differentiation) on an arbitrary distribution 7' is a
critical aspect of the theory. The idea is to define an operation on
T in terms of the same (or similar) operation on C*(R), where it
makes perfectly good sense; the vehicle for effecting this definition is
a “duality formula”. As we shall soon see, Parseval’s formula is the
“duality formula” which allows us to define the Fourier transform of
distributions.

b. In general, we cannot extend (2.3.5) to arbitrary elements g €
Ll (R) even though T, is a well-defined generalized function. In fact,
if g is infinitely differentiable on R\{fo} in the ordinary pointwise sense
and Dg is the ordinary pointwise derivative of g defined everywhere
except at 1o, then, in general, T} and Tp, are distributions but 7} # T,
e.g., Ezample 2.3.5.
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2.3.3 Example. H' =4
Let H be the Heaviside function.

a. The ordinary pointwise derivative D H exists and takes the value
0 on R\{0}. Thus, DH € L} _(R) and DH is the 0 distribution.

loc

b. The distributional derivative H' is evaluated as follows. Choose
f € C*(R) and compute

(@37)  H(f)=-H(f)=-[ f(t)dt=£0)=5F).

Since H'(f) = §(f) for all f € C=(R) we can conclude that H' and §

are the same distribution, i.e.,
H' =4,
where H' is the distributional derivative of H.

2.3.4 Remark. NoTATION FOR DIFFERENTIATION

Let g : R — C be a function, and suppose the ordinary pointwise
derivative of g exists at . As indicated above, we denote this value by
Dg(t), and if Dg(t) exists a.e., we denote the resulting function by Dg.

On the other hand, if ¢ defines a distribution 7, then ¢’ denotes the
distributional derivative Tg'.

In general, the distinction will be clear; and when no confusion arises
we shall be less than compulsive about the “D” notation.

2.3.5 Proposition.

Let g € CYR\{0}), t.e., g is continuously differentiable on R\{0}.
Assume that g has a jump discontinuity at the origin with jump oy =
g(0+) — g{0—). Then we have the distributional equation,

g = Dg + a4,
Vi € CE®), g7) = [(Da)OSE)di +00f(0),

where g corresponds to T, € D'(R), Dg corresponds to Tp,, and ¢’ =
T’

g°
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Proof. For f € C®(R) we compute
() ==9(r) = - [ ot)f
= [ qorwa - [ owrd
s /_ (Dg)®)f() dt}

- lsws | - [wowswal

= 00 f(0) +f(Dg(t (t) dt. O

"—[g(t) (t)

We can not conclude from Proposttion 2.8.5that Dg € L} (R). For
example, let

| texp(ie™'?), if t>0,
9(t) = { 0, if t<0.

2.3.6 Definition. RapoN MEASURES
a. The space M(R) C D'(R) of Radon measures is defined as

(2.3.8) M(R)={F' € D'(R): F € BVi.(R)},

ie, T € M(R) if there is F' € BV,(R) for which 7" = F”, the first
distributional derivative of F. The space M(R) C M(R) of bounded

Radon measures is defined as
(2.3.9) My(R)={F'e D'(R): F € BV(R)}.

(2.3.8) and (2.3.9) are well-defined since BY,.(R) C L (R), e.g., Ez-
ercise 2.23. .

The elements of M(R), resp., M;(R), are often referred to as mea-
sures, resp., bounded measures. It is also often the case that measures
are denoted by Greek letters such as g and ». Further, if p € M(R)
then, notationally, we write

(2.3.10) Vi e Co(R [ F(t)du(t)
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For a given measure ¢ the domain of function f for which u(f) can be
defined is much larger than C*(R).

b. A measure, resp., bounded measure, p is positive if u(f) > 0
for all nonnegative functions f € C®(R). The space of positive mea-
sures, resp., bounded positive measures, is denoted by M..(R), resp.,
My (R). It turns out that g € M(R) is positive if and only if each of
the corresponding functions F' (for which F’ = p) is increasing on R,
e.g., Section 2.7

c. Since the Heaviside function H is an element of BV(R), we see
that § = H' € My(R). Lebesque measure p € M(R)\My(R) is pp = F',
where F' € BWo(R) is defined as F(t) = t, i.e., Lebesgue measure
can be identified with the distribution which is the constant 1, cf.,
Definition A.4.

Further, note that L}(R) C My(R) and L, .(R) C M(R), e.g., Fz-
ercise 2.39. The norm of y € My(R) is defined as

llslly = sup{|p(f)] : f € Co(R) and || flizeo(m) < 13-

If g € L}(R) then ||gllzw) = [lglls-
d. The definition of “measure” in part « is equivalent to that from
real analysis. The underlying idea establishing this equivalence is the

Riesz Representation Theorem, e.g., Section 2.7, cf., [Ben76, Appendix
I11], [Bou65, Chapter IT1.1], [Sch66, Chapitre I1.4, Théoréme IIJ.

2.3.7 Remark. MurripoLEs anp §(%

The first distributional derivative of §, viz., &', is not an element of
M(R) since é ¢ BW.(R). & is the dipole at the origin, and the distri-
butions 6™, n > 1, are the multipoles which arise in several imporant
applications. For example, in fluid mechanics, a dipole is the limiting
case in fluid flow of a source and a sink of equal strength approach-
ing each other under the constraint that the product of the distance
between them and their strength is constant.

To quantify the fact that multipoles arise in applications, let us
consider the case of electromagnetism and the potential due to point
charges. The laws or equations of electromagnetism can be developed
and formulated beginning with the notions of length, mass, time, and
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the electrical quantity of charge. Coulomb’s law asserts that the force
F;; between two charges g;, gx at points v;, v € R?is
959k

Fj =
* = =l

Uiz,

where ¢ is the permittivity constant and u;; € R® is the unit vector
directed from v; to vi. If there are charges g1, - , ¢, at v1,+++ ,v, €
R3 then the electric field F' : R® — R? due to these charges can be
formulated in terms of Coulomb’s law and linear superposition. For
conservative fields there is a potential function V : R® — R whose
gradient is F. In the case the charges are close to the origin and r = |x]|
is much larger than any |v;| then V(x) is of the form

12 1|z & Ty <= T3 —
VE) =l =S g+ S| = qvn+ =3 g+ — 9 qvj
ris rilr = T r o=

(2.3.11)

where x = (zy, %3, %3),V; = (v1,v2,v;3) € R? e.g., [Conb8, Chapter
8]. The first sum, Xgq;, is the total charge or monopole moment of the
charge distribution. The next three sums of (2.3.11) are the components
of the dipole moment of the charge distribution, and we have omitted
writing the quadrupole moment, octupole moment, etc.

Now consider the particular example of two charges on the z-axis,
viz., g at €/2 and —q at —¢/2. The monopole moment vanishes, and the
dipole moment is ge. If ¢ = g(€) = —1/¢, then it is natural to formulate
the notion of the dipole of moment 1 at the origin to be

1
_1%2 (65/2 - 5—6/2) )
which, in turn, is ¢’. In fact,

—lim 2 (8ej2 — 6_cz2) (f) = =lim

e—0 g 0

F(3) - f(=3)

= —f1(0) = =8(f') = &(f)-
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2.3.8 Example. THE PRINCIPAL VALUE DISTRIBUTION
a. We define the functional T by the formula

VfeC®(R), T(f)=Ilm 1) 4

o =0 fti>e t

We shall verify that T is well-defined (part b), observe that T' € D'(R)
(Ezercise 2.43), and show that T ¢ M(R). T is the principal value
distribution, and is denoted by

1
po(3).
b. To show that T is well-defined, note that

Mg f HOSO g o

tjze 1 t—0 R>|t[ze T

:f Mdt
R2ftl>e  t—0

for f € C*(R) and some R > 0, depending on f. If

i) = FO=10)

i 1 [—R,—c¢]ue,R] (t) 3

then |h(t)| < || f||z(k) by the mean value theorem, the constant func-
tion g = [|f'||ze(r) belongs to L'[—R, R], and, for each t # 0,

lim he(t) = () _t_ 7(0)

0

II“RvR] (t) *

LDC applies, and, thus, T'(f) is well-defined.

c. Let g(t) = loglt], ¢t € R\{0}. Clearly, g € LL (R). In fact, if
a > 1, then we have

[/ 1 a
(2.3.12) / |log|t|[a’t:—/ Iogtdt—i—/ log t dt
o 0 1
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and D{tlogt —t) = logt, so that the right side of (2.3.12) is finite.

Obvious adaptations of this calculation yield the local integrability of
g. Thus, g € D'(R) and we compute ¢'. For any f € C°(R) we have

§(f)=—=g(f) =~ [logltl F'(t)dt
(2.3.13) . .
- L loglt] f/(t)dt — /0 log [¢] £/(2) dt.
The second term on the right side of (2.3.13) is

_ fo " (log ) f/(t) dt = ~lim f " (log)f'(t) ¢t

_fc°° %—f(t)dt}

= %1_?& [f(e)loge-l— /:o -tl-f(t) dt] .

o0

(2.3.14) = - 11:}.&1{1) [(log 1) f(t)

€

Note that loge(f(e) — f(0)) —+ 0 as € — 0 since
loge(f(e) — f(0)) = e(loge)w —0-f(0)=0, ¢—0.
Thus, replacing f(e}log e by
loge(f(e) — f(0)) + f(0)log e
in (2.3.14), we obtain
__/ooo(logt)f’(t)dt:E_r}%[f((])loge—i—lw@dt] .

+

where we have used the fact that logt € L} (0, 00) (a primitive of log ¢
is tlogt —t, and therefore fylogtdt = aloga — a) and properties of
sums of limits. [---]; designates the fact that we are integrating over

(0,00) on the left side.
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Similarly, for the first term on the right side of (2.3.13), we compute

° U b — 1 e f@t)
=/ loglt| fi(t) dt =lim| —f(0)loge+ | ==dt| ,
where [+ | designates that we are integrating over (—o0, 0) on the left

side.
Since limeyo[- - -]+ and lime o[- - - ]- exist we see that

lim[ -+ J4 +lim[--- |- = lim([- -} + [-+]-)

e—0
/ f(t
e—)O Jt|>e

cf., part b. On the other hand, equation (2.3.13) shows that the left
side of (2.3.15) is ¢'(f), where g(t) = loglt|, t € R\{0}. Therefore,
since the right side of (2.3.15} defines the principal value distribution,
we obtain

1
(23.16) (og ) = po(5).
Clearly, log |t| & BVoc(R) and so pv(3) € M(R), e.g., Ezercise 2.30.

2.3.9 Example. FIRST MOMENT OF A MEASURE
a. We shall verify that

(2.3.17) [tauty=1- fo ") dt,

where 4 = F' € My (R) has the property that F = 0 on (—o0,0],
F =1 on [l,00), and F is increasing on [0,1]. In fact, if f € CP(R),
then

(2.3.15)

EER)(f(1)) = F'@)Ef(1) = —FR)EF @) + £(2)

:--ftf dtm.[lmtf’(t)dt"_/()lf(t)Ftdt

(2.3.18)
—[ F(t)dt = ~f () F(E) dt + F(1) ff

(5~ 10 F)) - [ FOF@)
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Consequently, if f =1 on [0, 1] we obtain (2.3.17) since the left side of
(2.3.18) is [t du(t) in this case.

b. Let F in part a be defined on [0, 1] as the Cantor functions f¢ for
the %—Cantor set C, cf., Remark 1.4.2a. In this case, DF =0 a.e. and
F' = uo € My (R). pc is the Cantor measure, and has the property
that [ duc(t) = 1 and supp pc = C, e.g., [Ben75, pages 28-29], [KS63,
Chapitre I, [Zygh9, Volume I, pages 194-196]. F' € BV(R)NC(R), but
F ¢ AC1,(R).

Using {2.3.17) we have the fact that

1
[tduott) =3,
e.g., Lzercise 2.44.

2.3.10 Example. DATA COMPRESSION AND LATERAL NETWORKS

Suppose f is a signal which can not be understood by direct ex-
amination or which must be reconstructed after less than ideal trans-
mission. f could be a speech signal, radar data, an image, MRI or
EEG data, etc. Let F'(t,w) be data collected from the signal. F' could
be a spectrogram, a scalogram, a radar ambiguity function, etc., e.g.,
[BF94], [Mey91], [Rih85]. The goal is to understand or reconstruct
f from F or a modified version of F. A possible modification of F,
because of excessive volume, is the compressed data

Ho F(t,w)

consisting of Os and 1s. Here, H = H(t). In some systems, the variables
(t,w), which could be time-frequency, or time-scale, etc., are interre-
lated because of physical constraints. For example, in the auditory
system and for w being a scale variable, the modified data can be of
the form

d,(H o F)(t,w) = [d o F(t,w)]0.F(t,w),

e.g., [BT93]; in particular, compositions of the form ¢ o F' arise in a
natural way.
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2.4 The Fourier transform of distributions

In Equations (2.3.1) and (2.3.2) we used the integration by parts
formula to motivate the definition of the distributional derivative. In
this section we shall use the Parseval formula to motivate the defini-
tion of the distributional Fourier transform. In this role, such classical
formulas become creative formulas in the sense of the following remark.

2.4.1 Remark. CrEaTIVE FORMULAS

What do we mean by a creative formula? The Pythagorean Theo-
rem is an example of such a formula. It leads to the proper definition
of distance between points in Euclidean space. It is fundamental in
defining lengths of curves, areas of surfaces, etc. It extends to defining
the notion of distance by means of the L?-norm in the space of square
integrable functions. It provides a fundamental guideline in the geome-
try of Hilbert space. It is a backdrop from which various non-Euclidean
geometries are assessed. It inspires new developments in the sciences,
with concepts such as energy or fields of study such as quantum me-
chanics, e.g., [vN55].

2.4.2 Definition. FOURIER TRANSFORM OF DISTRIBUTIONS
a. Recall the Parseval formula (1.10.10),

(2.4.1)  Vf,ge L*R), f&(v)mdﬁr = fg(t)?(_t)dt

In the notation of (2.1.5), and thinking of f as a test function, we
rewrite (2.4.1) as

(24.2) 5(7) = o(7).
In the notation of (2.2.4), we rewrite (2.4.2) as
(2.4.3) T5(f) = T,(7)-

Since L?(R) is a Hilbert space, e.g., [GG8l], it is customary to
introduce the notation of inner products and write

(9. )= [ 9)F@) et
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Thus, (2.4.1) is
@.F) = (9, 5),
and (2.4.3) is R
(T, f) = (T, F)-
b. Motivated by part a, the Fourier transform T of a distribution
T is formally defined by the equation

(2.4.4) T(f) =T(F)
or, equivalently,
(2.4.5) (T, f) = (T, 1),

for all functions f in an appropriate space of test functions, cf., Defini-
tion 2.2.1b.

c. We have been purposely vague about specifying the distributions
and test functions in part b, since the meaning of (2.4.4) is difficult to
formulate for all dxstrlbutlons In fact, if T € D'(R) and f € C*(R),
then the right side of (2.4.4) is well deﬁned whereas f ¢ C2(R), e.g.,
FEzercise 2.5. Thus, T on the left side is not necessarily defined on
(el (R), and would not necessarily be a distribution. Even if we worked
with f € C®(R) and T € D'(R), then T would not be well-defined on
C(R) for the same reason.

This quandary is resolved by introducing the Schwartz space of test
functions and the space of tempered distributions in the following ma-
terial.

2.4.3 Definitlon. THE SCHWARTZ SPACE

a. An infinitely differentiable function f : R — C is an element of
the Schwartz space S(R) if

(2.4.6) o
Vn=0,1,..., [flw= sup sup(l+ )" < oo,
0<i<n ek

b. Note that the Gaussian g(t) = ﬁe_t € S(R), and that

C2(R) C S(R) C L' (R)N L*(R) N A(R).
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c. Using (2.4.6) we define the function p : S(R) x S(R) - R* as

I — glln)
L+ f — gl

(24.7)  Vf,g€SR), p(f i 51—

The following theorem is a basic result about the Schwartz space,
and its verification is left as Ezercise 2.45.

2.4.4 Theorem. S(R)"= S(]ﬁ)

a. The mapping S(R) — S(R), f — f, is a bijection.

b. The mapping p defined by (2.4.7) is @ metric on S(R), and, as
such, the metric space S(R) is complete.

c. The Fourier transform mapping of part a, where S(R) is given
the metrizable topology of part b is bicontinuous. Thus, the Fourier
transform,

S(R) — S(R)
f—

is @ metric space isomorphism, ¢f., Theorem 1.10.2 and Exercise 2.47.

2.4.5 Definition. TEMPERED DISTRIBUTIONS

a. A linear functional,

T:85R) — C
fo— T(),

is a tempered distribution if limu e T(fn) = 0 for every sequence
{fn} C S(R) satisfying the properties

(2.4.8) Vk,m >0, lim [("fP()]|r=w) = 0.

The space of all tempered distributions on R is denoted by S'(R).

b. Tt is not difficult to prove that “f, — 0” in the sense of (2.4.8)
if and only if limpeeo p(fn,0) = 0, where p is defined in (2.4.7), e.g.,
Frercise 2.45.
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c. In light of our terminology, it is natural to ask if S'(R) C D'(R).
The answer is “yes”. The proof of this fact depends on functional anal-
ysis duality results (Remark B.16) and the following easily verifiable
facts: the mapping

C*(R) — S(R)

2.4.9

(2:49) ;o= f
is continuous, and

(2.4.10) Cx(R) = S(R),

cf., Fzample 2.4.6h. (2.4.9) means that if “f, — 0” in the sense of
Definition 2.2.3a then “f, — 0” in the sense of (2.4.8). The density
(2.4.10) means that if f € S(R) then thereis {f.} C C*(R) for which
“f — fa — 0” in the sense of (2.4.8) (in fact, let f, = fg. where
gn € C(R) is even, g, = 1 on [-n,n], suppg, C [—(n+1),n+1], and

gr has the same shape on [n,n + 1] as g,, has on {m,m+1]).

The following section contains some advanced material and relevant
references, but no details.

2.4.6 Example. DisTrRiBUTIONS: POTPOURRI AND TITILLATION

a. Let T € D'(R). Then T' € S'(R) if and only if there is g € C3(R),
and k,m > 0, such that

T = §f%*) (distributionally),

where f(t) = (1 + t2)™/?g(t) [Sch66, Chapitre VII, §4, Théoréme VI].
For example, if f € Cy(R), then f* € S'(R). In particular, taking
f(t) = tH(t), we see that §*} € §'(R) for each k£ > 0.

b. If T € D'(R) and suppT C R is compact, then T € S'(R)
[Sch66]. The space of distributions having compact support is denoted
by £'(R), and so

E'(R) C S'(R).

c. If g(t) = €l then g ¢ S'(R).
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d. For each p € [1, 0],
L*(R) C S'(R).

e. 8'(R)is the smallest subspace of D'(R) which contains L'(R) and
which is invariant under differentiation and multiplication by polyno-
mials, cf., Definition 2.5.7.

f. Spectral synthesis. If the norm of f € A(R) is defined as || f|| 11wy
then A(R) is a Banach space (in fact, it is a Banach algebra under
pointwise multiplication of functions). The dual space A'(R) of A(R),
i.e., the space of continuous linear functionals T : A(R} — C, is the
space of pseudo-measures. We have the inclusion

My(R) € A'(R) C S'(R).

An important area of harmonic analysis, rooted in physical consid-
erations and with many unsolved problems, is spectral synthesis, e.g.,
[Ben75], [Beu89], [KS63], [Kah70], [Kat76]. Its creation, canonicity,
and depth were revealed to normal man by Beurling. In deceptive form,
an essential problem of spectral synthesis is to determine the pseudo-
measures 7' € A(R) for which there is a sequence {un,} C My(R)
satisfying the properties that supp g, C supp T for each n, and

VS € AR), lim ua(f) =T(f)-

g. Riemann Hypothesis. The most elebrated problem in analytic
number theory is to settle the validity or not of the Riemann Hypothesis.
The Riemann zeta function ((s) is defined as

o

((s)=>_ —l;; Res > 1,
, on
and it has an analytic continuation, whereby it is analytic on C\{1}
and has a simple pole at s = 1. The Riemann Hypothesis is the state-
ment that the complex zeros of ((s) all have real part equal to 3, e.g.,
[EdwaT74], [Tit51].
The Weil distribution W € D'(R) is defined as

Vfe O:::O(R): W(f) - EP(I)f(p)7
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where ((p) = 0 for 0 < Rep <1, and where
Ds(s) = /f(t)e(s'%)tdt;

this integral is the bilateral Laplace transform of f(t)e~#!. Tempered
distributions arise in the following result. The Riemann Hypothesis is
valid if and only if W € S'(R) [Ben80], [Joy86, page 6].

The Riemann Hypothesis can be considered a strong form of the
Prime Number Theorem; and Wiener’s Tauberian Theorem, a funda-
mental result in harmonic analysis, is an indispensable tool in this type
of analysis, e.g., [Ben75, Section 2.9].

h. If D'(R) is taken with the canonical dual space topology from
C>(R), then the natural injection C°(R) — D'(R), f +—— Ty, is con-
tinuous. Further, if the topological vector space X has the properties
that C(R) C X C D'(R), the inclusions are continuous, and C¢°(R)
is dense in X, then the dual X' is a subspace of D'(R).

2.4.7 Definition. THE FoURIER TRANSFORM OF TEMPERED DISTRIBUTIONS

a. The Fourier transform of T € S'(R) is T, defined by

(2-4.11) VfeSR), T(f)=T(F).

b. Equation (2.4.11} is a quantified version of (2.4.4), and there is
the equivalent quantified analogue of (2.4.5). Because of Theorem 2.4.4,
we know that f € S(R), and, thus, it is straightforward to show that
T € §'(R). In fact, the mapping,

S'(R) — S'(R),

T — T

is a linear bijection. Further, there is a natural convergence criterion
(topology) on &' so that (2.4.12) is bicontinuous, e.g., [Hor66], [Sch66],
and, hence, (2.4.12) is a topological vector space isomorphism.

(2.4.12)

We now want to compute Fourier transforms with this new defini-
tion; and, in particular, in light of Fzample 2.4.6d, we want to make
sure that the new definition reduces to the classical definition of Chap-
ter 1.
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2.4.8 Example. THE Fourier TransrorM oF L'(R) anp §(?)

a. Let g € L*(R). We shall verify that T, = 75 so that the distri-

butional Fourier transform is a generalization of the usual, i.e., L'(R),
definition. For each f € S(R) we compute

(T, ) = T0, ) = [ o F Dt

(2.4.13) . B
= [atnFn dy = (15, ),

where we have used the Parseval formula for ¢ € L'(R) and f € L!(R),
e.g., Proposition 1.10.{. By our discussion of equality for distributions
we can conclude that T, = T since (2.4.13) is true for each f € S(R).

b. Let T = 5(”); From Frample 2.4{.6a or b, we know that T &
S'(R). To evaluate T we compute

(@, F) = (6@, ) = (=16, 7))
= (—1)(8(t), [ @rig)Fl)er™ d)

-~ -

= (1)@ @2my)", F(7)) = ((27i7)™, £ (7))

for each f € S (R) Consequently, we have
(2.4.14) (™) (7) = (2mim)"

for each n € NU {0}. In particular, § = 1, which is compatible with
our discussion of approximate identities.

An important point about (2.4.14) is that (§®)* has polynomial
growth at +oo as opposed to the behavior of f at oo for f € LMR)
(or L*(R)).

2.4.9 Example. THE FOURIER TRANSFORM OF THE HEAVISIDE FUNCTION
The Heaviside function H € L (R)N S'(R),d € My(R) C S'(R),
and pv(3) € S'(R), whereas pv(;) € M(R). The Fourier transforms of
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any one of these distributions have a nice formulation in terms of the
others or their Fourier transforms. We shall verify

H(t) +— sp0(3) +36(7)
(2.4.15)
30(8) — s=pv(3) +— H(y).

For f € S(R) and f = F, we compute

(oD@, P = ol 1 0) =ty [ L
e 2mity
(2.4.16) = lim f fu . T dns
. —2mity
=lim [ F(y) e 1 dtdy.
Now note that if v # 0 then
Ym T cos 2ty it =0,

e—=0, T 1/e

where 1/¢ < T. In fact, by the second mean value theorem for integrals
(Lemma 1.7.3), we have

T cos 2t ¢ L /7
/;/5 o8 tﬂ- Y de = 6/;/5 cos 2ty dt -+ T[g* cos 2mi-y di
esin 2wty ¢ sin 2ty |T )

2ry b= 20Ty e

and for fixed « #0 this last term tends to 0 as e =+ 0 and 7" — co0. A
similar calculation for the domain [—S,—%] (where S > 1) combined
with an application of LDC allow us to write the right side of (2.4.16)
as

—2qrity

(2.4.17) / W[lim - dt] dy.

=0 Jegltl<1/e
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(The use of LDC requires certain hypotheses, e.g., Frercise 2.19.)
Next, we compute

—27ity in 2t
lim it = —limi f SNETEY g
0 Je<pigrfe 2 =0 Je<|t|<1/e t

(2.4.18)

[ -m, i >0,
— | omi, if <O

We can write the right side of (2.4.18) as
mi — 2miH(y) = mid(y) — 2miH ()

for 4 # 0, and thus we have proved that

VF € SR), {(p(3)" (), F(y)) = (xid(y) — 2miH (7). F(7),

where f = F. Therefore, (pr(IN*(v) = 718(y) — 2riH(v) and (2.4.15)
is obtained.

2.4.10 Remark. PErspECTIVE ON H

Our calculation of (2.4.15) is relatively honest but too long-winded
because of the distributional setup. The formula was certainly known
and used long before distribution theory, and several formal, short, and
essentially correct calenlations give the result, e.g., (2.4.18) contains
the essential details.

2.4.11 Remark. EIGENFUNCTIONS

a. We defined the Hermite polynomials H,,n > 0, in Fzercise 1.26,
and computed the eigenvalues of the Fourier transform mapping F :
Lz(R) — L*(R) in Ezample 1.10.12. The Hermite functions hn(t) =

e~ H,(2/7 t) are the eigenfunctions of F, and, in fact, b, = (—i)"A,.
Further, {hn/||An||z2) : n > 0} is an orthonormal basis of L?(R). This
material was developed by Norbert Wiener [Wie33, pages 51-71] to give
his proof of the Parseval-Plancherel Theorem, cf., [Wie33, page 70] for
an interesting historical note and [Wie81, article 29d], which is related
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to earlier work of Hermann Weyl and which establishes the Fourier
transform of fractional order in terms of Hermite polynomials.

b. Since the Hermite functions are contained in S(R), they are also
eigenfunctions of the mapping F : S(R) — S(R). In this context
it is natural to determine the eigenfunctions of the Fourier transform
mapping F : §'(R) — &'(R). In this regard, we do note now that
Y6, € M(R)N S'(R) and

(2.4.19) (36,)" =Y 6.

Equation {2.4.19) is a form of the Poisson Summation Formula, e.g.,
Theorem 8.10.8.

2.5 Convolution of distributions

In Section 1.5 we defined the convolution g*h for g, » € L*(R). In
this section, we shall see to what extent we can define the convolution
S*T for S,T € D'(R). In Proposition 1.5.2 we established the exchange
formula (g * h)* = Gh for g,h € L'(R). In this section we shall see
to what extent this formula is valid for distributions; and, in view of
the right side of the exchange formula, we shall see to what extent the
mulliplication of distributions is well-defined.

Convolution and the exchange formula are major components of the
operational calculus (Section 2.6). Further, the formulation of convo-
lution and multiplication of distributions is a formidable mathematical
task which we shall really only address at the motivational and com-
putational levels.

2.5.1 Definition. CoNVOLUTION
a. If g,h € LY(R), then for each f € C®(R) we have

(g )P = [ g hOFOdt = [[ ot = wh(w) £(2) dud
(2.5.1) = [ h(w) ( JEGIO dt) du
= fh(u)fg(v)f(u—i—v) dvdu.
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b. Because of the calculation in part @, we define the convolution
S * T of certain distributions 5 and T by

(25.2) VfeCP(R), (S*T)f)=T(w)(S@)f(u+v)),

where, although T is not necessarily an ordinary function on R, we
write T'(u) to indicate its dependence on the u variable.

c. We have been deliberately noncommital in part & about which
distribution S and 7' we can convolve; and whether, in case S* T exists,
it is an element of D'(R), cf., Theorem 2.5.4. In fact,

(2.5.3) Vie CZ(RN{0}, flu+tv) ¢ CT(R xR);

and S(v)(f(u+v)) is not necessarily an element of CZ°(R) (as a function
of u), so that the right side of (2.5.2) may not make sense. To visualize
(2.5.3) it is instructive to let supp f = [, b], @ > 0, and then note that
the support X of f(u+v) as a function of two variables is the diagonal
strip of R X R whose intersection with both the 4 and v axes is [a, ],

ie.,
(2.5.4) X={(u,v)€RxR:a§u+v§b}.r

2.5.2 Example. ProPERTIES oF CONVOLUTION

a. The calculation in part @ of Definition 2.5.1 shows that (2.5.2)
generalizes the definition of convolution in L}(R). It can also be shown
that pxrv € My(R) for , v € My(R). This can be proved measure theo-
retically, e.g., [Rud66], or by our definition of M,(R) in Definition 2.3.6
combined with the Riesz Representation Theorem in Section 2.7, e.g.,
Ezercise 2.49.

b. ¥ 8,7 € D'(R) and 5+ T, defined by (2.5.2), is a well-defined
element of D'(R), then T * S is also a well-defined element of D'(R),
and S*T =T % 5. Thus, convolution is a commutative operation.

c. Convolution is not necessarily associative. In fact,

(1+8)*H=0+H=0

and
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d. Let S=T =1. Then S,T € S'(R)N M(R) and

1@)(f(u+v) = [ f(0)de
Therefore, S * T'(f) = co for each nonnegative f € C*(R)\{0}, and,

in particular, S * T does not exist.

e. f T € D'(R) and g € CZ(R) then T'*x g € C<(R).

2.5.3 Definition. TransLaTION
a. If g € Ll (R), then for each fixed ¢t € R and each f € C=(R),

loc
we have

(Tra)F) = [ 9o = 1)f(@)dv = [ glu)f(u+1)du

= T,(u) (7 + 6) = T () (30)( S+ v)))
= (& * T,)(f).

b. Because of the calculation in part @, we define the translation

=T of T € D'(R), by t € R to be
(255) TgT = 5: T,

c. It should be noted that the right side of (2.5.5) is a well-defined
element of D'(R), although there is something to prove, c.g., Fzer-
cise 2.51.

We have seen that &, * T' € D'(R) for arbitrary distributions T,
whereas S * T is not necessarily a distribution for 5,7 € §'(R) (Ez-
ample 2.5.2d). The following result records some of the elementary
theory for the existence of S * T, e.g:, [Hor66, pages 365-401, esp.,
pages 382-388], [Sch66, Chapitre VI).

2.5.4 Theorem. EXISTENCE oF CONVOLUTION
a. Let S,T € D'(R) satisfy the property that for each compact set
C CR,
((supp S) x (supp 7)) N C*
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is compact in R x R, where C* = {(u,v) e RxR:u+v € C}, of,
(2.5.8) and (2.5.4). Then SxT € D'(R).
b. Let S € £'(R) and T € D'(R). Then S« T € D'(R).

2.5.5 Proposition.
Let T € D'(R) and let n > 0. Then

T« ) = 7,

in particular, T+ 6="T.
Proof. For each f € C°(R), we compute

T+ 50 f) = T(u) (6" (w)(f(u + v)))
= (=1)"T(w) (§(v)(S™ (s +v)))
= (—1)"T()(f™ () = T™(f). O

2.5.6 Definition. EXcHANGE FORMULA
a. If g,h € L'(R), then, as mentioned at the beginning of this
section, we have the exchange formula,

(2.5.6) (g% ) =

Besides the direct proof in Section 1.5, we could also prove it “distri-
butionally” as follows. For each f € C®(R),

(T, + TNF) = T # () = To(w) (Ta(w) (Flu + )
@50 =1 (50 ([Toemena) )
= [ e )] (Fn) = (BD) (7)

The calculation (2.5.7) is valid for each f € CZ(R), and so we can
conclude that (T, * Tp)" = 1,7}, which is precisely (2.5.6).
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Although the notation in (2.5.7) is labyrinthine, it does inspire part
b and possible proof of the formula therein, when T is replaced by S
and T}, is replaced by 7.

b. The ezchange formula for certain distributions S and 7" is

(2.5.8) (S+T)"=S8T.

c. In the best of all worlds, if 5,7 € §'(R) then we could conclude
that S * T exists and is an element of S'(R), that the multiplication
ST is well-defined and ST € §'(R), and finally that (2.5.8) is valid, cf.,
[Hor66, page 424], [Sch66, Chapitre VIL.8] for the first distributional
version of the exchange formula. Also, we already saw that S * T' need
not exist for §,T € S'(R). For the multiplication of distributions we
refer to Definition 2.5.7, and for a reasonable theorem yielding the
validity of the exchange formula we refer to Theorem 2.5.9.

2.5.7 Definition. MULTIPLICATION OF DISTRIBUTIONS

a. Let g € C°(R), resp., S(R) or C*(R), and let T' € D'(R), resp.,
S'(R) or &(R). The product ¢T € D'(R), resp., S'(R) or £'(R), is
defined by

(2.5.9) Vf € C=°(R), resp., S(R) or C*(R), (¢T)(f) = T(gf).
It is easy to see that g7, defined by the right side of (2.5.9) is an element
of D'(R), resp., §'(R) or £'(R).

Similarly, gT' € £'(R) for g € C®(R) and T € D'(R).

b. Let 5,T € D'(R), and let {f.} C C>(R) be an approximate
identity. If the limit

Hm [(S* fu)(T * £2)] ()

exists for each f € C°(R) and is independent of {f,}, then S,T are
multiplicable with product ST € D'(R) defined by

(2.5.10) ¥Vf e CP(R), (ST)(f) = lim [(S* fu)(T * f)l (f)

for any fixed {f.}
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If § = g € C°°(R) then (2.5.10) reduces to (2.5.9).

¢. Defining the multiplication of distributions is not an annoying
technical problem, but rather alarge theoretical program motivated by
quantum electrodynamics, nonlinear shock waves, and the harmonic
analysis associated with Sobolev spaces and the Littlewood-Paley the-
ory, e.g, [Col85], [Mey81], [Obe92]. In quantum field theory, the prod-
ucts of distributions which arose led to Feynman integrals and renor-
malization theory, cf., [Bre65], [deJ64] for classical background and
[Glei92] for a thrilling layman’s approach to this material.

The definition of multiplication in (2.5.10) is due to Mikusiriski
(1960) and is equivalent to one of Hirata and Ogata (1958), cf., [SI64].

2.5.8 Definition. §’-ConvoruTion
a. Let §,T € §'(R). The §'-convolution S * T exists if

Vf,ge S(R), (S*f)(T+*g)e L'(R),

where T(f) = T(t)(f(—t)). In this case, §* T is the unique element of
S'(R) for which

VF,9€SR), (SxT)xf)lg) = [(S+ HWT *g)(t) et

b. This definition is due to Hirata and Ogata (1958). That the
analogous definition for D'(R) reduces to (2.5.2) was proved by results
due to L. Schwartz (1954), Shiraishi (1959), and Horvath (1974), cf.,
[DVT78].

The first part of the following theorem was given by Hirata and
Ogata (1958), with a lovely proof in [SI64]; and there is a generalization
of the result due to Oberguggenberger (1986), e.g.,/Obe92]. The second
part of the theorem can be proved directly {Ben75] or as a corollary of
the first part.

2.5.9 Theorem. ExcHANGE ForMULA
a. Assume the 8'-convolution of S,T € 8’ ezists. Then 5,7 are

multiplicable and
(S*T)" = 8T,
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b. Let g € LY(R), and h € L®(R). Then g+ h € L*°(R) and
(g% h)" = Gh.

Further, g € A(IFR), = A’(I@) (the space of pseudo-measures defined
in Example 2.4.6f), and G,k are not only multiplicable in the sense of
Definition 2.5.7 but in the sense of (2.5.9) where the domain space of
functions is A(R).

2.5.10 Example. ConvoLUTION AND MULTIPLICATION
a. Recall that Ll _(R) is not closed under multiplication pointwise
a.e. For example, let g(t) = 1/|¢|'/2, t # 0, so that ¢ € L. _(R) and
loc(R)
b. Does the product §2 exist as a distribution? It would be a success
of the theory if 62 € D'(R), since formulas such as

&~ (-n]i)z - (%)2

arise in the surreal quantum world.

First, the product 6% doesn’t exist in the sense of (2.5.10), as dealing
with the approximate identity {% 11 1]} shows.

Even with this setback, in hght of the “naturalness” of the exchange
formula, which afterall could be one of our “creative formulas , We are
tempted to define §% as ¥ * §¥. However,

vV §Y(F) = 8Y(u) (5V(v)( Flu+ v))) = 1(1(f(u + v)))

=1(ff(u+v)dv) =fff(u+v)dvdu=/(ff(u)dv) du,

which is divergent for test functions f for which [ f(v)dv # 0.
Fortunately, 6% does fit into Colombeau’s theory {Col85]!

c. By the exchange formula it is easy to see that if T'(¢) = Lpv(1/1)
then

(2.5.11) T+T =8,
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Note that supp T = R, and that, even though convolution is intuitively
a smoothing operation, supp T+ T = {0}! It is instructive to graph 1/¢
and its translates to see how the cancellation in (2.5.11) can occur.

d. In Section 1.5 we saw that L}(R) is an algebra with convolution
as the multiplicative operation; and in Proposition 2.1.1 we noted that
L(R) does not have a unit under convolution. On the other hand, we
saw that T'#é = T for all T € D'(R), and, hence, £'(R) is a convolution
algebra with unit §.

e. §, H are multiplicable in the sense of (2.5.10), and

(2.5.12) §H = -12-5.

To verify (2.5.12), let {f,} C L*(R) be an approximate identity, and

note that oyt
e ) = (EEE)

Clearly, limy oo [(H * £.)2/2](f) = (H/2)(f) for all f € CZ(R), and so
the result is obtained.

The exchange formula and formula (2.4.15) for H also yield (2.5.12),
when we take note of the fact that

- )(1(A)( (A+7))) = "2“"1’” (ff d'\> =0

211

f. It turns out that the u,1[,; are multiplicable for ¢ € M(R),
but that the product T'1[, 4 is more elusive and is related to spectral
synthesis in the case T is a pseudo-measure, e.g., [Ben75]. A related

and equally challenging issue is to define the notion of the point value
of a distribution, e.g., [L0j57].

We shall conclude Section 2.5 with a discussion of the Hilbert trans-
form, which is a special but far reaching convolution.

2.5.11 Definition. HILBERT TRANSFORM
a. The Hilbert transform HT of a distribution T is the convolution

HT() = (%pv (%) ; T(u)) (®),
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where we have used the notation of point functions to deal with “pu(1)”.
Thus, formally, the Hilbert transform Hg of a function g is

Hg(t) =lim 1 O} du.

=0 Jjt—ulpe t — u

We are purposely vague about which distributions (or functions) yield
a well-defined Hilbert transform; and, in fact, some of the fundamental
theory of Hilbert transforms is associated with the domain X and range
Y of the Hilbert transform operator H : X — Y.

b. The Hilbert transform opens the door to a large and profound
area of harmonic analysis associated with the theory, relevance, and im-
portance of singular integral operators, e.g., [Ste70]. A magnificent ex-
position of the basic theory of Hilbert transforms is due to Neri [Ner71].
The following result is fundamental.

2.5.12 Theorem. H : L*(R) — L*(R)
a. H: L*(R) — L*(R) is a well-defined linear bijection with the
property that

Vfe L*(R), |HSfllee@ = ||fllem):
b. Let o(H)(7) = —isgny. Then
H=F " o(H)F,

where F : L*(R) — L*(R) is the Fourier transform mapping, e.g.,
Theorem 1.10.2,
c. HoH = —1I, where I is the identity mapping on L*(R).

Part b and ¢ of Theorem 2.5.12 are easy to prove. Using (2.4.15)
we see that

“pu(3) > a(H)0),

where o(#H) is called the symbol of H. By the exchange formula, we
have

(2.5.13) (H)" = o(H)],
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and part b follows. In the context of (2.5.13), o(H) is called a multi-
plier, e.g., [Ste70], [Lar71]. Part c is a consequence of part 5 and the
calculation

(HHA) = o(H)H) = oM} F = - F.

2.5.13 Example. A DistriBuTiONAL DoMAIN FOR H

a. It can be shown by direct calculation that Hf € L*=(R) for all
f € S(R), cf., Ezercise 2.53 for an ingenious calculation due to Logan
yielding a stronger result {Log83].

Then, by Definition 2.5.8, HT' € §'(R) exists for those T' € S'(R)
for which 7' * g € L}(R) whenever g € S(R), cf., Ezercise 2.54.

b. Besides our method in part a, the Hilbert transform of distri-
butions can be defined by other methods, which lead to general real
variable formulations, e.g., [Cart91], [Jon82], as well as complex vari-
able formulations, e.g., [Bre65] and research by Lauwerier, Martineau,
Orton, and Tillmann.

Also note that if T € S'(R) and T is 0 on (—a,a), then Theo-
rem 2.5.12b allows us to define HT as F~lo(H)FT.

2.5.14 Remark. PersrecTiVE ON H
Suppose f € L*(R). Then it is easy to check that

(2.5.14) VieER, H(nf)=n(HS)
and
(2.5.15) VA>0, Hfs=(Hf)»,

i.e., the Hilbert transform H : L*(R) — L%*(R), which is continuous
by Theorem 2.5.12, commutes with translations and positive dilations.
The algebraic facts (2.5.14) and (2.5.15) should be juxtaposed with the
fact that they only continuous operators L : L%(R) — L?(R) which
commute with translations and both positive and negative dilations are
constant multiples of the identity, e.g., [Ste70, pages 55-56].

The fact, that H commutes with translations and has a multiplier
associated with it, is a feature in common with a large class of operators,
some of which play an important role in the next section.
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2.6 Operational calculus

As Norbert Wiener points out in his paper, “The operational cal-
culus” {Wie81, 26c], “the operational calculus owes its inception to
Leibniz, who was struck by the resemblance between the formula for
the n-fold differentiation of a product and the nth power of a sum”,
e.g., Erercise 2.28. To fix ideas, we shall think of the operational cal-
culus as a symbolic method of solving an equation. For example, if
we are given the differential equation Lf = g for a given forcing func-
tion g and differential operator L, the goal is to design an operator
L' so that L7'g = f is a solution of the equation. Major contribu-
tions in this area are due to Lagrange, Boole, and Pincherle; but the
most spectacular, nonrigorous, and successful “formal theory” is Oliver
Heaviside’s operational calculus [Heal894], cf., Heaviside’s biographies
[Nah88], [Sea87], the former professional, the latter personal, and both
exquisite.

Before developing his operational calculus, Heaviside had made a
profound contribution to the Atlantic submarine cable problem, cf.,
Fzercise 1.47. The operators in his operational calculus applied to volt-
ages and currents, gave a meaning to fractional differentiation, led to
asymptotic series which could be successfully applied in computations,
and infuriated the “wooden-headed” (Heaviside’s appellation) mathe-
maticians of his day. Lest we mathematicians become a splinter (sic)
group, Laurent Schwartz came along with his theory of distributions
to legitimize Heaviside’s ideas — which, of course, may have infuriated
Heaviside! A concept in Wiener’s paper on the operational calculus
[Wie81, 26¢, Section 8] played a role in Schwartz’s motivation to define
distributions; although, at the time of his research, Schwartz was un-
aware of Wiener’s contribution and attributed it to related work done
by others after Wiener, e.g., [Wie81, Volume II, pages 426-427], [Sch66,
page 4].

Other 20th century work on the operational calculus includes con-
tributions by Volterra (1920}, Carson (1925), van der Pol and Brem-
mer (1955), Doetsch (1958), and Mikusinski (1959), as well as books
such as [Erd62], [Sch61, pages 123-140 and pages 230-235], [Yos84], and
[Zem87).
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In the following result the distributional proof is correct up to the
last step. The subtleties are discussed in Hemark 2.6.2.

2.6.1 Theorem. DIFFERENTIAL EQUATION AND QPERATIONAL SOLUTION
Let{an,:n=0,...,N} CC, any #0, and let § € §'(R). A solution
X € 8'(R) of the differential equation

N
(2.6.1) LX=Y a X" =g
nm0
s
~ VY
S
(2.6.2) X = (;) )
where
N
P(y) = >_(2mi) a.y™.
n=0

Proof. By Proposition 2.5.5, equation (2.6.1) can be written as

N
X (Z an5(“)) = 5.

n=0

Thus, by the exchange formula, xXp=25. Dividing by P and taking
the inverse transform yield (2.6.2). 0

2.6.2 Remark. DivisioN oF DISTRIBUTIONS

a. If the polynomial P of Theorem 2.6.1 does not have real zeros
then the reasoning in the last step of the proof (of Theorem 2.6.1) is
correct, and little further detail is needed. If P has real zeros then a
more elaborate argument is required which depends on the relatively
elementary fact that if T € D'(R) and P is a polynomial on R then
there is a distribution X € D'(R) for which PX = T, e.g., [Sch66,
Chapitre V.4, pages 123-126].

b. The division problem for R% d > 2, i.e., the solution of the
distributional equation PX = T on R? for given distributions 7' and
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polynomials P, is difficult. It was solved by Hérmander and Lojasiewicz

independently in the late 1950s. There is a wonderful exposition of
the topic including its relationship with partial differential equations in
[Sch63).

c. Let L be a partial differential opérator on R?% A distribution £
for which LE = § is a fundamental solution of L. A great success of
distribution theory is the theorem that if I has constant coefficients
then it has a fundamental solution. This resulf was proved by Ehren-
preis and Malgrange independently in 1953, e.g., [Hor83}. There is
now a elementary proof of this theorem in [Ros91].

Suppose L has constant coefficients and § € €'(R% is a “forcing
function™. Then X = E* S is a solution of the equation LX = § since,
formally,

(2.6.3) L(E+S)=L6+(E+S)=5+8 =S5,

cf., the proof of Theorem 2.6.3b, and every other solution is of the form
E+« 8+ T, where T is a solution of the corresponding homogeneous
equaftion, i.e., LT = Q.

We shall not get involved in aspects of Heaviside’s calculus, such
as his ezpansion theorem, which caused “gorges to rise” in yesteryear.
However, we shall prove the following result, which quantifies the point
of view of the first paragraph of this section. In light of the proof of
Theorem 2.6.1, let us first clarify the notation for a differential operator
L. If LX has the designation

N
LX =% a. X,

n=0
then
N
L= a.6™ € D'(R),

n=0

and so
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2.6.3 Theorem. DIFFERENTIAL EQUATION AND FUNDAMENTAL SOLUTION
Let {an :n =0,...,N} CC, ay = 1, and let h € C=(R) be the
solution of the initial value problem,

(Lé)*xh=Lh=0 on R,
(2.6.4)
R(0) =--- =A™=y =0, AV-D(0) =1.

(The method to find the solution of (2.6.4) is elementary and well-
known in ordinary differential equations, e.g., [Swe96].)

a. (L&)« (Hh) = &, where H is the Heaviside function. Thus,
E = Hh is a fundamental solution of L.

b. Let § € E&'(R). Then X = E S is a solution of the differential
equation LX = S.
Proof. a. We shall evaluate (HA)™,n = 1,..., N. Note that (Hh)) =
HhO) + §h, e.g., Ezercise 2.28, and 6k = h(0). The second fact results
from the calculation (6h)(f) = §(hf) = R(0)}f(0) = (R{0)é)(f). By
hypothesis, then,

(HR)Y = HRY,

Continuing to use the product rule and (2.6.4), in conjunction with the
calculation from the previous step, we obtain

(HR)@ = HRE 4§50 = HR®,

(Hh)'(N—l) = HAWN-D 4 §pN-2) = HpN-1),
(HR)W = HAW 4 6hN-D = HA®) 4.6
Thus,
N
(L&)« (HhYy=>_ an(HRh)" = H(Lh)+§ = 6.

n==0

b. We calculate
LE+S)=(L&)*(ExS)=(Lé*E)xS=6%x5 =5

Note that we have assumed associativity of convolution in the second
equality, cf., Frample 2.5.2¢ where we showed such associativity is not
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generally valid. We are justified in this case since the distributions
Lé,E = Hh, and S are each supported in an interval of the [¢, c0), e.g.,
[Sch66, page 172). O

2.6.4 Example. L§ = 3N  q,6M™

It is easy to see that supp L§ = {0}. Conversely, if T € D'(R) and
supp T = {0} then there s {ao,...,an} C C such that T = Lé.

This important fact is a corollary of a theorem, e.g., [Hor83, Volume
I, pages 46-47], which depends on a “philosophy” (a big word, but
“point of view” is not quite accurate in this case) underlying significant
parts of spectral synthesis [Ben75], [KS63] and potential theory [Hed80].
To describe this “philosophy”, first note that i g € LY(R) and f €
Co(R) vanishes on supp g then [g(t)f(t)dt = 0. Similarly, if p €
M;(R) and f € Co(R) vanishes on supp u then p(f) = [ f(t)du(t) = 0.
However, if T € A'(R) and f € A(R) vanishes on supp T then it is not
necesssartly true that T(f) = 0. This last fact is a deoderized version
of Malliavin’s profound example of non-synthesis. Suppose that f € X
and T € X', where X D C®(R) and X' C D'(R) satisfy the natural
condition of Ezample 2.4.6h. The “philosophy”, alluded to above, is
that if f = 0 on supp 7', and if the set supp 7" is regular enough vis a
vis the smoothness of f near the boundary of supp T', then 7'(f) = 0.

2.6.5 Definition. LINEAR TRANSLATION INVARIANT SYSTEMS
a. Let X be a linear subspace of D'(R) with the properties that
d € X, and that f T € X, then

VtER, TtTEX.

A linear translation invariant (LTI) system is a linear operator L :
X — X for which

(2.6.5) VI'e X and Vte R, L{nT)=nL(T).

Property (2.6.5) is translation inveriance, and for many applications
this reflects time invariance. The property,

VS, T € X and Va,beC, L{aS+bT)=al(S)+bL(T),
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is the linearity of L.
The impulse response of the system L is

Ls=hec X.

The filter corresponding to L is k; k is also referred to as the frequency
response or transfer function corresponding to L.

b. Norbert Wiener argues persuasively for studying translation in-
variant operators on physical grounds [Wie33, Introduction] , i.e., al-
though time shifts may distort some astronomical observations, labo-
ratory experiments should generally be time invariant. Wavelets and
nonstationary methods can be used in dealing with time varying events.

The notion of an LTI system L is an important and basic engineering
concept, e.g., [0S75], [OW83], [Pap77], which also has a long history in
mathematics, e.g., [Ben75, pages 216-217]. Suppose X is closed under
convolution, e.g., X = My(R). Then, if L satisfies certain natural
conditions, e.g., part ¢ below, the impulse response % and filter & play
a central role in quantifying L, viz.,

(2.6.6) VfeX, Lf=hxf.

c. We have already defined the notion of a causal signal. We now
say that an LTI system L is causal if, whenever T € R and f € X
vanishes on (—oo,T) then Lf vanishes on (—oc,T"). This means that
there can not be an output signal from the system L before there is an
input signal — a reasonable point a view.

Definition 2.6.5 can obviously be extended to operators L : X —3
Y. The following result is due to [AN79], and a precursor depending on
the continuity of L is due to [Sch66, pages 197-198]. Let L : C*(R) —

"D'(R) be a causal LTI system. Then there is a unique distribution

h € D'(R) such that Lf = h= f for all f € CP(R). A feature of this

theorem is that continuity of L is not required & priori to obtain (2.6.6).

2.6.6 Example. TranstaTiON, CONVOLUTION, AND Lf = h* f
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A fundamental theorem in the theory of multipliers is that the trans-
lation invariant continuous linear operators L : L*(R) — L*(R) are
precisely of the form,

(2.6.7) - VYfeL'(R), Lf=p=x{,

where g € My(R), e.g., [Lar71]. It is a routine calculation to prove that
if 4 € My(R) and L is defined by (2.6.7) then L : L}(R) — LY(R)is
a translation invariant continuous linear operator, e.g., Fxercise 2.58a.
The converse is more difficult, and the initial steps of its proof are the
content of Ezercise 2.58b,c.

2.6.7 Example. Banppass aAND Lowpass FILTERS - THE HILBERT TRANSFORM

In Ezample 1.2.2b we discussed modulated signals and their carrier
frequencies. This example continues that discussion in terms of lowpass
and bandpass filters, and the fact that they are related by the Hilbert
transform. To fix ideas, we say that a filter & is bandpass if supp h =
[-3, ~a}U[a, 8], where 8 > a > 0, and it is lowpass if supp k = [~a, o.

a. Let L be an LTI system with a real impulse response h € PWy;
in particular, % is a lowpass filter. Then the modulated signal hy(t) =
h(t) cos 2miyy, with carrier frequency o > 0, is the impulse response
for the bandpass filter hy = Ape™® with bands [vo =~ Q7 + 0], [ —
2, —vo + Q)]; and Ay and ¢, satisfy the properties

Yy €[0,Q], As(v + v0) = As(—7 + %) and

(2.6.8)
@o( +70) = —ws(—7 + %),

i.e., in the band [yp — @, v + 0], A; satisfies mirror symmetry and 3
satisfies “point” symmetry about 7y, e.g., Frercise 2.59c¢.

b. Conversely, let Ly be an LTT system with a real impulse response
hy and bandpass filter hb Ape’?s. Assume the bands of hb are [y —
Q% + QL [—v — &, —70 + O, where 7o > £, and that the symmetry
condition (2.6.8) is satisfied. We shall verify that Ay is a modulated
signal hy(t) = h(t) cos 2rtye, with carrier frequency 7, where A is the
impulse response for a lowpass filter A for which supp h = [-Q,0].
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Let h = Ae' be defined as
(2.6.9) h(v) = 2(hs H)(7 + 70),

where H is the Heaviside function. By definition, it is easy to see that
supp h = [—0, ), e.g., Figure 2.1. Ezercise 2.57a, where it is required
to verify

JHiHf +—2 fH,
and (2.6.9) allow us to write

(2.6.10) h(t) = (hs + iHhs)(t)e 20,

It turns out that (2.6.8) allows us to conclude that h is real valued.
In fact, (2.6.8) implies oy + Yo) = ?Lb('—-’y + ) for v € [—,8); and

hence, by (2.6.8), 3(7) = Tz(-wfy), on R, i.e., A is real valued.
Thus, by (2.6.10), we have hy(t) = k() cos 2wty and our calculation

is complete.

Figure 2.1

¢. Parts @ and b combine for a result of both theoretical and practi-
cal value. Theoretically, we establish isomorphisms between PWq and
spaces of L?(R) functions whose Fourier transforms are supported by
more unusual sets than [—£,{2]. Practically, ideas based on the above
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calculations are used in bandpass sampling, in the design of equivalent
systems where one may be more efficient than another in some desired
way, or in narrow band communications theory, e.g., [0S75, Chapters
7 and 10]. :

2.7 Measure theory

We shall address two profound ideas from modern analysis: the
Riesz Representation Theorem (RRT) and the Herglotz-Bochner The-
orem. In the process we hope to tie-together our discussions of Radon
measures in Definition 2.3.6 and of real analysis in Appendiz A. In-
tegration and measure, truly a “keystone combination” for analysis,
began with ancient efforts to define areas of nonrectilinear regions,
e.g., [Ben77] on Archimedes and integration, reached a new level of
precision and generality in the mid 19th century to cope with emerging
requirements of trigonometric series, e.g., [Riel873] and Section 3.2,
generalized around 1900 to measure bizarre sets and to grapple with
subjects such as statistical mechanics, e.g., [Wie81, Volume II, page
801] on sets of measure 0, and assumed a sophisticated 20th century
functional analytic identity by means of the RRT, e.g., [Ries49] for a
readable history for the first half of this century by the master, cf.,
[Gra84].

2.7.1 Definition. DuaL Spaces AssoCIATED wWiTH RRT

a. A linear functional T : C,(R) — C is an element of the dual
space C.(R)’ (of the vector space C.(R)) if lim,—eo T(fn) = 0 for every
sequence {f,} G C.(R) satisfying the properties:

i. 3K C R, compact, such that ¥n, supp f, C K,

i, limy, oo IIfnl|L°°(R) = 0.

These two properties define a topology on C.(R), and C.(R) is the
space of continuous linear functionals on C,(R).

b. A linear functional T : Co(R) — C is an element of the dual
space Co(R) (of the vector space Co(R)} if imT(f,) = 0 for every
sequence {f,} C Co(R) for which limue || frflzeo®) = 0. The sup
norm, ||...||ze(r), defines a topology on Cy(R), by which it becomes a
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Banach space; and Co(R)' is the space of continuous linear functionals

on Co(R), cf., Ezample B.17.

2.7.2 Remark. PRELIMINARIES FOR RRT

a. If F € BVjo(R) there are two Radon measures, Tr and Sp,
defined in terms of ¥, which are fundamental for RRT. Recalling that
BVioc(R) C L (R) (Ezercise 2.23), T is defined by (2.2.4) and (2.2.5)

(2.7.1) VfeC®R), Tr(f)= / F(£)£(¢) dt.

Sp is the Riemann-Stieltjes Radon measure defined in terms of the
Riemann-Stieltjes integral [Apob7] as

(2.7.2) Vf e C®(R), Sr(f)= f FOOYAF().

It is easy to check that Tr and S are, in fact, Radon measures.

b. (2.7.2) defines a mapping,

Ls: BV(R) — M(R),

(2.7.3) P o S

which is not injective. In fact, if FF € BV, (R) and ¢ € C then
F 4+ C € BVioe(R) and Sp = Spyre. This should be compared to the
mapping L of (2.2.5), restricted to BW,.(R), which is injective.

c. Let F' € BV .(R). Clearly, the integration by parts formula for
Riemann-Stieltjes integrals [Apo57],

vieCr®), [fwdrw=-[roFwa,
can be rewritten as Sp = Tg(= F).
The space M(R), resp., My(R), of Radon measures, resp., bounded

Radon measures, was defined in Definition 2.53.6 in terms of distribu-
tional derivatives.
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2.7.3 Theorem. Riesz REPRESENTATION THEOREM

a. C.(R) = M(R), the space of Radon measures. In fact, for every
i € M(R) there is F € BVjoo(R) such that p = Sp = F'.

b. Co(R) = M,(R), the space of bounded Radon measures. In fact,
for every p € My(R) there is F € BV(R) such that y = Sp = F'.

2.7.4 Remark. RRT: THEOREM T¢ DEFINITION

a. RRT asserts that the mapping (2.7.3) is a surjection, and that
its restriction to BV(R) is a surjection onto My(R). An important part
of the proof of RRT utilizes the theory of integration from Appendiz A
to extend p € Co(RY to a functional on the vector space generated by
linear combinations of characteristic functions of intervals.

Frigyes (Frederick) Riesz proved RRT in 1909. Although Riesz did
not deal with distributions, it is most efficient to write RRT as we did in
Theorem 2.7.8, e.g., [Sch66, pages 53-54], cf., [Riesl4], [RN55], [BenT76,
pages 255-257] for classical and readable proofs.

RRT has evolved from a theorem, associating certain linear func-
tionals with elements of BV,.(R) by means of the Riemann-Stieltjes
integral, to the definition of integral in terms of such functionals, e.g.,
[Bou65]. Notation reflects this metamorphisis, e.g., (2.3.10). If x €
M(R) then p is a distribution g = F” for some F € BV(R), ¢ €
C.(RY, where u(f) is denoted by [ f(t)du(t) but is really the Riemann-
Stieltjes integral f f(t)dF(t) , and there is a space L.(R) of functions
integrable with respect to p. This last concept is developed in inte-
gration theory by extending the functional x : C.(R) — C to a large
space, viz., L},(R), e.g., [BenT76], [Bou65], [Mal82], [Rud66], cf., part b.
In this setting L'(R) is the space of functions integrable with respect
to Lebesgue measure.

b. In integration theory we define the Borel algebra B(R) to be the
smallest o-algebra of subsets of R that contains all the open sets. A
function u : B(R) — RY U {cc} is a locally finite Borel measure if the
following conditions are satisfied:

i. p{UBy) = Yu(B,) for every disjoint sequence {B,} € B(R),

. p(K) < oo for every compact set X' C R.

Let M, (R) be the space of locally finite Borel measures.
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An integral (sic) part of the technique and philosophy associated
with RRT is the following result. Define the mapping

I Mi(R) — M (R)
po— I,

where, for all f € C.(R), I,(f) is the integral of f with respect to p, as
defined in integration theory. F. Riesz and Radon proved the existence
and uniqueness theorem that I is a bijection, e.g., [Mal82, pages 61-76).

2.7.5 Definition. CoNTINUOUS AND DISCRETE MEASURES

a. A Radon measure g € M(R) is discrete if i is of the form
P = Ypes @20z, where each a, € C\{0} and ¥ cs|az| < co. Thus,
each such index set S is countable, cf., Ezercise 2.38. My(R) denotes
the space of discrete measures. Clearly, My(R) C M(R).

b. A Radon measure p € M(R) is continuous if F € BV,.(R) can
be chosen as a continuous function on R in the representation F' = p.

The Cantor measure u¢ defined in Ezample 2.3.9h is a continuous
measure, as are the elements of L'(R).

c. The problem of spectral estimation can be viewed in terms of
determining the discrete part of Radon measures, e.g., Definition 2.8.6.

The following result is one of the basic decompositions of real anal-

ysis, e.g., [Ben76], [Bou65], [Rud66].

2.7.6 Theorem. DECOMPOSITION OF MEASURES

Let F € BV(R), pr € My(R), and assume F' = p.

a F = F,,+ Fy. + Ya,7.H, where H is the Heaviside function,
F.. € BV(R) N AC(R), Zlaz| < oo, Fi. is continuous on R, and
DF,. =0 a.e., where D is ordinary pointwise differentiation.

b, = g+ s + Laz6s, where g € LY(R), Elaz] < o0, and p,. €
My(R) is designated the continuous singular part of u.

c. g=F.., poc = F.,, and La6, = (Za,- H)'.

d. For all f € C.(R),

u(f) = [ o 1@ dt+ [ FE)aFu() + Sacf(a),
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where the integrals on the right side are Lebesgue and Riemann-Stieltjes
integrals, respectively.

e [l = llgller @) + llptsclls + Elaal-

2.7.7 Theorem. PosiTIVE DISTRIBUTIONS

If T € D'(R) is positive then T € M, (R).
Proof. Let {f.} C C2(R) satisfy the properties that there is a compact
set K C R such that supp f, & K for each n, and that limy_eo || fallzee ) =
0. We shall prove that limy 0 T'(f) = 0 from which we can conclude
that T € M(R) by RRT.

Let nonnegative f € C2°(R) equal 1 on K. By the uniform conver-
gence of {f,} there is {¢,} C (0, 00) decreasing to 0 such that

Vtand ¥n, [fu(t)] < caf(2).

A straightforward calculation yields the fact that the real and imaginary
parts of each f, are in C°(R), and so we assume that each f,, is real-
valued. Thus,

Viand Vn, —e.f < fn<e.f,

so that, by the positivity assumption, lim,_,., T(f,) = 0, and, hence,
T € M(R). O

2.7.8 Definition. PosiTive DEFINITE FUNCTIONS
a. A function P: R — C is positive definite if

¥n,Vey, ... e € C, and VY, ... , 7. € R,

(2.7.4)
> eieP(y; — ) > 0.
ik

In this case we write P >> 0.
b. If P >> 0 then
i Yy € R, P(y) = P(-7), )
ii. ¥y € R, |P(y)| € P(0), and hence P(0) > 0 and P € L*(R),
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iil. VA, v € R,
|P(y) = P(M)I* < 2P(0) Re(P(0) — P(y = ))),

iv. P continuous at 0 implies P is continuous on R (by part i),
e.g., Erercise 2,52 for verification of these facts and the relationship to
positive definite matrices.

c. Positive definite functions arise in moment problems, e.g., [RN55],
[Wid41]; and, since (2.7.4) is a pure quadratic form, such functions
also arise in minimization problems (in economics, for example) and
minimum principles (in physics, for example), e.g., [CH53], [Str88].

2.7.9 Example. PosiTivE DEFINITE FUNCTIONS
a. If F € L*(R) then the L*autocorrelation of F, viz., P = F  F,
is positive definite. In fact,

Dok P(y; — ) = fZCjEkF(’fJ = N F (e — A)dA
0k k

i

= [ [Ze;F(3; — NfFdr > 0.

Clearly, P € A(R) since (F F’)V = [FV]*> € L'(R).
b. If 4 € M+ (R) then P =i >> 0 and P is continuous.
For the continuity, if 4 € M(R), then it is easy to check that
p € 8'(R) and
vy eR, A(y)= [ du(t),

e.g., Remark B.16. This formulation in terms of an integral allows us
to conclude that /i is continuous on R.
To prove that P >> 0, it is only necessary to make the computation,

> cicki(r; — Ve) = f |2 cie™ % 2du(t) > 0.
i

c. The set of positive definite functions is not a vector space. How-
ever, if P, >> 0 then P+ @ >> 0 and PQ >> 0. The latter fact
follows from a theorem of I. Schur, and is an easy calculation such as
those of parts a, b in the case @ € My, (R)\
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In Fxample 2.7.9b we showed that if 4 € M, (R) then /i is a con-
tinuous positive definite function on R. The converse of this fact is the
Herglotz-Bochner Theorem (Theorem 2.7.10). Herglotz (1911) proved
it for positive definite functions on Z. The proofs for positive definite
functions on R and locally compact abelian groups are duc to Bochner
(1933) and Weil (1938), respectively. There are several conceptually
different proofs, e.g., [Don69], [Kat76], [Rud62], cf., [Sch66].

2.7.10 Theorem. HErGLOTZ-BoCHNER THEOREM

Let P : R = C be a continuous positive definite function on R.
Then there is a unique positive bounded Radon measure p € My(R) for
which i = P on R.
Proof. a. Let F e S (]R) Since P € C{,(]R), the integral

(2.7.5) [ ] P(y — NF(y)F03) dyd)
is the limit of the Riemann sums

(2.7.6) ZEP s — M) F () FOp) Ay Ay

P >> 0 and (2.7.6) allow us to conclude that the integral of (2.7.5) is
nonnegative. Rewriting (2.7.5), we have

0 < [[ POVFOIF =N dydr = [ PO)F  F(X) dA.
Since C3(R) € §'(R) we can compute
P(F»F)=PY(| F )

and so PV € S'(R) is nonnegative on all k£ € S(R) of the form k = |A|?,
h € S(R).

Now let f € C°(R) be nonnegative. For each ¢ > 0, f + ¢*’g €
S(R) is positive on R, where g is the normalized Gaussian; and A =
(f +€29)'/? € S(R). Thus, P¥(f +¢’g) = PV(k?) = PY(Jh[|*) > 0. By
linearity and the fact that € > 0 is arbitrary, we see that PY(f) > 0;
and so p = P¥Y € M(R) by Theorem 2.7.7.
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Finally, we must show that u € My(R). First note that
Ya >0, Px*g.(0)<P(0),
where g, is the dilation of g. This follows since | P(y)| < P(0) and

Vv € R,

125 gD < [ 1P(r = Nlga(3) dr < P(0) [ ga(N) & = P(0).

Next note that the approximate identity {g,} satisfies the following
properties: g, > 0, (go)¥ > 0, and g, is even. Consequently, we have
the computation

P(0) 2 P * ga(0)] = | [ P(Nga()d

= |aP"((g1/a)")] = f ¢¥(at)dpu(t) > 0.

We can apply the Beppo Levi Theorem (Theoremn A.8) since 0 <
g'(at) < g¥(Bt) for & < 8 and since limyoyoo g¥(at) = 1 by Propo-
sition 1.6.11. Thus

0 < [ du(t) < P(O)

for the positive measure j, and this allows us to conclude that u €

2.7.11 Definition. FouRIER-STIELTIES TRANSFORMS

a. The space of Fourier transforms of bounded Radon measures is
denoted by B(R), i.e.,

BRY={F:R->C:3p¢ My(R) such that i = F}.

An element of B(R) is a Fourier-Stieltjes transform, e.g., [Rud62] for -
an elegant, incisive, authoritative exposition.
b. It is elementary to check that the elements of B(R) are uniformly

continuous members of Cj, (I@) It is natural to ask for an intrinsic char-
acterization of B(R) as we did for A(R) in Ezample 1.4.4, 1.e., to seek a
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theorem of the form, “a uniformly continuous element F' € C’b(]ﬁ) is an
element of B(R) if and only if ...”, where “...” is a statement about
the behavior of F on R. In spite of Theorem 2.7.10, and some won-
derful contributions by A. C. Berry (1931) for A(R), Bochner (1934),
Schoenberg (1934), Krein (1940), Yosida (1944), R. S. Phillips (1950),
and Doss (1971), the problem remains unsolved, cf., Ezercise 2.60.

Even though B(R) is much larger than. A(R) there are still elements
from Cy(R), and even C,(R), which are not in B(R). In fact, member-
ship in B (R) is a predominantly local property, and in that sense is
closely related to membership in A(I@) except at infinity, e.g., [Ben75,
Definition 2.4.2] for an explanation of this opaque remark as well as
further references, cf., Definition 8.5.6.

c. The hypotheses for the inversion formula in Theorem 1.7.8 can
be weakened. In fact, if f € L'(R)N B(R) then f € A(R). To see this,
let u € A(R) N My(R) have the property that ¥ = f. Since u € A(R)
we have i € LL (R), and so x has no discrete or continuous singular

o~

part. Thus, u € L*(R) by Theorem 2.7.6.

2.8 Definitions from probability theory

After our statement of the Central Limit Theorem in Ezample 1.6.8,
we noted that the hypotheses involved the notion of a probability den-
sity function (of a random variable) having mean 0 and variance 1. We
shall now define these and some other probabilistic terms which arise
in Fourier analysis; but we do not make any pretense about explaining
probabilistic ideas, cf., [Lam66], [Lam77], [Pri81] for such explanations.

2.8.1 Definition. PROBABILISTIC SETUP

a. A probability measure on R is an element p € My, (R) for which
lpll. = 1. The pair (R,p) is a probability space. The distribution
function F € BV(R) associated with p is the increasing function

F:R—[0,1]

having the properties
i. YVa € R, limgoet FI(3) = F(a).
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ii. F'=p,
e.g., let p be the Dirac measure §. Caveat: The (Schwartz) distribu-
tional derivative in part ¢ has nothing to do with the probabilistic
designation, distribution function, that is given to F.

b. A random variable, _
X:(R,p) — R,

is a measurable function X : R — R. Measurable functions are de-
fined as limits of sequences of continuous functions in Definition A.10a;
there is also a primordial measure theoretic definition. The cumulative
distribution function Fy defined on the range of X is defined as

ViR, Fx(t)= [ Ls()dp(a),
where integration is over the probability space (R, p) and
St)={eeR: X(a) <t}
Fx € BV(R) is an increasing function
Fx :R — [0,1].
We have the following figure.

R 5 0,1
X1

R 25 [0,1]
Figure 2.2

F is a probability measure on the range of X. X has a probability
density function (pdf) fx if '

Fy = fx € L'(R),
i.e., f is the pdf of a random variable X if f > 0, [ f(¢)dt = 1, and Fx

can be written as

()= [  fwdu
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2.8.2 Definition. MEAN AND VARIANCE
a. The mean or ezpectation of a random variable X € L3 (R) defined
on a probability space (R,p)is

mx = B{X} = [ X(a) dp(c),

where the value of the integral, which defines the notation my and
E{X}, is p(X) in our distributional notation, e.g., Remark 2.7.4. X €
L1 (R) means that p(|X]) = [|X ()| dp(e) < co.

b. We can prove by straightforward calculations that

(2.8.1) E{X} = / X (@) dF(a) = [ tdFx(t),

where the integrals are Riemann-Stieltjes integrals over R, the domain
R of the first integral being the probability space (R, p), and the domain
R of the second integral being the range space of X. In the case X has
a pdf fx then (2.8.1) allows us to write

E{X}= f tfx(t) dt.

c. Let X € LZ(R), i.e.,

Xl = ([ 1X (@) dp(e)) " < oo
The variance o% of the random variable X is
ok = E{(X — mx)"}.
"Therefore,
ok = B{X*} — (B{X})* = E{X"} - m}.
ox is the standard deviation of X. In the case X has a pdf fx then

ok = /(t — mx)? fx(t) dt.

In fact, a formal calculation shows that

fg(X)(a) dp(a) = /g(t)fx(t) dt.
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2.8.3 Example. VARIANCE AND DISPERSION

The notion of variance can be viewed as providing more relevant
information than that provided by knowing a mean value. For example,
the complacency, of knowing that the mean or average family income
in a nation can provide a good standard of living, would be offset by a
revolution for justice if such a nation had some destitute and homeless
in its population. Thus, it is important to know how a nation’s wealth
is dispersed among the population. Variance is a measure of dispersion.

To fix ideas, let P be a finite sef, for example, a class of students;
and let X : P — R be a random variable, for example, a test score,

i.e., X(a) is the score that student @ € P received. (Technically, we
should first put a measure p on P.) The mean (score) of X is

1
MX = ard P QEZPX(Q)’

which is a discrete way of writing mx = [p X(a) dp(a), where p is a
“probability measure” defined by

card A
card P’

The average squared distance of X from the average is the variance,

VACP, p(4)=

viz., .
(X(a) —mx)*.
card P C%,

Consequently, the standard deviation is

2 _
Oy =

ox =X —mx|zp)”;

and it makes sense to discuss dispersion in terms of how many standard
deviations a given value (or score) X (o) is from the mean.

2.8.4 Definition. StocHAsTIC PROCESSES
a. Let {R,p) be a probability space with elements @ € R. The

mapping NRxR c
: X —

(ha) — X(t,a)
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is a weakly stationary stochastic process (WSSP), or equivalently, a
wide-sense stationary stochastic process, if the following properties are
valid:

i VteR, X(t,-)€ L(R);
ii. 3m € C such that V¢, E{X({)} =m,

where
BIX(®)} = [ X(t,0) dp(a);

ili. Vt,y,he R, E{X({t+u)X(t+h)} =E{Xu)X(R)};
This definition makes sense for mappings X : R x P — C, where
(P,p) is a quite general probability space (which we haven’t defined)
or something as specific as the set P of Ezample 2.8.5.

b. Part i of the above definition implies F{X(t + v)X(¢)} =

E{X(©)X(0)} for all t,u € R; and the function R, defined by

VieR, R(t)=E{X(t+u)X{w)}

is the stochastic autocorrelation of the WSSP X. The autocovariance
of X is the function C, defined by

ViER, C(1) = B{X(t+u) - m)(R(@) —m)} = R(t) — |m]’.
Thus, the variance of the WSSP X is
0% = C(0) = R(0) — |m|%.

2.8.5 Proposition.
The stochastic autocorrelation R of « WSSP X is a continuous pos-
itive definite function.

This result is proved by an elementary calculation, and the conti-
nuity of R results from part iv of the definition of a WSSP. If X does
not satisfy part iv then R is still positive definite, and it has the de-
composition R = H¢ + Ry, where Re, Ry >> 0, B¢ is continuous, and
Ry = 0 a.e. This decomposition is due mostly to F. Riesz {Acta Sci.
Math., 1933).
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2.8.6 Definition. Powsr SPECTRUM AND SPECTRAL ESTIMATION

a. Let X be a WSSP with stochastic autocorrelation R. Because
of Proposition 2.8.5 and the Herglotz-Bochner Theorem, there is & €
My (R) for which i = R on R. By notational tradition we set § = p,
and, by definition, S is the power spectrum of X.

b. The spectral estimation problem is the clarify and quantify the
statement: find periodicities in a signal X recorded over a fixed time
interval. In more picturesque language, we want to filter the noise from
the incoming signal X in order to determine the intelligent message
(periodicities) therein, e.g., [Chi78], [I[EEES2].

Such signals can sometimes be modelled as WSSPs [Bar78], [BTu59],
[Bri81], [Pri81], and, then, the spectral estimation problem is one of
power spectrum computation [Ben83, Part IV] or approximation.

2.8.7 Definition. PErioDoGRAM
Let X be a WSSP, for which X(-,a) € L(R) for each a € R, and
let b € L*(R). The function

$:RxR — R
(’}',0{) i Sb(7aa)

defined as
S(r,a) = | [ (1) X (1, @) de?

is the periodogram associated with the process X and the data window

b.

Schuster initiated periodogram analysis, and his work was one of the
major influences on Wiener's Generalized Harmonic Analysis {1930),
e.g., [Wie8l, Volume II, pages 183-324] and Section 2.9. The following
calculation shows the role of periodograms in spectral estimation.

2.8.8 Proposition.
Let X be a real-valued WSSP, for which X (-, a) € L®(R) for each
a € R, and let Sy be the periodogram associated with X for the real



146 CHAPTER 2. MEASURES AND DISTRIBUTION THEORY

and even data window b € LY(R). Assume B? = (’I.;v‘)2 c Ll(@) and
[ B*v)dy =1. I S is the power spectrum of X then

(2.8.2) E{S:(7)} = S x B*(v),
and
(2.8.3) }5& E{S—}f b(%)('Y)} = /\151010 S# (B, =S

in the sense that
(2.8.4) VF e Cy(R), lim (8 % (B*),)(F) = S(F),
where the subscript “A” of B? designates dilation.

Proof. Our hypotheses allow us to verify (2.8.2) as follows:
E{Si(n} = [[ b)blu)e 51 — u) dd
= [1B(y+w)dS(w) = § * B*(w).

The last step is a consequence of the following: since b is real and even,
|B|* = B?% and S is even since X real allows us to conclude that R is
real and even.

(2.8.3) is a consequence of the facts that {(B%),} is an approximate
identity, and that ﬁb(%) — VAB(M). In fact,

Gle) = [ F(a+8)dS() € Gi(R),

so that by the definition of convolution and the evenness of B? we can
apply (2.1.2), which in turn vields (2.8.3), cf., Ezercise 2.38. ]

2.8.9 Remark. AsYMPTOTICALLY UNBIASED ESTIMATOR
For any real and even data window b € L*(R), Proposition 2.8.8
allows us to refer to the periodograms {5 % b(f)} as an asymptotically
A

unbiased estimator of the power spectrum S.
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The relatively weak type of convergence in (2.8.3) and (2.8.4) allows
for a great deal of mischief on the part of the raw periodogram S; if
one thinks of it as an approximant to S. There are results due to
Beurling, Herz, and Pollard, which are similar to (2.8.4), but for which
the convergence is much “stronger”. An example of such a theorem for
closed intervals I, disjoint from supp S, is

T ,
lim R(t)e¥™* VT dt =0 uniformly on I,
T—oo J-T

cf., [Ben75, Section 2.1]. These results provide quantitative estimates
for the support of S in terms of the support of the approximants.

2.8.10 Example. MICHELSON INTERFEROMETER AND SPECTRAL ESTIMATION

a. In Ezample 2.7.9 we defined a “deterministic” version of auto-
correlation P for f € L*(R), viz., the L*-autocorrelation

P@) =+ ft)= [ £t +w)Fw) dus

and we noted that P is positive definite, just as the stochastic autocor-
relation R of a WSSP is positive definite, cf., Ezercise 1.33. We mention
this to illustrate the following specific, but in some sense typical, use
of autocorrelation.

b. It is often difficult to measure a signal directly, whereas one can
experimentally measure its power. To be more precise, the spectral
analysis of a beam of light f(¢), a real valued signal, can be made by a
Michelson interferometer in the following way. The power or intensity
of the beam is the energy flow per unit time (assuming area normaliza-
tion) and is measured by a power-sensitive photometer. The interfer-
ometer allows the beam to take different paths of different length to the
photometer. As such the intensity of f(u) + f(u + t) can be measured
for various lags t. Thus, the left side of the equation,

J15) + Flu+ P du—2 [ 1f)Pdu=2 [ flu+0) () du,

can be measured, noting that f|f(u + ¢)]*du = [[f(u)|*du. Conse-
quently, the LZ%-autocorrelation P is computable even though f may
not be.
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¢. Sumrmarizing, suppose we have a complicated signal f, considered
deterministically on R or modelled by a WSSP X. Suppose, further,
that f or X can not be analyzed directly, but that there are power
measuring devices that allow us to quantify the autocorrelations P >>
0 or R >> 0, as we did in part . Then the computation of the power
spectra PY or RY allows us to determine significant frequencies of PV
or RY; and these frequencies are also significant in the behavior of f or
X since, in the case of PY, PY = | 7l |2. This theme is further developed
in Section 2.9.

2.8.11 Example. THE WAVE FUNCTION AND THE UNCERTAINTY PRINCIPLE

The wave theory in quantum mechanics arose since electron beams
diffracted through crystals produced an effect analogous to Newton’s
spectral theory of white light diffracted through a prism. (Wiener’s
spectral theory explaining the polychromatic nature of sunlight, i.e.,
white light, is the Generalized Harmonic Analysis of Section 2.9 [Wie81,
Volume 11, pages 183-324].)

For a fixed time ¢y, the wave function ¥(y), normalized so that
i, & = 1, is @ solution of Schrédinger’s equation for a freely moving
particle X (Schrédinger, 1926); and an important aspect of its physical
significance is that the “probability” that X is in a given subset A C
R is [, |¥(v)|]> dy, e.g., [Schi68]. This assertion defines a probability
measure p € My, (R), and allows us to think of X as a random variable
X : (R,p) — R, i.e., considered as a “measure of subsets” of (R,p) as
in Remark 2.7.4b, p is defined as

pla: X(a) € A} = [ [¥() dv.

The associated pdf is fx = |¥|%. For the case of 0-mean, the classi-
cal (or Heisenberg) uncertainty principle inequality associated with the
wave function ¥ and ) = ¥V is

(2.8.5) 1= 9|7, g < 4nllEb(Ollze) VTN 2 )

cf., [BF94, Chapter 7] as well as the “intuitive calculation” of the
Heisenberg inequality in [Ben75, pages 77-79].
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2.9 Wiener’s Generalized Harmonic Anal-
ysis (GHA)

In 1930, Norbert Wiener [Wie81, Volume II, pages 183-324] proved
an analogue of the Parseval-Plancherel formula, || f|r2@®) = || 7l 2@y
for functions which are not elements of L#(R). We refer to his formula as
the Wiener-Plancherel formula, e.g., (2.9.2). It became a beacon in his
perception and formulation of the statistical theory of communication,
e.g., [Wied9], [Lee60]. Wiener even chose to have the formula appear
on the cover of his autobiography, I Am ¢ Mathematician. (This is a
20th century analogue of Archimedes’ tombstone, which had a carving
of a sphere inscribed in a cylinder to commemorate his “1:2:3” theorem,
e.g., [Ben77] for details concerning the mathematical results, Cicero’s
role, and a recent update.)

Besides the motivation for GHA mentioned in Fzample 2.8.11, Wiener
discussed the background for GHA in [Wie81, Volume II, pages 183-
324}; and this background has been explained scientifically and histor-
ically in a virtuoso display of scholarship by Masani, e.g., Masani’s re-
markable commentaries in [Wie81, Volume I1, pages 333-379], as well as
[Mas90]. Two precursors, whose work Wiener studied and who should
be mentioned vis a vis GHA, were Sir Arthur Schuster, cf., Defini-
tion 2.8.7, and Sir Geoffrey 1. Taylor. Schuster pointed out analogies
between the harmonic analysis of light and the statistical analysis of
hidden periods associated with meteorological and astronomical data.
Taylor conducted experiments in fluid mechanics dealing with the onset
to turbulence, and formulated a special case of correlation. A third sci-
entist, whose work (1914} vis a vis GHA was not known to Wiener, was
Albert Einstein. Finstein writes: “Suppose the quantity y (for exam-
ple, the number of sun spots) is determined empirically as a function of
time, for a very large interval, T. How can one represent the statistical
behavior of ¥7” In his heuristic answer to this question he came close
to the notions of autocorrelation and power spectrum, e.g., Section 2.8
and Definition 2.9.5, cf., [Mas90, pages 112-113], Einstein’s paper (in
Archive des Sciences Physiques et Naturelles, 37 (1914), 254-255), and
commentaries by Masani and Yaglom.
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The Fourier analysis of L'(R) or L?(R) (Chapter 1) or the theory
of Fourier series (Chapter 3) were inadequate tools to analyze the is-
sues confronting Schuster, Taylor, and Einstein. On the other hand,
GHA became a successful device to gain some insight into their prob-
lems, as well as other problems where the data and/or noises can not
be modelled by the Fourier transform decay, finite energy, or period-
icity inherent in the above classical theories, e.g., [Ars66, Chapter II],
[Bas84], [Rich4].

The material in Sections 2.9.1-2.9.10 outlines GHA and is due to
Wiener [Wie81, Volume II, pages 183-324 and pages 519-619], [Wie33],
cf., [Ben75, Chapter 2], [Ber87]. The higher dimensional theory, with its
geometrical ramifications, is found in [BBE89], [Ben91a], cf., [AKMS0].

2.9.1 Definition. BouNDED QUADRATIC MEANS
The space BQM (R) of functions having bounded quadratic means
is the set of all functions f € L} _(R) for which

1 4T 2
%%ﬁ/_T IF(O)2dt < 0.
The Wiener space W(R) is the set of all functions f € LE (R) for which

Mdt<oo.

1412

2.9.2 Theorem. IncLusions ror GHA

L=(R)C BQM(R) C W(R) C S'(R),
and the inclusions are proper.
2.9.3 Definition. THE WIENER $-FUNCTION

The Wiener s-function associated with f € BQM(R) is defined as
the sum s = s; + s; where

—2wity 1

st = [ St
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and amit
e amity

so(7) = [It|21 F@) =g dt.

Since f € L'[-1,1], we have s; € C(R) and [s1(7)| < 2[y[[{fllz1[-1,15-
Since f € BQM(R), Theorem 2.9.2 and the Parseval-Plancherel Theo-
rem allow us to conclude that s; € L2(R). In particular, s € L} (R) N

o~

S'(R).

2.9.4 Theorem. THE DERIVATIVE OF THE WIENER 3-FUNCTION

Let f € BQM(R). Then f € S'(R) and
s =7,

where s € L (R) N S'(R) is the Wiener s-function associated with f
(Ezercise 2.61).

2.9.5 Definition. DETERMINISTIC AUTOCORRELATION
The deterministic autocorrelation R of a function f : R — C is
formally defined as

T ——
R(t) = Jim = [ f(ut 070 du.

To fix ideas, suppose R exists for each t € R. It is easy to prove
that R >> 0, and so R = § for some § € M,(R). We have used
the same notation, viz., R, to denote both deterministic and stochastic
autocorrelation since they are often same, e.g., Theorem 2.9.11. Asin
the stochastic case, S is called the power spectrum of f.

The Wiener-Plancherel formula is equation (2.9.2) in the following
result.

2.9.6 Theorem. WIENER-PLANCHEREL FORMULA

Let f € BQM(R), and suppose its deterministic autocorrelation
R =3 exists for each t € R.

a. Then

(29.1)  VteR, R() :%% ] |Aus(y) e dy,
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where Acs(y) = 3(s(y + €) — s(y — €)).
b. In particular
ES 2 gy 2
(2.9.2) hm 2T (B))F dt = 11_1}:% f[AEs('y)| dy.

2.9.7 Example. RELATED FORMULAS AND SPECTRAL ESTIMATION

a. Because of (2.9.1) and assuming the setup of Theorem 2.9.6, the
following formulas are true under the proper hypotheses, e.g., [Ben75,
page 90], [Ben91b, page 847]:
(29.3) lim 2| &) = S,

and

J R ase) = Jim == [ [k« fo)de

(2.9.4)
=lim> [ B(n)Aus()[ dy.

e—0 ¢

b. Formally, (2.9.4) is (2.9.2) for the case k = 4. For k € C,(R) the
first equality of (2.9.4) is not difficult, e.g., [Ben91b, pages 847-848].
The second equality, or, equivalently, Theorem 2.9.6, requires Wiener’s
Tauberian Theorem, e.g., Theorem 2.9.12.

c. The following diagram illustrates the action and “levels” of the
functions and measure in Theorem 2.9.6 for a given signal f.

f o f=4 s
N3 3
R=8 «— S {As))}
Figure 2.3

d. Since S is the “power” spectrum, (2.9.2) and (2.9.3) allow us to
assert that

2
T—-)oo 27 / I dt
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is a measure of the total power of f, cf., Wiener’s comparison of energy
and power in [Wied9, pages 39-40 and 42]. In light of the spectral
estimation problem of Definition 2.8.6, the middle term of (2.9.4) is a
measure of the power in a frequency band [e, 8] if k= 1 in the first
term of (2.9.4), cf,, [Ben91bfz Theorem 5.2].
¢ o

2.9.8 Remark. WIENER—PL:NQHEREL FORMULA

The Parseval-Plancherel formula, | fll2m) = || il L2y allowed us
to define the Fourier transform of a square integrable function (The-
orem 1.10.2), and, at certain levels of abstraction, it is considered to
characterize what is meant by an harmonic analysis of f. On the other
hand, for most applications in R, the formula assumes the workaday
role of an effective tool used to obtain quantitative results. It is this
latter role that was envisaged for the Wiener-Plancherel formula in
dealing with the non-square-integrable case. After all, distribution the-
ory gives the proper definition of the Fourier transform of tempered
distributions. The real issue is to obtain quantitative results for prob-
lems where an harmonic analysis of a non-square-integrable function
is desired. As mentioned above, a host of such problems comes under
the heading of an harmonic (spectral) analysis of signals containing
non-square-integrable noise and/or random components, whether it be
speech recognition, image processing, geophysical modeling, or turbu-
lence in fluid mechanics. Such problems can be attacked by Beurling’s
profound theory of spectral synthesis, e.g., Ezample 2.4.6f, as well as
by the extensive multifaceted theory of time series, e.g., Section 2.8.
Beurling’s spectral synthesis does not deal with energy and power con-
siderations, i.e., quadratic criteria, and time series relies on a stochastic
point of view. The Wiener-Plancherel formula deals with these prob-
lems deterministically, and, hence, with potential for real implementa-
tion, e.g., Example 2.9.7d.

2.9.9 Example. ELEMENTARY POWER SPECTRA

a. The value of the autocorrelation R is that it can be measured
in many cases where the underlying signal f can not be quantified,
e.g., Example 2.8.10. Also, the discrete part of the power spectrum §
characterizes periodicities in f, e.g., [Wie48, Chapter X]. This first is
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illustrated by taking f(t) = Yp.; rae 7 rp € C, A, € R. The L
autocorrelation is not defined, but the deterministic autocorrelation is
R(t) = S5, |re|?e~ 2% (by direct calculation); and hence the power
spectrum is

S = Z |rk]? 63, -
k=1

b. If f : R = C has the property that limy,4. f(t) = 0, then
S = 0. Tt is elementary to construct examples f for which § =
whereas Timﬁit[_,:,m |f(t)| > 0, cf., [Wie33, pages 151-154], [Bas84, pages
99-100], [Ben75, pages 84 and 87], [Ben83, Section IV].

2.9.10 Definition. CorrRELATION ERGODICITY
Let X be a WSSP with stochastic autocorrelation E. X is a corre-
lation ergodic process if

(295) VteR, lim — f X(t +u,0) X (1, @) du = B(%)
in measure. (Convergence in measure is defined in Erample A.11e.)

Because of (2.9.5), the following result establishes the relationship
between the notions of deterministic and stochastic autocorrelation, cf.,
[Pap77, pages 354-360].

2.9.11 Theorem. CRITERION FOR CORRELATION ERGODICITY
Let X be a WSSP with stochastic autocorrelation R. X is a corre-
lation ergodic process if

|v]
vVt € R, hrn2/ T)d v=0,

where C(t,v) = F{X(t +u+v)X(u+v)X ([t +u)X(u)} — |RE)

As mentioned in Fzample 2.9.7, the following result is required to
prove the Wiener-Plancherel formula.
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2.9.12 Theorem. WIENER TAUBERIAN THEOREM
Let g € L}(R) have a nonvanishing Fourier transform and let ¢ €

L=(R). If

(2.9.6) tlir&g * (1) = r/g(u) du
then
(2.9.7) Vf € I'R), Jim fp(t)=r f F(w) du.

2.9.13 Remark. WieNErR TAUBERIAN THEOREM

a. Theorem 2.9.12has the format of classical Tauberian theorems: a
boundedness (or some other) condition and “summability” by a certain
method yield “summability” by other methods. In Theorem 2.9.12,
the boundedness or “Tauberian” condition is the hypothesis that ¢ €
L*=(R). The given summability is (2.9.6), where g represents a so-
called “summability method”. The conclusion (2.9.7) of the theorem is
summability for a whole class of summability methods, viz., for all f €
LY(R). A classical and masterful treatment of summability methods is
due to Hardy [Har49].

If g is the Gaussian defined in Ezample 1.5.3, then g never vanishes.
Thus, in this case, if ¢ € L(R) has the property that

Jim gxp(t) =7

then
YA, tl_lglo wy * p(t) =7,

where {wy} is the Fejér kernel.

The particular functions used by Wiener to prove his Wiener Taube-
rian formulas are found in [Wie33], [BenT75, pages 91-92].

b. Modern Tauberian theorems have a more algebraic and/or func-
tional analytic flavor to them. For example, the Wiener Tauberian
Theorem is a special case of the fact that if § € A(R), T € A(R),
and TG = 0, then § = 0 on suppT. In fact, the generalizations of
Theorem 2.9.12 are much more far reaching than this. [Ben75] gives an
extensive treatment of both classical and modern Tauberian theory, as
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well as the history of the subject, and applications to spectral synthesis
and analytic number theory.

Because of the importance of translation invariant systems and the
theory of multipliers, e.g., Definition 2.6.5 and FEzample 2.6.6, we define
the closed translation invariant subspace V, generated by g € X, where
X is LY(R) or L*(R), to be the closure in X of the linear span of
{mg:t € R}. We write

(2.9.8) V, =span{ng:t € R}.

2.9.14 Theorem. Zero SETS AND DENSE SUBSPACES
a. If g € L}(R) and § never vanishes then V, = L1(R).
b. If g € L*(R) and |g| > 0 a.e. then V, = L*(R).
Proof. Part e is the Wiener Tauberian Theorem, and we refer to
[Wie33], [Ben75, pages 25-26, 49-50, 94-95, and Section 2.3] for proofs.
The proof of part & is much simpler than that of part @, and so we
shall give it here. Suppose V; # L*(R). Then there is » € LZ(R)\{0}
such that

(2.9.9) Vi € R, f (r9)(w)Rw) du = 0.

Equation (2.9.9) is a consequence of the Hahn-Banach Theorem and
the fact that L*(R) = L*(R), e.g., Theorern B.1{. By the Parseval-
Plancherel Theorem,

=

VteR, [ﬁ(fy)me_z”h dy = 0.

fq“g € Ll(ﬂfé) by Hélder’s inequality, and so, by the Ll-uniqueness theo-
rem ( Theorem 1.6.9c), Gh =0 a.e. Since [§] > 0 a.e. we conclude that

h = 0 a.e., and this contradicts the hypothesis on k. Thus, V, = LZ(R).
O

Subspaces such as V, in (2.9.8) play an important role in Gabor
and wavelet decompositions in the case that the set of translates mg
is reduced to {r.g : r € D} where D is a discrete subset of R, e.g.,
[Mey90], [Dau92], [BF94].
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2.9.15 Remark. GHA AnND THE WIENER-KHINCHIN THEOREM

- a. In GHA, a function f is analyzed for its frequency information
by computing its autocorrelation R and its power spectrum S = RY €
Mb+(]§). Mathematically, this is a mapping between a class of functions
f and a class of measures S € M, (R). A natural question to ask is the
following: for any i € My, (R), does there exist f whose autocorrelation
R exists, and for which RV = pu?

b. The question of part a is answered affirmatively in the WSSP
case by the Wiener-Khinchin Theorem: a necessary and sufficient con-
dition for R to be the stochastic autocorrelation of some WSSP X is
that there exist S € My (R) for which § = R. In one direction, if R
is the stochastic autocorrelation of a WSSP X then § = RV € M, (R)
by the Herglotz-Bochner Theorem. The question in part @ deals with
the opposite direction, and the positive answer is not difficult to prove,
e.g., [Pri8l, pages 221-222], [DM76, pages 62-63 and 72-73]. Khinchin’s
proof dates from 1934, and there were further probabilistic contribu-
tions by Wold (1938), Cramér (1940), and Kolmogorov [Kol41], cf.,
[Ben92a).

c. The deterministic and constructive affirmative answer to the
question in part a is the Wiener-Wintner Theorem (1939) [Wie81].
Bass and Bertrandif made significant contributions to this result, e.g.,
[Bas84]; and the multidimensional version is found in [Ben91b], [Ker90].

2.9.16 Theorem. WIENER-WINTNER THEOREM

Let p € My (R). There is a constructible function f € L (R)
such that its deterministic autocorrelation R ezists for allt € R, and
RY = p.

2.10 exp{it?}

The function

has properties which serve as a paradigm for the method of stationary
phase (Ezample 2.10.4), as well as being an underlying kernel for the
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oscillatory integrals which arise in areas as diverse as analytic num-
ber theory, e.g., [Tit51, pages 61-70 and 83-84], and partial differ-
ential equations, e.g., [[16r83, Sections 7.7 and 7.8|, cf., [Ste93). In
optics, s is the convolution kernel in Fresnel’s approzimation to the
Huygens-Fresnel principle. (Fresnel’s approximation allows for realistic
diffraction-pattern calculations, e.g., [Good68].) In signal processing, s
is the linear chirp signal whose frequency changes linearly with time,
e.g., Figure 2.4. This is an example from the class of frequency mod-
ulated (FM) signals €*™") that arise in subjects such as radar and
sonar, e.g., [Rih85], [BMW9Y1], and that are characterized by the prop-
erty that ¢ is not a constant.

With regard to Fourier optics, the integrals z(t) = fJ cos? udu and
y(t) = fisin®udu in Theorem 2.10.1 are called Fresnel integrals, cf.,
Ezample 2.10.7. Also, in light of (2.10.1), note that s ¢ L'(R)U L*(R).

2.10.1 Theorem. FRESNEL INTEGRALS

a. Let sy be the dilation of s for A > 0. Then

(2.10.1) ] sx(t)dt =1

in the sense that the improper Riemann integmlf sa(t) dt equals 1/2.
0
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Figure 2.4
Spectrogram for electrocorticogram data [BeC95]. Chirp signal
behavior is exhibited in the time interval 170 seconds to 182 seconds.

b.

(2.10.2) /m cost® dt = foo sint? dt = l\/’f
0 0 2V 2
Proof. To obtain (2.10.2) from (2.10.1) we compute

\/iﬂ“:/ costzdt+i/ sint? dt

—0Q

=2/ cost2dt+2if sint? dt.
0 0

b

Thus, since i'/? = (¢'3)7 = iT = -\/1—5(1 + 1), we have (2.10.2).
Now, let us verify (2.10.1). Let s(z) = 7%;6,-22 and consider the

positively oriented wedge C' = [0, R] U Cr U Lg as illustrated in Figure
2.5
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Figure 2.5

By Cauchy’s theorem, e.g., [Rud66], we compute

R . L,
\/iﬂ'/ s(z) dz zf e’ dz+ | &% dz
c 0

Cr

(2.10.3)

+ e dy = 0.
Lr

The parametric representation of Cr is z : [0,5] = C, 8 — Re, and

the parametric representation of —Lg is z : [0, R} = C, r = re'™/4, We
estimate and compute the integrals in (2.10.3) as follows:

;2
f e dz
Cr

<R f% ea—-(2R2 cos f) sin # do
o 0

s

. 4 Y1 Dl 2

’LR[ etR {cos 8- sin 6) 619 40
1]

(2.10.4) ]
< R/? e-—-(2R2 cos §)siné do
o 0

z Ty 1
< sz —(2R?cos T)sind do T
i < 2 \2R*cos §
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and

/ iz? dz = __f ir2 givi2 17r/4 dr
Lgp

\ R
= “611/4 (/ e—rz d'f') .
0

The last inequality in (2.10.4) follows from Jordan’s inequality,

(2.10.5)

ki

2 —rainf il
dé < —
[o ¢ < 27’

e.g., Exercise 2.62a. The right side of (2.10. 4) tends to 0as R — oo
and the right side of (2.10.5) tend to —— | —= + z— as B — oo.
Equation (2.10.1) then follows from (2.10. 3)

2.10.2 Example. A cos(At)?

Figure 2.6 is the graph of the dilation A cos(A¢)?. Thus, for large
values of A, Acos(At)? is rapidly oscillating, especially near the origin.
In light of the fact that [ s.(2)dt =1, it should be noted that, except
for the large amplitude at the origin, Figure 2.6 does not resemble the
approximate identities of Chapter 1, cf., Theorem 2.10.3b.

Figure 2.6
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Note that the difference between consecutive “crests” of A cos(At)?
1
has order of magnitude —=, and so tends to 0 as n — oo.

AV

In fact, we have

1 (Vo= o) = 5 (Vv ) (v )
V2r 1

—3 0, n — 0.
A ym4n-1 " o0

At this point we know that {s,} C L*(R) C §'(R), s» & L*(R)U
L*(R), and [sx(t)dt = 1. Thus, theoretically, 5, € A (R) C S'(R)
exists, and, tantalizingly, we'd like to know to what extent {s,} is an
“approximate identity”, even though it isn’t an approximate identity
as defined in Chapter 1. The following result computes 5, and answers
the “approximate identity” query.

2.10.3 Theorem. §) AND sy — &
a. The distributional Fourier transform sy of s) is

(2.10.6) Yy e R, Si(y)=e /N
and so sy € L®(R)n A'(R).

b. lim sy = § n the sense that
A—oo

(210.7) Vfe IMR)NA(R), Jim / sx(t)F(t) dt = 8(f).

Proof. i. Formally, by completing the square and invoking Theo-
rem 2.10.1a we compute

~ A 2 2 it a12
ay) = ﬁ[expz{(z\t— —7[)\1) - (%) } dt = e~ M),

Similarly,

(2.10.8) [ @7 d = f e~ VN T dy.
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ii. The formal calculation to obtain (2.10.8) can be justified for
f € LY{R)N A(R). In this case, the integrals of (2.10.8) are Lebesgue
integrals, and the validity of the equality is a consequence of the inver-
sion formula (Theorem 1.7.8), LDC, and the fact that

b,
f et di
a

e.g., Exercises 2.6/ and 2.68, cf., Ezercise 2.63. Equation (2.10.6)
follows from (2.10.8) since S(R) C L'(R) N A(R).
iii. Noting that

JM such that Va,b, <M,

Yy, lim e=HmA) = 1,

Ao

we can use LDC and the inversion formula again to obtain (2.10.7). [

2.10.4 Example. STATIONARY PHASE
a. For a given compactly supported function f and real-valued
phase € C*(R), there is the associated oscillatory integral

(2.10.9) Fo(y) = / F(t)erm et dt,

Obviously, the Fourier transform is an oscillatory integral. It is often
important to investigate the behavior of F, for large values of 4. The
method of stationary phase asserts that this behavior is determined by
the so-called stationary points t for which ¢’(¢) = 0; and the method
provides a means for quantifying this behavior, e.g., part b. Of course,
in the case of the Fourier transform of f € L}(R), where ¢’ = 1, we have
q}ggo F.(v) = 0, cf., Ezercise 2.63 for more general phases ¢ without

stationary points.

The investigation of integrals F,, in this spirit goes back to Airy
(1838) and Stokes {1850), and the method of stationary phase is just
another brilliant chapter in Riemann’s thesis on trigonometric series
[Riel873, Section XIII]. It should be mentioned that Laplace’s asymp-
totic method (1820), e.g., part ¢, preceded stationary phase; and, al-
though Laplace’s method doesn’t deal directly with oscillatory inte-
grals, it has striking resemblances in both technique and result with
stationary phase, e.g., [Olv74], [Wid41].
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b. Lord Kelvin (1887) made the following sort of observation about
F,,, most probably without knowledge of Riemann’s work. If f € C.(R)
and 7 is large, then the integral in (2.10.9) is very small because of the
cancellation resulting from oscillation, ezcept possibly near stationary
points of ¢ since ¢ changes slowly near such points.

To quantify Lord Kelvin’s point of view, assume supp f = [a, b] for
f e C(R), v € C*R), ¢'(to) = 0 for some tp € (a,b), ¢'(t) # 0 for all
t € [a,b]\ {tc}, and ¢®(t,) > 0. Then, because of the oscillation, Lord
Kelvin’s observation asserts that

Fo) ~ [ f(to)
I
(2.10.10)
exp {2m"y [cp(tg) +3(t— tg)zgo(z)(to)]} dt
for large 7, where I is a small interval about 7. By the oscillation
again, (2.10.10) can be replaced by
Foy)= f (to)ez’""’”(t")"' f emitt e i)y 1y

2.10.11
(21011 1

(7@ (ta))/?”

where the right side is a consequence of Theorem 2.10.1. We shall say
that F is asymptotic to G as ¥ — oo to mean that Tlggo F(7)/G(vy) = 1.

— em'/4f(t0) BZm‘zp(to)q

The notation for this asymptotic behavior is F'(y) ~ G(v), v — 0o. As
such, and noting that the heuristic argument leading to (2.10.11) can
be made rigorous, the method of stationary phase allows us to assert
that

. . 1
(2.10.12) F(y) ~ e™/4 f(to)e?miettoly 51 7 — 00,

(7@ (t0))*/
given our hypotheses on f and ¢, cf., [H5r83], [Olv74}, [Ste93] for more
advanced results.

c. For comparison with (2.10.12}, the asymptotic relation (2.10.13)
is an elementary form of Laplace’s asymptotic method. Let

Go(r) = [ ()t
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Assume suppf = [t(}ab]'.' f € C[to,b], f(to) # 0,p€ C’z[tﬂsb]s (:of(to) =
0, ®(to) < 0, and @ non-increasing on [to,b]. Then

1
(—4ypC)to))

cf., [Wid41, Chapter 7] for this and more advanced results.

We shall define the Stieltjes transform in Ezercise 2.56, as well as
noting its close relationship to the Hilbert and iterated Laplace trans-
forms. It turns out that a version of Laplace’s asymptotic method is
central to establish an inversion theory for the Stieltjes transforms of

distributions, e.g., our theory of Stieltjes transforms in Analytic repre-
sentation of generalized functions, Math. Zeitschr., 97(1967), 303-319.

(2.10.13)  Go(v) ~ flto)e*melel

1/27 7 ? OO?

2.10.5 Example. Cuirp TRANSFORM ALGORITHM
The chirp transform algorithm is the formula

(210.14) Vfe L'R), f=[(f5,5)*ssz| P msym),

where s s is the \/7-dilation of s. The verification of (2.10.14) is ele-
mentary:

(fS\/—) *S\/— /f —1/2 —imu (z—le) im{y—u)? du = e”m. f( )

Equation (2.10.14) can be “implemented” for a given functin f by the
following sequence of operations: multiply f by 3, convolve fs &
with sz, multiply (fsz) * sz by (i¥/%s 7). In signal processing,
there is a simple block diagram for these operations, cf., [OW83, pages
511-512] or the terminology in Definition 2.6.5. We have chosen the
word “algorithm” to describe the “fact” (2.10.14), since both f and f
have the same domain R; in fact, our point of view is to consider f
and f as being defined on different spaces, whether they be time and
frequency axes or dual groups.

2.10.6 Example. INFINITE FREQUENCIES
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a. Let sy, A > 0, be the M-dilation of s. Then the deterministic
autocorrelation Ry of s, is

0, if t+£0,

A Gf t=0.

(2.10.15) Ra(t) = {
)
To verify (2.10.15), we need only substitute into the definition of R,
and compute
Moz [T o2
— 1 i{ At} 2iX‘ut
Ry(t) 111_1)130 5T € /_Te du.

Ry >> 0 is discontinuous, and the power spectrum S, of s is the
0-measure, cf., Ezercise 2.66.

b. Using the terminology of Erample 2.9.7d, we see that the total
power of s, i1s Ry (0), and that Ry(0) > limy—o Ra(t) = 0. Since Sy =0,
there is a portion of the power not represented by any finite frequencies;
and Wiener reasoned that s, draws part of its power from so-called
infinite frequencies, e.g., [Wied9, page 40].

c. For perspective with regard to the function s, if f(t) = e
then its deterministic autocorrelation is R(t) = cos 2wt and its power
spectrum is S = (8, + 6_). In fact, if ¢ > 0, then |t + u| — |u| = ¢ for
u 2> 0 and so

27|t

N S P UNR s
%ﬁﬁ A e du = -2—6 .

Similarly, for ¢t > 0, we consider the intervals [-T, —t) and [—¢,0] sep-
arately, and note that |u + t| — |u| = —t for v € [T, —t); thus

R
Jim 57 e
As another example, let

f(t) = i,

ami(lttul—lul) gy, L -omit
2

Then, expanding

-+ ul — u] )

exp 2m (|t Wi [l
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we see that the deterministic autocorrelation of f i1s R = 1, and its
power spectrum S = §.

2.10.7 Example. CURVATURE OF THE CORNU SPIRAL
The Cornu spiral C is the curve in the complex plane defined by
the Fresnel integrals defined at the beginning of Section 2.10, 1.e., C =

{(z(t),y(t)) 1t 2> {]}, where
z(t) = fot cos u? du and y(t) = /; sin u? du.

The length of C' from the origin to (z,y) € C is easily computed. To
compute the curvature x(t) of C' at ¢, we define the vector

r(t) = (2(t),5(2),0),

as well as its velocity ri)(¢) = (cos t2,sint?, 0) and acceleration r?)(t) =
(—2tsint?,2¢ cost?,0). Then

r( () x x@(t) = (0,0, 2t cos? 2 + 2t sin® 1?) = (0,0, 2¢),

and, hence,
Jr(t) x @)

t) = =2t
S e 0]

where |}...|| is the Euclidean norm in R3.

If the Cornu spiral is replaced by the curve
/ ! () dy
0 ?

then the curvature at # of the resulting curve is ¢'(%).

Chapter 2. Exercises

Ezercises 2.1-2.30 are appropriate for Course 1.

2.1. Compute 1{_rzy (the distributional derivative).
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2.2. Compute the following distributional derivatives, where H is the
Heaviside function.

a. (H(t) cos t)’
b. (H(t) sin t),.l
c. (1[_,”/2',,/2)('&) cos t)

, _ [ sint, t<0,
d. ¢ where g(t) = { et ¢> 0,

(2)

e. ¢ where g(t) = { 2’ ig : f g’
, :

2.3. Compute the nth distributional derivative of g(t) = |t|,n = 1,2,3.

2.4. Compute the nth distributional derivative of g(t) = |cost|, n =
1,2,3.

2.5.  a. Prove that the function f defined in Erample 2.2.2 is in-
finitely differentiable.

b. Prove that there are no analytic functions in C°(R)\{0}.

2.6. Prove that if f € C®(R) and g € L'(R) has compact support
then f * g € C(R).

2.7. Prove (2.3.4) and (2.3.5).

2.8. From Ezample 2.2.6b show that if g € LL (R)\ {0} then there is
f € C=(R) such that

[ £0at) dt # 0.

2.9. Prove that
Vr >0, t"6M(#) = (=1)"nlé(t).
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2.10. a. Show that 8(¢t) = é(—1).
b. Consider the approximate identity {ky}, where k = 1[_ L]

In the spirit of Fzample 2.1.6, evaluate 5(t2)( f (t)), for f €
Cp(R) and f(0) # 0, by computing

lim [ ka@)5(0) at
c. Evaluate the limit in part b for f € C®(R) for which f(0) =
7(0) =

2.11.  a. Let f € C>°(R)and assume g € L'(R) has compact support.
Prove that supp(f * ¢) C supp f + supp g, cf., Ezercise 2.6.

b. Prove the generalization of part ¢ when g is replaced by
T € D'(R).

2.12. Prove that

ZJ(t—n)—}-Z&(t—n—%) =2Y 8(2t —n)
(St -3

where M L 4 is the mean

) 0=3 6D+ ).

The middle term arises in wavelet theory.

2.13.  a. Compute the “L2-autocorrelation” of 4, i.e., compute

Pi(t) = (1) % 8(=),

cf., Bxercises 1.33 and 2.10. § and é(—t) can be computed
using the method of Ezample 2.1.6.

b. Compute the L:-autocorrelation Pa of the triangle function
A defined in Fzample 1.5.4.
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c. Compute the L*-autocorrelation Pa,,, of the dilation Agy/y.

~d. In what sense does limyo Pa,,,, = P57
2.14, Let ]
o
be a differential equation on R. Solve for f using the method of
Theorem 2.6.1.

9 = 4n25 4 6@

2.15.  a. Compute 6§ « H,

b. Compute the Fourier transform of §(")  H.

2.16. a. Compute the Fourier transform of §(«g, where g(¢) = tH(t)
and n =1,2,3.
b. Compute the Fourier transform of 60 x g, where g(¢) =
t?H(t) and n = 1,2.

2.17. Verify whether or not there are integrable or square integrable
solutions of the following differential equations defined on R.

a. fO 4 1) = 51},
O g ) = 509,

&

2.18. Compute t2§1)(¢), cf., Exercise 2.9.
Compute t53)(¢t).

Compute $126C)(t).

d. Compute t56(12)(2).

e. Compute t™§™(t) for m,n > 0.

vop

o

2.19. Verify that (2.4.17) is a consequence of (2.4.16). The calculation
is elementary buf involved.

2.20. Let f, = 1 f, where f € C°(R).

a. Prove that f, — 0 in the sense that ¢ and i of Defini-
tion 2.2.3 are satisfied.
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b. Let T be any linear functional on C(R). Prove that

lHmT(f,) = 0.

c. Show that there is a linear functional on C°(R) which is
not a distribution.[Hint. Let g € CP(R)}\{0} and let g, =
%’rl/ng. A Fourier transform argument shows that {g.} is
linearly independent. There is a basis (in the algebraic sense}
of C®(R) which contains {g}, e.g., [Tay58, pages 44-45] on
Hamel bases. Define T(g,) = 1 for each n and extend T
linearly to C°(R).]

2.21. Verify that
5+ 31) = 33(1)

and

8'(t3 + 3t) = %5’@).
2.22.  a. We evaluated [ S—%i dt in Proposition 1.6.3. Now show that

T sint
P g —
[ ; i

T
< =,

YT >0, T

[Hint. Use Jordan’s inequality, which is stated in Theo-
rem 2.10.1 and Ezercise 2.62a.]

b. Refine part a by proving that

T sint 2¢cosT 2sinT
VT f dt — 7 = — _ ,
>0, L T T Tz +egp

where ler} < 2r/T?. In particular, if T,, = £ + wn, then
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2.23.

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

CHAPTER 2. MEASURES AND DISTRIBUTION THEORY

Prove that BW..(R) C L] (R). Technically, if ¥ € BV,((R),

loc
then it is an ordinary point function, whereas the elements of

Ll (R) are sets of ordinary functions which are equal a.e. Show -
that this situation does not cause any problems in this exercise.

Verify that

L'R)={F': F € BV(R)N ACio(R) },
where F' designates distributional differentiation.
Prove (2.2.7) and (2.2.8), cf., Ezercise 2.33.

Let f +— F, where f, f' € L}(R). Verify that

(/w) * (2 ))(t) > 277 F(3).

a. Compute (1 * 5(“))A.
A

b. Compute (5(’“) * 5(’"-))

Let T € D'(R) and let g € C*°(R). Prove that

n

f
CYNNI o U G, S (O CE
(T9) gk!(n-—k)!T g

Consider the distribution
(B21)  Apv (%) + BH(t) + C8() + D&'(t) + Elog|t].

For each of the following distributions 7', list the coefficients in
(E2.1) which must be 0. For example, if T is H’, then the answer
is A, B, D, and E.

a. H  b.(loglt]) o1  d [tH#H®.
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2.30.

2.31.

2.32.

2.33.

Let T € D'(R) and assume 7' = 0. Prove that T is a constant.
[Hint. Let fo € C(R) have the property that [ fo(t)dt = 1.
First prove that each f € C®(R) has a unique decomposition f =
¢sfo+g where ¢; = [ f(t)dt and g = k' for some b € C°(R), e.g.,
[Sch66, pages 51-52]. Then compute T(f) = ¢;T(fo) — T'(h) =

T(fo)1(f)]
Using MATLAB, graph the Cornu spiral C defined in Fzram-
ple 2.10.7.
Define
Voe (b1 £0= o
TEp s e 14 expet’

. Compute f, in terms of the Riemann zeta function ¢, cf.,

[Ben75, pages 137-138]. ( and the Riemann Hypothesis were
defined in Fzample 2.4.69.

. Using the notation V; defined in (2.9.8), prove that the Rie-

mann Hypothesis is true if and only if V;, = L}(R) for each
o € (3,1). This elementary observation is due to Salem
(1953) [Sal67].

. Let p = 52, 5% Sin. Prove that g € My(R) and that

supppt = {0,1/n :n € N}.

. Let {r,} be the subset of the 1/3-Cantor set C' C [0, 1] where

each r, is of the form k/3™, and let 4 = 22, =5 4,,. Prove
that p € My(R) and that supp ¢ = C. Recall that C is a
closed, uncountable set without isolated points.

. Let {r,} = Q, the set of rational numbers, and let p =

%1 2 O,. Prove that y € M(R) and that supp 1 = R.

2.34. Compute the Fourier transforms of f(t) = sin(xt) + cos(nt) and

f(t) = sin(7t)? + cos(mrt)*.

2.35. Let n € NU{0} and define T'(t) = aé(t) + bt" for a,b € C\{0}.

For which values of a,b, and n do we have T' = T, cf., Fzam-
ple 1.10.12¢ and Ezercise 1.28!
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2.36.

2.37.

2.38.
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Let pn = 2(81jnt + 6o1jmt), n > 2, and define p = pg * piz ...
Prove that {|g)ly = 1 and suppp C [-1,1]. Compute §, cf.,
Vigte’s formula in Erercise 1.36, where []32, cos 2t € L*(R).

The Wiener-Pitt Theorem assserts that if ¢ = g + pse +
2 az0,, with notation as in Theorem 2.7.6, satisfies the properties
that |ii] > 0 on R and

”Nscl[l < inf {‘ Z axe"z'«’rix'y

then there is v € My(R) for which v = 1/[i, e.g., [BenT75, pages
147-149] where the proof uses Kronecker’s Theorem ( Ezercises 3.40
and 3./1). John Williamson (International Congress of Mathe-
matics, 1958) used the example of this exercise in analyzing the
Wiener-Pitt phenomenon in another setting.

:'}'E@}

Consider the convolution equation
g—k*g=f on R,

where k, f € L'(R) are a given kernel and forcing function, re-
spectively. Assume |1 ——E| > 0 on R. Prove that there is a solution
g € L}*(R). [Hint. Take the Fourier transform of the equation,
invoke the Wiener-Pitt Theorem (stated in Ezercise 2.36), and
apply Ezercise 2.49b.] There are other proofs.

The Wiener-Hopf equation,
gt) - [kt —wg(wdu = £(2), t20,

is more difficult, but has also been solved, e.g., [Wied49, Appendix
C] for applications and solution, cf., Constructive Methods of
Wiener-Hopf Factorization, I. Gohberg and M. A. Kaashoek, ed-
itors, Birkhauser Verlag, Basel, 1986.

Let {k(»)} be an approximate identity. Prove that

M by =2
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2.39.

2.40.

2.41.

in the sense that
(E2.2) v/ € Gy(R), Jim f koy(8)S(2) dt = £(0).

[Hint., Add and subtract f(0} f k(x)(u)du.] If we replace the condi-
tion, f k(yy(u)du = 1, of an approximate identity by the condition
kpy(0) = [ kpy(u)du = K for each A (while retaining the other
properties of an approximate identity), then the conclusion (E2.2)
is replaced by

Vf € Gy(R), hmfkm VF(2) dt = K £(0).

a. Provethat & ¢ L (R)and that & ¢ M(R),cf., Remark 2.3.7.
b. Prove that L'(R) C M;(R) and that Li (R) C M(R), e.g.,
Theorem 2.7.6.

Let g € L*(R), and, for 5 > 0 and (t,7) € R x R, set g, (u) =
gs(u — t)e*™" as in Erercise 1.49. Prove that

311}123 g"’!t(‘f’ = g(O) e2ﬂit75t
in the sense that

VS € CoR), Jim [ gusn(w)f(u)du = @O m)(f)

for each fixed (¢,7) € R x R, cf., Ezercise 2.98.
We defined £'(R) in Ezample 2.4.6b. With convolution as the

multiplicative operation, £'(R) is a commutative, associative al-
gebra with unit 6, cf., Ezample 2.5.2¢c and Erample 2.5.10. Note
that if h,(t) = e™* for any fixed s € C, then A, : £'(R) — C is
a homomorphism. Prove that if » € C°(R) is a homomorphism
E'(R) — C then h(t) = e=* for some s € C.

The algebra £(R) and its space of (continuous) homomor-
phisms {h, : s € C} leads to the definition of the bilateral
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Laplace transform T'(t)(e™*) of T € £'(R), cf., Ezample 2.4.69.
In fact, as a general point of view, any algebra A and a set M
(for mazimal ideal space) of its homomorphisms A —s C gives
rise fo a transform 7T for which there is an ezchange formula
T(A* B) = T(A)T(B), eg., Theorem 2.5.9. For example, if
A= LY(R) and M = {e 2 : 4y ¢ R} then we have Fourier
analysis.

Prove that the Heaviside function H is an unbounded continuous
measure,

Prove that the principal value distribution defined in Example 2.3.8
is, in fact, a distribution.

Let po € My+(R) be the Cantor measure corresponding to the
1/3-Cantor set C C [0,1]. Prove that

1
[tdue() =3,
noting that [ duc(t) =1, cf., Ezample 2.3.9b.

a. Prove that the mapping S(R) —+ & (I@), f— F, is a linear
bijection. [Hint. The linear injection follows by a straight-
forward calculation and the uniqueness theorem. For the
surjectivity, let F € S (R) and denote F¥ by g. g € S(R) by
the first part of the calculation, and the goal is to show that

g = F. This follows by the inversion theorem for “v” in-

stead of “A”, i.e., F(y) = [ FY(t)e~®™*dt which is the same
as §= F.]

b. Prove that p defined by (2.4.7) is a metric on S(R) x S(R),
and that, as such, S(R) is a complete metric space.

c. Prove that the mapping of part a, where § is given the
metrizable topology of part b, is bicontinuous.

d. Prove that “f, — 07 in the sense of (2.4.8) if and only if
limpoye0 p(fn,0) = 0.
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2.46. Let {T;} C D'(R). Define lim;o, T; = T for some T € D'(R) to
mean that

Vf e CER), lim T(f) = T().
Similarly, define 3 7; = T for some T' € D'(R) to mean that
Vfe CX(R), 2. Ti(f) =T().
a. Prove that if & T;(f) exists for each f € C°(R) then there
is T € D'(R) for which 3.T; =T.
b. Prove that if 3" T; = T for some T' € D’(R), then

wneN, (L0)" =310

2.47. Note that S(R) C X(R) = LY{R)N L*(R)N A(R). If the norm of
f € X(R) is defined as ||fllx®) = /1@ + I fllz@) + [ fll age)s
where || fllar) = ||f”L,®, then S(R) = X(R) and X(R)" =
X(R). Thus, since X'(R) C S'(R), the distributional Fourier
transform is a Banach space isomorphism of X'(R) onto X'(R).
Describe the elements of X'(R).

2.48. Consider the n-fold convolution g = li_ng) * **+ * 1|—n.q, Intro-
duced in terms of splines in Ezercise 1.17. Compute g™,

Motivated by the results of this calculation, we introduce the
following “usual” definition. A spline of order r on R with knots
at the integers is a function g € L%(R), whose restriction to each
interval [n,n 4 1) is a polynomial of degree at most r — 1, and

which is in C"2(R),i.e., g € L*(R)NC™*(R) and ¢\ = ¥ a,6,.

2.49. My(R) is a Banach algebra with unit é under convolution, and
LY(R) C My(R) is a closed ideal. This “algebraic” fact is a con-
sequence of the following exercises.

a. Prove that, for all i, » € M,(R), we have p * v € M(R),
and, in fact,

[l * vl < flelfalldfa-
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b. We know L}(R) C M,(R), e.g., Ezercise 2.39h. Prove that
I|...|It reduces to || ... ||L1(z) on L*(R), and that, for all x4 €
M,(R), f € L'(R), we have f*p € L'(R), cf., Ezercise 2.54.

The characterization of the ideal structure of L!(R) is
equivalent to solving the problems of spectral synthesis (for
LY(R)) mentioned in Erxample 2.4.6f, e.g., [Ben75]. The
characterization of the ideal structure of M,(R), even just

its maximal ideals, is also a deep topic, e.g., [DR71], [Kat76,
Chapter 8].

Let T € D'(R) and let A € C°(R) be a strictly monotonic surjec-
tion R — R. In light of Ezample 2.1.6, Erercise 2.10, and Ezer-
cise 2.21, prove that the composition Toh™" is an element of D'(R)

if it is defined as (T o A1) (f) = T((f o h){R'|) for f € C=(R).

Let T € D'(R) and let f € C°(R). Prove that T(n.f) € C*(R)
as a function of £.

An N x N matrix A = (a;;) is positive semidefinite if &7 Ac > 0
for every N x 1 matrix ¢ € CV, where & designates conjugation of
each component and 7' designates transposition. (Unfortunately,
“semidefinite” is like “maybe for sure”.) Let P : R — Chbea
function and let Ap(v1,...,7v~n) be the N x N matrix (P(’]/j—")’k)).

a. Prove that P >> 0 if and only if Ap(71,... ,7n) is positive
semidefinite for each N > 1 and each set {y1,...,vw} CR.

b. Prove the four properties of positive definite functions listed
in Definition 2.7.8b. [Hint. For part i, let v1 = 0, v, = A,
a3 = 7, assume P(\) # P(y), and let ¢; = 1, ¢; = —¢3, and

|P(3) — P()|
P(A) = P(v)

Consider the quadratic form (2.7.4) as a polynomial in x,
and analyze its discriminant.]

z, =€&R.

Cy =
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c. Prove that a positive semidefinite matrix A = (a;x) is Hermi-
tian, i.e., a;x = @, for all 7, k, cf., [Don69, pages 181-182],
[Str88] for further properties.

Suppose f : R — R has the properties that
b .
IM such that Va < b, | f F(8) dil < M,
f is differentiable, and [|f'||z=@®) = m. Prove that f,Hf €

L*{R). This result was alluded to in Theorem 2.5.12 and is due
to Logan [Log83]. [Hint. First show that

lim ( _:i%ﬂdwrff@dt)

e—0
R—o0

(E2.3) = f_ 2 {10g [% — O(T - [t} f'(¢) dt
F(t) 1
[ &+ (O = PURT) + F=1)),

where F(t) = [} f(z)dz, T > 0, and C € R. We assume every-
where differentiability of f to ensure f € AC,.(R), since we use
FTC to verify (E2.3). Now estimate the right side of (E2.3), and
correctly choose T and C.]

Apropros Ezample 2.5.2, prove that §'(R) *S(R) is not contained
in L*(R). [Hint. Let T'(u) = u? and let g(u) = e™*".] It turns out
that §'(R) * S(R) C Oc, where f € O¢ means that f € C°(R)
and

Jdk = k(f) € Z such that ¥n € N,
. 2 k (n) _
Jim (14 1) |F@@)] =0,

e.g., [Hor66, pages 420-423].
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We defined the even and odd parts of functions in Ezercise 1.7.
Verify (formally) that Hf. = (Hf). and (Hf,) = (Hf)., where
H is the Hilbert transform. Thus, if X is a space of functions,
then, formally, X = X, ® X, and HX = (HX). & (HX),.

Let f be a causal function, i.e., supp f C [0, co). Formally define
the unilateral Stieltjes transformof f as S(f)(t) = 5~ %_1_3‘} du and
the (unilateral) Laplace transformof f as L(f)(t) = [5° f(u)e™™ du,
e.g., [Wid4l]. Assume that £f and LLf exist on (0,00). Show
that

LLf(u) =8 f(u) = —nHf(—u).

a. Venfy (formally) the Fourler transform pairings 2fH f —
iHf and f+iH[f < 2fH, where H is the Heaviside function
and H is the Hilbert transform operator.

b. Verify (formally) that if f is causal, then Re f=HImf and
Imf=—-HRef.

Parts a and & give elementary relations between the
Fourier and Hilbert transforms. The situation can become
more complex (sic). Recall the Paley-Wiener Logarithmic
Integral Theorem [PW34] from Ezample 1.6.5. This result
asserts the existence of a causal function f € L*(R) for which
|7| = & a.e. in the case

f |log By <o
T+ +2
for a given non-negative function ¢ € L*(R). Formally
= gemi

is a candidate for such a function f, cf., [BT93] for relevant
calculations and a wavelet application to speech compres-
sion, and consider ¢(vy) = 1/(1 + %) for a dose of mathe-
matical reality.
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2.58.  a. Prove that (2.6.7) defines a translation-invariant continuous
linear operator L : L'(R) —+ L'(R).

b. Let L : L'(R) — L*(R) be a translation-invariant continuous

linear operator, and let g € L®(R). Prove that there is an
h € L*(R), depending on L and g, such that

vie L'R), [(LHWe)dt= [ fOR)de
c. Use part b to prove that
Vf,ke LMR), (Lf)xk=L(f k)= f*L(k)

[Hint. Calculate

[@n < kgt) dt = [Ks) [(rp)e)h(t) dt ds
:=fh@U#ku)&=i[LU*kxﬂﬂﬂdﬂ

2.59. a. Prove that H(cos2nty,) = sin2rty, and H(sin2nty,) =
— €08 275, Yo > 0.

b. Let f € L*(R) be real-valued. Prove that [Hf(t)f(t) dt =
0.

c. Prove the symmetry condition (2.6.7) of Erample 2.6.7a.
[Hint. The straightforward calculation depends on the fact
that h, described in Ezample 2.6.7a, is real-valued.]

2.60. With regard to the problem of finding F' € C.(R) for which F ¢
B(R), prove that

Vi€ My(R), 3lim f”m

=0
ftoo <lyI<R

cf., Exercise 2.19.

2.61. Prove Theorem 2.9.4.
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a. Prove Jordan’s Inequality,

af2 )
Vr > 0, / ereind gg < I
- 0 2r

b. In light of part e, prove that

Vo € (0,7/4), (sin)""? < (cos@)**?,
e.g., Amer. Math. Monthly Problems, 101 (1994), 690.

2.63. The following inequalities are van der Corput’s Lemma.

a. Let ¢ be a real, differentiable function on {a, b] for which ¢’

is monotone and for which |¢'| > » > 0. Prove that

b,
/ 0 dt‘ <

a r

[Hint. Write the integral in terms of its real and imaginary
parts. For each case multiply and divide by ¢, and use the
first mean value theorem for integrals.]

. Let ¢ be a real, twice differentiable function on [a,b] for

which [¢{®] > r > 0. Prove that

/ b 40 dt

a

8
< —=.
T

[Hint. ¢’ vanishes at most once in (a,b). If this point is ¢,
write f: as [T 4 [ 4 cb_H. The proper choice of ¢ and an
application of part @ on the first and third integrals yield
the result.]

It is often important to compute or estimate exponential
surns, e.g., the Gauss sums of Section 3.8. Finite trigono-
metric sums 3 e*™ (" arise in analytic number theory in
the process of estimating the growth of the Riemann zeta
function. A classical method due to van der Corput is to

write

(B24) ¥ ey Y [ anteaemi gy
a<n<b ¢!(b)=n<m<e! (a)4n ~
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2.66.

2.67.

2.68.

and to estimate the right side using refinements of parts a
and b, e.g., [Ivi85, Chapter 2], [Tit51, Chapter 4]. Then it
is possible to show that :

AC > 0 such that [{(1/2 + iy)| < C’|y|l"6

for large |y|. Bombieri and Iwaniec proved a slightly better
result using modular forms. In any case, the right side of
(E2.4) is an approximate form of the Poisson Summation
Formula, cf., Section 3.10.

Complete the details in the proof of Theorem 2.10.5.

The function s(t) = —=¢" of Section 2.101s in L®(R)N A(R) C
M(R), whereas s ¢ L'(R). Verify whether or not s is a bounded

Radon measure.

)

-

Compute the deterministic cross-correlation,

.1 T ——
Roa(t) = Jim = [ sy(t+ujsi{u)du, 74 >0,

where s, is the dilation of the function s defined in Erercise 2.65,
cf., Erample 2.10.6 for the case v = A.

Let X(R) = L*(R)N A(R) C §'(R). Note that X(R)" = X(R),
and that X(R) is a Banach space, where the norm of f € X(R)
is defined as || f||x®) = || fllze®) + ||f||Lm(ﬁ), cf., Exercise 2.47.
Prove that sinnt? and coswt? are eigenfunctions of the Fourier

o~

transform mapping F : X(R) = X(R).
a. Verify that if ¢ € R\{0} then

4

sup |CI

a<b

?

5o,
fem dtl <2+

e.g., Ezercise 2.63. The bound can be refined.
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b. Let f € AC1c([0,00)) be positive and decreasing. (Recall
that f is not necessarily- in AC{a,b] if it is decreasing on
[a,b].) Prove that if ¢ > 0 then

/Ooo f(t)evri(ct)Ze_-%rit‘r dt < %(2 + %)f(o)

Such estimates are used in the Littlewood Flatness Problem
discussed in Remark 3.8.11. '




