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The Fourier transform

Definition

The Fourier transform of f ∈ L1
m(R) is the function F defined as

F (γ) =

∫
R

f (x)e−2πixγ dx , γ ∈ R̂ = R.

Notationally, we write the pairing between f and F as:

f̂ = F .

The space of Fourier transforms of L1
m(R) functions is

A(R̂) = {F : R̂→ C : ∃ f ∈ L1
m(R) such that f̂ = F}.

OPEN PROBLEM Give an intrinsic characterization of A(R̂).



The Fourier transform inversion formula

Let f ∈ L1
m(R). The Fourier transform inversion formula is

f (x) =

∫
R̂

F (γ)e2πixγ dγ.

F̌ = f denotes this inversion.

There is a formal intuitive derivation of the Fourier transform inversion
formula using a form of the uncertainty principle. JB-HAA



Jordan pointwise inversion formula

Theorem

Let f ∈ L1
m(R). Assume that f ∈ BV ([x0 − ε, x0 + ε]), for some x0 ∈ R

and ε > 0. Then,

f (x0+) + f (x0−)

2
= lim

M→∞

∫ M

−M
f̂ (γ)e2πixγ dγ.

Example

f ∈ L1
m(R) does not imply f̂ ∈ L1

m(R̂). In fact, if

f (x) = H(x)e−2πirx ,

where r > 0 and H is the Heaviside function, i.e., H = 1[0,∞), then

f̂ (γ) =
1

2π(r + iγ)
/∈ L1

m(R̂).



Algebraic properties of Fourier transforms

Theorem

a. Let f1, f2 ∈ L1
m(R), and assume c1, c2 ∈ C. Then,

∀ γ ∈ R̂, (c1f1 + c2f2)̂ (γ) = c1 f̂1(γ) + c2 f̂2(γ).

b. Let f ∈ L1
m(R) and assume F = f̂ ∈ L1

m(R̂). Then,

∀ x ∈ R, F̂ (x) = f (−x).

c. Let f ∈ L1
m(R). Then,

∀ γ ∈ R̂, f̂ (γ) = f̂ (γ).



Translation and dilation
For a fixed γ ∈ R, we set

eγ(x) = e2πixγ .

For t ∈ R and f : R→ C, the translation operator, τt , is defined as

τt (f )(x) = f (x − t),

and, for a fixed λ ∈ R \ {0} and for a given function f : R→ C, the
dilation operator is defined by the dilation formula,

fλ(x) = λf (λx).

Example

Dilation and the Poisson function
If f (x) = e−2πr |x|, r > 0, then

f̂ (γ) =
1
r

P1/r (γ) =
1
r

1
π(1 + γ2/r2)

∈ L1
m(R̂),

where P(γ) = 1/(π(1 + γ2)) is the Poisson function.



Geometric properties of Fourier transforms

Theorem

Let f ∈ L1
m(R), and fix t ∈ R, ξ ∈ R̂, and λ ∈ R̂ \ {0}. Then,

a.
(eξf )̂ (γ) = τξ(f̂ )(γ),

b.
(τt (f ))̂ (γ) = e−t (γ)f̂ (γ),

c.
(fλ)̂ (γ) =

λ

|λ|
f̂ (
γ

λ
).

Rotations play a major role in Fourier analysis on Rd .



Formal properties of the Fourier transform

Theorem

a. f is real if and only if F (γ) = F (−γ). In this case,

F (γ) =

∫
R

f (x) cos(2πxγ) dx − i
∫

R
f (x) sin(2πxγ) dx ,

f (x) = 2 Re
∫ ∞

0
F (γ)e2πixγ dγ.

b. f is real and even if and only if F is real and even,. In this case,

F (γ) = 2
∫ ∞

0
f (x) cos(2πxγ) dx , f (x) = 2

∫ ∞
0

F (γ) cos(2πxγ) dγ.

c. f is real and odd if and only if F is odd and imaginary. In this case,

F (γ) = −2 i
∫ ∞

0
f (x) sin(2πxγ) dx , f (x) = 2i

∫ ∞
0

F (γ) sin(2πxγ) dγ.



Fourier transform of the Gaussian

Example

Let f (x) = e−πrx2
, r > 0. We could calculate f̂ by means of contour

integrals, but we choose Feller’s real approach.

(f̂ )′(γ) = −2πi
∫

R
te−πrx2

e−2πixγ dx .

Noting that
d
dx

(e−πrx2
) = −2πrx e−πrx2

,

integration by parts gives

(f̂ )′(ξ) = −2πi
∫
−1
2πr

(e−πrx2
)′e−2πixξ dx =

−2πγ
r

f̂ (γ).

Thus, f̂ is a solution of F ′(γ) = − 2πγ
r F (γ); and so

f̂ (γ) = F (γ) = Ce−πγ
2/r .



Fourier transform of the Gaussian, continued

Example

Taking γ = 0 and using the definition of the Fourier transform,
C =

∫
R e−πrx2

dx . In order to calculate C we first evaluate
a =

∫∞
0 e−u2

du.

a2 =

∫ ∞
0

e−s2
ds
∫ ∞

0
e−t2

dt =

∫ ∞
0

∫ ∞
0

e−(s2+t2) dsdt

=

∫ π/2

0

∫ ∞
0

e−r2
rdrdθ =

π

4

∫ ∞
0

e−u du =
π

4
.

Thus,
∫

R e−u2
du =

√
π. Consequently,

C =

∫
R

e−πrx2
dt =

1√
πr

∫
R

e−u2
du =

1√
r
.

Therefore, f̂ (γ) = 1√
r e−πγ

2/r .



Analytic properties of Fourier transforms

Theorem

Let f ∈ L1
m(R).

a. ∀ γ ∈ R̂, |̂f (γ)| ≤ ‖f‖1.
b. ∀ ε > 0, ∃ δ > 0 such that ∀ γ and ∀ ζ, for which |ζ| < δ, we have
|̂f (γ + ζ)− f̂ (γ)| < ε, i.e., f̂ is uniformly continuous.

Proof.

b. Note that |̂f (γ + ζ)− f̂ (γ)| ≤
∫

R |f (x)|
∣∣e−2πixζ − 1

∣∣ dx .
Let gζ(x) = |f (x)|

∣∣e−2πixζ − 1
∣∣. Since limζ→0 gζ(x) = 0 for all x ∈ R,

and since |gζ(x)| ≤ 2|f (x)|, LDC implies

lim
ζ→0

∫
R

gζ(x) dx = 0, independent of γ.

Thus,

∀ε > 0, ∃ζ0 > 0, ∀ ζ ∈ (−ζ0, ζ0) and ∀ γ ∈ R̂, |̂f (γ + ζ)− f̂ (γ)| < ε.

This is the desired uniform continuity. �



Analytic properties of Fourier transforms, continued
The following result for L1

m(R) has essentially the same proof as the
Riemann-Lebesgue lemma for L1

m(T), see ahead.

Theorem

Riemann–Lebesgue lemma. Assume f ∈ L1
m(R). Then,

lim
|γ|→∞

f̂ (γ) = 0.

Example

C0(R̂) \ A(R̂) 6= ∅. Define

F (γ) =

{
1

log(γ) , if γ > e,
γ
e , if 0 ≤ γ ≤ e,

on [0,∞) and as −F (−γ) on (−∞,0].

Also, A(R̂) is a set of first category in C0(R̂). Even more, a Baire
category argument can also be used to show the existence of
F ∈ Cc(R̂) for which F /∈ A(R̂). JB-HAA.



Analytic properties of Fourier transforms, continued

Theorem
Differentiation of Fourier transforms.
a. Assume that f (n), n ≥ 1, exists everywhere and that

f (±∞) = . . . = f (n−1)(±∞) = 0.

Then,
(f (n))̂ (γ) = (2πiγ)n f̂ (γ).

b. Assume that xnf (x) ∈ L1
m(R), for some n ≥ 1. Then,

xk f (x) ∈ L1
m(R), k = 1, . . . ,n − 1, (f̂ )′, . . . , (f̂ )(n) exist everywhere, and

∀ k = 0, . . . ,n,
(

(−2πi ·)k f (·)
)

(̂γ) = f̂ (k)(γ).

Smooth function and fast Fourier decay, and vice-versa.
Absolute continuity has spectacular and essential role. JB-HAA



Convolution and Fourier transforms
The convolution f ∗ g of f ,g ∈ L1

m(R) is

f ∗ g(x) =

∫
R

f (t)g(x − t) dt =

∫
R

f (x − t)g(t) dt .

Theorem

Let f ,g ∈ L1
m(R). Then, f ∗ g ∈ L1

m(R) and

(f ∗ g)̂ (γ) = f̂ (γ)ĝ(γ).

For the proof, f ∗ g ∈ L1
m(R) and Fubini–Tonelli give

(f ∗ g)̂ (γ) =

∫
R

∫
R

f (x − t)g(t)e−2πi(x−t)γe−2πitγ dt dx

=

∫
R

(∫
R

f (x − t)e−2πi(x−t)γ dx
)

g(t)e−2πitγ dt

=

∫
R

f̂ (γ)g(t)e−2πitγ dt = f̂ (γ)ĝ(γ).

This innocent proposition is actually a raison d’être for transform
methods, generally, and for the Fourier transform. JB-HAA



Approximate identity

Definition

An approximate identity is a family {K(λ) : λ > 0} ⊆ L1
m(R) of functions

with the properties:
i. ∀λ > 0,

∫
R K(λ)(x) dx = 1,

ii. ∃ M > 0 such that ∀ λ > 0, ‖K(λ)‖1 ≤ M,
iii. ∀ δ > 0, limλ→∞

∫
|x|≥δ |K(λ)(x)| dx = 0,

Theorem

Let K ∈ L1
m(R) have the property that

∫
R K (x) dx = 1. Then, the

family, {Kλ : Kλ(x) = λK (λx), λ > 0} ⊆ L1
m(R), of dilations of K is an

approximate identity.

Approximate identities in L1
m(R) ⊆ Mb(R) approximate δ ∈ Mb(R),

where δ(f ) = f (0). δ is the multiplicative (under convolution) unit in the
Banach algebra Mb(R). The Banach algebra L1

m(R) has no
multiplicative unit.



Examples of approximate identities

Example

a. The Fejér function W is

W (x) =
1

2π

(
sin(x/2)

x/2

)2

.

W is non-negative and
∫

R W (x) dx = 1. Thus, the Fejér kernel
{Wλ : λ > 0} ⊆ L1

m(R) is an approximate identity.
b. The Dirichlet function D is

D(x) =
sin(x)

πx
.

Although
∫

R D(t) dt = 1, we have D /∈ L1
m(R). Thus, the Dirichlet

kernel {Dλ : λ > 0} is not an approximate identity.
c. The Poisson kernel Pλ and the Gauss kernel Gλ, defined by
P(x) = 1

π(1+x2)
and G(x) = 1√

π
e−x2

, are approximate identities.



Approximate identity theorem and uniqueness

Theorem

Let f ∈ L1
m(R).

a. If {K(λ) : λ > 0} ⊆ L1
m(R) is an approximate identity, then

lim
λ→∞

‖f − f ∗ K(λ)‖1 = 0.

b. We have

lim
λ→∞

∫
R

∣∣∣∣∣f (x)−
∫ λ/2π

−λ/2π

(
1− 2π|γ|

λ

)
f̂ (γ)e2πixγ dξ

∣∣∣∣∣ dx = 0.

c. If f̂ = 0 on R̂, then f is the 0 function.

Theorem

Let f ∈ L∞m (R) be continuous on R. Then,

∀ x ∈ R, lim
λ→∞

f ∗ K(λ)(x) = f (x).



Approximate identity theorem and uniqueness, cont.

Proof.
Part c. follows from b., and b. follows from a. For a., compute

‖f − f ∗ K(λ)‖1 =

∫
R

∣∣∣∣∫
R

K(λ)(t)f (x) dt −
∫

R
K(λ)(t)f (x − t) dt

∣∣∣∣ dx

≤
∫

R
|K(λ)(t)|

(∫
R
|f (x)− f (x − t)| dx

)
dt .

Let ε > 0. ∃δ > 0 such that, for ‖K(λ)‖1 ≤ M,

∀ |t | < δ,

∫
R
|f (x)− f (x − t)| dx <

ε

M
, and so

‖f − f ∗ K(λ)‖1 ≤ 2‖f‖1

∫
|t|≥δ
|K(λ)(t)| dt +

ε

M

∫
|t|≤δ
|K(λ)(t)| dt

≤ 2‖f‖1

∫
|t|≥δ
|K(λ)(t)| dt + ε.

Definition of a.i., ε > 0 arbitrary, and lim give result. �



Inversion formula for L1
m(R) ∩ A(R)

If f ∈ L1
m(R) and f̂ ∈ L1

m(R̂), we can use the Approximate Identity
Theorem to prove the following pointwise inversion theorem. What we
explicitly mean in its statement is that if f ∈ L1

m(R) and f̂ ∈ L1
m(R̂), then

the inversion formula is true m-a.e.; and that if f is continuous then it
is true for all x ∈ R. Compare the proof in JB-HAA, pages 38–39.

Theorem

Let f ∈ L1
m(R) ∩ A(R). Then,

∀ x ∈ R, f (x) =

∫
R̂

f̂ (γ)e2πixγ dγ.

a. m-a.e. proofs such as the following lead to convergence in larger
sets, so called Lebesgue sets. JB-HAA
b. The assumptions on the approximate identity in the proof are easily
satisfied, e.g., by K(λ) = Wλ.



Proof of inversion formula for L1
m(R) ∩ A(R)

Proof.
The statement of the theorem follows from two observations. First, if
{K(λ) : λ > 0} ⊆ L1

m(R) is an approximate identity, then there exists a
subsequence {λn : n = 1, . . .} such that

lim
n→∞

f ∗ K(λn) = f m-a.e.

This fact is a consequence of the Aproximate Identity Theorem.
Second, assume that f̂ ∈ L1

m(R̂), that (K(λ))̂ ∈ L1
m(R̂), and

∀ x ∈ R, K(λ)(x) =

∫
R̂

(K(λ))̂ (γ)e2πixγ dγ.

Then,

lim
λ→∞

∥∥∥∥∫
R̂

f̂ (ξ)e2πixγ dγ − f ∗ K(λ)(x)

∥∥∥∥
∞

= 0.

�



The L2
m(R) theory of Fourier transforms

We have defined the Fourier transform of f ∈ L1
m(R). Now our goal

is to define it for f ∈ L2
m(R). Clearly, L2

m(R) 6⊆ L1
m(R), and so we cannot

use the integral formula, that defines f̂ f of f ∈ L1
m(R), since the

function under the integral sign may not be integrable.

Theorem

Plancherel theorem. ∃ unique linear bijection F : L2
m(R) −→ L2

m(R̂) :

a. ∀ f ∈ L1
m(R) ∩ L2

m(R) and ∀ γ ∈ R̂, f̂ (γ) = F(f )(γ);
b. ∀ f ∈ L2

m(R), ‖f‖2 = ‖F(f )‖2.

a. Because of the translation invariance of Lebesgue measure
(and the time-invariance required for most physical experiments), it is
natural to extend Fourier analysis to all groups, not only R. Limitations
and difficulties arise immediately even though there are invariant
measures on locally compact groups, i.e., Haar measures. For some
of these groups, the L2 theory is still state of the art!

b. Compute F(f ).

c. Compare L1 and L2 theories – remember the A(R̂) open
problem!



A lemma for the L2
m(R) theory

Lemma

Let f ∈ Cc(R). Then, f̂ ∈ L2
m(R̂) and ‖f‖2 = ‖f̂‖2.

Proof.

Let f̃ (t) = f (−t). f̂ ∈ A(R̂), since Cc(R) ⊆ L1
m(R). Define g = f ∗ f̃ . g is

continuous, g ∈ L1
m(R) ∩ L∞m (R), and g(0) = ‖f‖2

2.
Fubini and the translation invariance of Lebesgue measure imply

∀γ ∈ R̂, ĝ(γ) = |̂f (γ)|2.

Since g is continuous, we deduce that

g(0) = lim
λ→∞

∫ λ/2π

−λ/2π

(
1− 2π|γ|

λ

)
|̂f (γ)|2 dγ.

Finally, Levi–Lebesgue (LDC) allows us to assert that f̂ ∈ L2
m(R̂) and

‖f̂‖2
2 = g(0) = ‖f‖2

2.

�



Proof of the Plancherel theorem
i. We define the action of F on Cc(R) by F(f ) = f̂ . The Lemma

implies F(f ) ∈ L2
m(R̂) for f ∈ Cc(R),

ii. We prove that F(Cc(R)) ⊆ A(R̂) ∩ L2
m(R̂) is a dense subspace of

L2
m(R̂). Indeed, let g ∈ L2

m(R̂) and suppose that

∀ f ∈ Cc(R),

∫
R

f̂ (γ)g(γ) dγ = 0. (1)

If f ∈ Cc(R), then τu(f ) ∈ Cc(R), and so

∀ f ∈ Cc(R) and ∀ u ∈ R,
∫

R
f̂ (γ)g(γ)e−2πiuγ dγ = 0.

By Hölder, f̂ g ∈ L1
m(R̂), and so f̂ g = 0 m-a.e. for each f ∈ Cc(R). Also,

∀ f ∈ Cc(R) and ∀ γ ∈ R̂, e2πixγ f (x) ∈ Cc(R).

Thus, F(Cc(R)) is translation invariant, i.e.,

∀ f ∈ Cc(R) and ∀ γ ∈ R̂, τu(f̂ ) ∈ F(Cc(R)).

From this we claim that, ∀γ0 ∈ R̂, ∃f ∈ Cc(R) for which |̂f | > 0 on
some interval centered about γ0.



Proof of the Plancherel theorem, continued
To verify this claim, suppose ∃γ0 such that ∀f ∈ Cc(R) and interval

I centered at γ0, f̂ has a zero in I. ∴ f̂ (γ0) = 0 for each f ∈ Cc(R). By
the translation invariance of F(Cc(R)), τη(f̂ ) ∈ F(Cc(R)) for each
η ∈ R̂, and so

∀ f ∈ Cc(R) and ∀ η ∈ R̂, τη(f̂ )(γ0) = 0,

i.e., f̂ = 0 on R̂ for each f ∈ Cc(R). This contradicts the uniqueness
theorem, and the claim is proved.
∴ by the claim, (1) implies g = 0 m-a.e.
∴ by the Hahn-Banach theorem and since L2

m(R̂) is self-dual, we
have F(Cc(R)) = L2

m(R̂).
iii. We have shown that F is a continuous linear injection

Cc(R) −→ L2
m(R̂), when Cc(R) has the L2

m(R) norm, and so F has a
unique linear injective extension to L2

m(R). Also, F(Cc(R)) is closed
and dense in L2

m(R̂) by the Lemma and by part ii.. Thus, F is also
surjective.

a. follows since Cc(R) = L1
m(R), when equipped with L1

m(R) norm;
and b. follows from the continuity of F .



Parseval formula

Theorem

Parseval formula. Let f ,g ∈ L2
m(R). Then, the following formulas hold:∫

R
f (x)g(x) dx =

∫
R̂

f̂ (γ)ĝ(γ) dγ

and ∫
R

f (x)g(x) dx =

∫
R̂

f̂ (γ)ĝ(−γ) dγ.

Proof.
The first formula follows from the Plancherel theorem and the fact that

4f g = |f + g|2 − |f − g|2 + i |f + ig|2 − i |f − ig|2.

�



Parseval and beyond

a. Parseval was a French engineer, who gave his formula in 1799
(published in1805).
b. Weak solutions in physics, and test functions for unseen
solutions.
c. Creative formulas. From Pythagoras to defining the length of
curves by calculus to Hilbert space. JB-HAA
d. Duality formalism. Little spaces and their big dual spaces.
e. Distribution theory. To define the Fourier transform on large
spaces of objects (distributions), originally arising in applications,
in terms of their precise definition on small spaces such as
Cc(R).



Hilbert transform
a. The Hilbert transform H(f ) of f : R −→ C is the convolution,

H(f )(t) = lim
ε→0

1
π

∫
|t−x|≥ε

f (x)

t − x
dx .

The Hilbert transform opens the door to a profound area of harmonic
analysis associated with the theory, relevance, and importance of
singular integrals, e.g., the books of Stein and of Garcia-Cueva and
Rubio de Francia, cf., Neri’s SLN for a magnificent introduction.

b.H ∈ L(L2
m(R)), H is unitary on L2

m(R),H◦H = −Id on L2
m(R), and

H = F−1σ(H)F ,whereσ(H)(γ) = −i sgn (γ).

c. Let f : R −→ C satisfy supp (f ) ⊆ [0,∞), and define the unilateral
Laplace transform of f as L(f )(t) =

∫∞
0 f (x)e−tx dx . A formal

calculation, which is valid under mild hypotheses, shows that

∀ t > 0, L(L(f ))(t) = −πH(f )(−t).

d. See JB-HAA, Problem 2.57, for a role of H in signal processing,
in particular, wavelet auditory modeling, as related to the
Paley-Wiener logarithmic integral theorem.



Fourier series

Definition

a. Let F ∈ L1
loc(R̂) be 2Ω-periodic. The Fourier series of F is

S(F )(γ) =
∑
n∈Z

f [n]e−2πinγ/(2Ω),

with Fourier coefficients

∀n ∈ Z, f [n] =
1

2Ω

∫ Ω

−Ω

F (γ)e2πinγ/(2Ω) dγ.

b. If f ∈ `1(Z), then the Fourier series of F is well-defined, and F
is the Fourier transform of f .

GOAL Find conditions on F so that S(F ) = F . In fact, if
S(F ) = F , then the integral formula for f can be formally verified.

JB-HAA, Section 3.2, for the history of Fourier series.



Notation
If Ω > 0 and F ∈ L1

loc(R̂) is 2Ω-periodic, we write F ∈ L1(T2Ω),

where T2Ω = R̂/(2ΩZ). The L1-norm of F ∈ L1(T2Ω) is

‖F‖L1(T2Ω) =
1

2Ω

∫ Ω

−Ω

|F (γ)| dγ.

If F is a 2Ω-periodic, Lebesgue measurable function, and
F 2 ∈ L1(T2Ω), we write F ∈ L2(T2Ω). The L2-norm of F ∈ L2(T2Ω) is

‖F‖L2(T2Ω) =

(
1

2Ω

∫ Ω

−Ω

|F (γ)|2 dγ

)1/2

.

L2(T2Ω) ⊆ L1(T2Ω), and ‖F‖L1(T2Ω) ≤ ‖F‖L2(T2Ω),F ∈ L2(T2Ω).

Definition

The Fourier transform of F ∈ L1(T2Ω) is f = {f [n] : n ∈ Z}, where

∀ n ∈ Z, f [n] =
1

2Ω

∫ Ω

−Ω

F (γ)e−2πinγ/(2Ω) dγ.



The great books (that I know)

•Werner W. Rogosinski, Fourier Series (Ger.), 1930.
• Norbert Wiener, The Fourier Integral and Certain of its Applications,
1933.
• Raymond E. A. C. Paley and Norbert Wiener, Fourier Transforms in
the Complex Domain, 1934.
• Antoni Zygmund, Trigonometric Series, 1935, 1959 (2 volumes).
• E. C. Titchmarsh, Theory Fourier Integrals, 1937 (2nd ed. 1948).
• Solomon Bochner and K. Chandrasekharan, Fourier
Transforms,1949.
• G. H. Hardy and Werner W. Rogosinski, Fourier Series, 1956.
• Nina Bari, A Treatise on Trigonometric Series, 1961 (2 volumes).
•Walter Rudin, Fourier Analysis on Groups, 1962.
• Jean-Pierre Kahane and Raphaël Salem, Perfect Sets and
Trigonometric Series (Fr.),1963.
• Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis,
Volumes 1 (1963) and 2 (1970).



The great books (that I know), continued

• Torsten Carleman, L’Intégrale de Fourier,1967.
• Robert E. Edwards, Fourier Series, 1967 (2 volumes)..
• Yitzhak Katznelson, Harmonic Analysis, 1968.
•William F. Donoghue, Distributions and Fourier Transforms, 1969.
• Jean-Pierre Kahane, Absolutely Convergent Fourier Series, 1970.
• Elias M. Stein and Guido Weiss, Fourier Analysis on Rd , 1971.
• Harry Dym and Henry P. McKean, Fourier Series and Integrals,
Volumes 1 (1972) and 2 (1976).
• Henry Helson, Harmonic Analysis, 1983.
• Thomas W. Körner, Fourier Analysis, 1988.
•Wavelet and Time-Frequency Analysis literature initiated by Yves
Meyer, Ingrid Daubechies, Stéphane Mallat, Hans Feichtinger,
Karlheinz Gröchenig., late 1980s until the present.
• Hugh L. Montgomery, Early Fourier Analysis, 2014.



Riemann-Lebesgue lemma

Theorem

If F ∈ L1(T2Ω), then lim|n|→∞ f [n] = 0, where f = {f [n]} is the
sequence of Fourier coefficients of F , i.e., f̂ = F .

Proof.

a. Assume F ∈ C1(T2Ω). ∴ G = F ′ ∈ L1(T2Ω),
∫ Ω

−Ω
G = 0, and

∀γ ∈ [−Ω,Ω], F (γ) =

∫ γ

−Ω

G + F (−Ω).

Definition of f [n] and integration by parts gives

∀n 6= 0, |f [n]| ≤ Ω

π |n|
‖G‖L1(T2Ω).

b. C1 approximations to F ∈ L1(T2Ω), e.g., using an a.i., plus a lim
argument does it! �



Dirichlet theorem

We shall use the Riemann–Lebesgue lemma to verify Johann Peter
Gustav Lejeune Dirichlet’s (1805–1859) fundamental theorem, which
provides sufficient conditions on a function F ∈ L1(T2Ω) so that
S(F )(γ0) = F (γ0) for a given γ0. The following ingenious proof is due
to Paul R. Chernoff. The Dirichlet theorem for Fourier series naturally
preceded the analogous inversion theorem for Fourier transforms, as
formulated and proved by Jordan for R, and stated above.

Theorem

If F ∈ L1(T2Ω) and F is differentiable at γ0, then S(F )(γ0) = F (γ0) in
the sense that

lim
M,N→∞

N∑
n=−M

cne−2πinγ0/(2Ω) = F (γ0),

where c = {cn : n ∈ Z} is the sequence of Fourier coefficients of F .



Proof of Dirichlet theorem

i. Without loss of generality, assume γ0 = 0 and F (γ0) = 0. In fact, if
F (γ0) 6= 0, then consider the function F − F (γ0) instead of F , which is
also an element of L1(T2Ω), and then translate this function to the
origin.
ii. Since F (0) = 0 and F ′(0) exists, we can verify that

G(γ) =
F (γ)

e−2πiγ/(2Ω) − 1

is bounded in some interval centered at the origin. To see this note
that

G(γ) =
F (γ)

γ

1∑∞
j=1(−2πi/(2Ω))j (1/j!)γ j ,

and, hence, G(γ) is close to −ΩF ′(0)/(πi) in a neighborhood of the
origin.



Proof of Dirichlet theorem, continued

The boundedness near the origin, coupled with integrability of F on
T2Ω, yields the integrability of G on T2Ω. Therefore, since
F (γ) = G(γ)(e−2πiγ/(2Ω) − 1), we compute cn = dn+1 − dn, where
d = {dn : n ∈ Z} is the sequence of Fourier coefficients of G. Thus,
the partial sum

∑N
n=−M cne−2πinγ0/(2Ω) is the telescoping series

N∑
n=−M

(dn+1 − dn) = dN+1 − d−M .

Consequently, we can apply the Riemann–Lebesgue lemma to the
sequence of Fourier coefficients of G to obtain

lim
M,N→∞

N∑
n=−M

cne−πinγ/Ω = 0.



Bounded variation

•With regard to Dirichlet’s theorem, one can assert that if
F ∈ BVloc(R), F is 2Ω-periodic, and F is continuous on a closed
subinterval I ⊆ T2Ω, then

N∑
n=−N

F̂ [n]e−2πinx/(2Ω)

converges uniformly to F on I.
• If f ∈ BV (R), then f ∈ L1

loc(R) and f ′ ∈ Mb(R) distributionally, and
every µ ∈ Mb(R) can be written this way. This is the Riesz
representation theorem!
• BV in Rd is really exciting, e.g., JB-WC’s Integration and Modern
Analysis, Chapter 8 for starters.



Up, up, and away

1. Poisson summation and classical sampling, periodization,
computation of Fourier transforms using the DFT, the FFT, and
DFT frames.
2. Haar measure on LCGs and harmonic analysis on LCAGs G.
3. Uncertainty principle theory
4. Fourier analysis of Mb(G), Herglotz-Bochner theorem, Levy
continuity theorem, Cohen idempotent theorem, homomorphism
theory Ideal structure of Banach algebras including L1(G) and
Mb(G).

5. Distribution theory and Wiener’s Generalized Harmonic
Analysis.
6. Radial and geometric Fourier analysis.
7. Wavelet theory.
8. Applied and number theoretic harmonic analysis.
9. · · · ∞.



The Poisson summation formula

Theorem
a. Formally, we have

T
∑
n∈Z

f (t + nT ) =
∑
n∈Z

f̂ (n/T )e2πint/T .

b. Let T > 0. Then T
∑

n∈Z δnT ∈ S ′(R) ∩M(R), and

(T
∑
n∈Z

δnT )∧ =
∑
n∈Z

δn/T

distributionally.

• ∃f ∈ L1(R), such that f icontinuous on R, f (n) = 0 all n ∈ Z, f̂ (n) = 0
for every n 6= 0, and f̂ (0) = 1, (Katznelson) - fantastic.
• a requires hypotheses, e.g., f ∈ S(R) suffices. b follows from a, see
JB-HAA, Section 3.10. See JFAA 3 (1997), 505-523 for intricacies.



The classical sampling theorem
• The Paley-Wiener space:

PWΩ =
{

f ∈ L2(R) : suppf̂ ⊆ [Ω,Ω]
}
.

• The PSF is equivalent to the classical sampling theorem.
• The classical sampling theorem goes back to Cauchy (1840s).

Theorem
Let T ,Ω > 0 satisfy the condition that 0 < 2T Ω ≤ 1, and let s be an
element of the Paley-Wiener space PW1/(2T ) satisfying the conditions
that ŝ ≡ S = 1 on [−Ω,Ω] and S ∈ L∞(R̂). Then

∀f ∈ PWΩ, f = T
∑
n∈Z

f (nT )τnT s,

where the convergence is in the L2(R) norm and uniformly in R. One
possible sampling function s is

s(t) =
sin(2πΩt)

πt
.



Wavelets and sampling functions

• Let 2T Ω = 1 and sΩ(t) = d2πΩ(t) = sin(2πΩt)/πt . Recall that the
inverse Fourier transform of 1[−Ω,Ω] is sΩ.
• Set ϕ(t) = sΩ(t)/

√
2Ω, and let V0 = span{τnT ϕ}. Defining spaces

such as V0 leads to the fundamental idea of a multi-resolution
analysis MRA in wavelet theory. Let

ψ(t) = (1/
√

2Ω) (s2Ω(t)− sΩ(t)).

ψ is the Shannon wavelet or Littlewood-Paley wavelet.
• Let

ψm,n(t) = 2m/2 ψ(2mt − n).

Then ψm,n is a dyadic wavelet ONB for L2(R).
• The classical sampling theorem had a significant impact on various
topics in mathematics, including number theory and interpolation
theory, long before Shannon’s application of it in communications.
• Today we are in the sampling age.



Potpourri and titillation for PSF and sampling

1. The formula,
1
T

∑
n∈Z

δn/T (γ) =
∑
n∈Z

e−2πinTγ ,

is false, meaningful, and a beautiful source of exercises.
2. Classical sampling theorem and relations to locally compact

Abelian groups.
3. Euler-MacLaurin formula: T

∑∞
0 f (nT ) =

∫∞
0 f (t)dt + error.

4. Jacobi formula: θ(t) =
∑

e−πn2t .
5. ∀t > 0, θ(t) = 1√

t
θ
( 1

t

)
, leading to basic analytic continuation

formulas in analytic number theory.
6. Diffusion equations.
7. Statistical mechanics.
8. Automorphic forms and elliptic functions.
9. Deligne’s proof of the Ramanujan conjecture.

10. The Selberg trace formula can be considered to be a version of
the PSF in a number theoretic, non-abelian setting.



The discrete Fourier transform (DFT)

Given Z/NZ. The discrete Fourier transform DFT of f : Z/NZ→ C as
F : Z/NZ→ C, where

∀n ∈ Z/NZ, F [n] =
∑

m∈Z/NZ

f [m]e−2πimn/N .

The Fourier inversion theorem and formula for the DFT is elementary:

Theorem

Given f : Z/nZ→ C with DFT F . Then,

∀m ∈ Z/nZ f [m] =
1
N

∑
n∈Z/NZ

F [n] e2πimn/N .

Proof.
Substitute the definition of the DFT into the right side of the claim,
and use the fact that

∑N−1
n=0 e2πin/N = 0. �



Computation of Fourier transforms

Theorem
Let T ,Ω > 0 satisfy the property that 2T Ω = 1, let N ≥ 2 be an even
integer, and let f ∈ PWΩ ∩ L1(R). (In particular, f can be considered
as a continuous function on R.) Consider the dilation fT (t) = Tf (Tf )
as a continuous function on R, as well as a function on Z defined by
m 7→ fT [m], where fT [m] ≡ fT (m). Assume that fT ∈ `1(Z).
Set WN ≡ e−2πi/N . Then,

∀n ∈ [−N/2,N/2], f̂
(

2Ωn
N

)
= f̂

( n
NT

)
=

N−1∑
m=0

(fT )0
N [m] W mn

N ,

where
(fT )0

N [m] ≡ T
∑
k∈Z

f ((m + kN) T ) .

• The FT in terms of the DFT with error manageable coefficients!



The proof of the computation of FTs theorem

By the Classical Sampling Theorem, we have

f = T
∑

f (kT ) τkT d2πΩ

in L2(R) and uniformly on R. By the continuity of the Fourier transform
mapping,

L2(R) −→ L2(R̂),

we have

f̂ = T
∑

k

(f (kT ) τkT d2πΩ)∧(γ) = T
∑

k

(f (kT ) e−2πi(kT )γ 1[Ω,Ω](γ)

in L2(R̂). However, f̂ is continuous on R and the right side converges
absolutely to a continuous function since fT ∈ `1(Z). Therefore, the
equation is valid for every γ ∈ R̂.



The proof of the computation of FTs theorem, cont.
Letting γ = 2Ωn/N and using the fact that 2T Ω = 1, we obtain

f̂
(

2Ωn
N

)
= T

∑
k

f (kT ) e−2πikn/N 1[Ω,Ω]

(
2Ωn
N

)
.

If |n| ≤ N/2, then this equation gives 1[Ω,Ω](2Ωn/N) = 1, and so

∀ |n| ≤ N
2
, f̂

(
2Ωn
N

)
=
∑

k

T f (kT ) e−2πikn/N .

By the absolute convergence, we rearrange summation. Thus,

∀ |n| ≤ N
2
, f̂

(
2Ωn
N

)
=
∑

k

N−1∑
m=0

T f ((kN + m)T ) e−2πi(kN+m)n/N

=
N−1∑
m=0

∑
k

T f ((kN + m)T ) e−2πikNn/N e−2πimn/N

=
N−1∑
m=0

(fT )0
N [m] e−2πimn/N .



Comments on the L1(T2Ω) theory of Fourier series

• A(T2Ω) and A(Z) are as complicated as A(R̂).
•A(T2Ω) ⊆ C(T2Ω) ⊆ L∞(T2Ω) ⊆ L2(T2Ω) ⊆ L1(T2Ω).
• `2(Z) ⊆ A(Z).
• R-L implies: if F ∈ L1(T2Ω), then limn→±∞ f [n] = 0.
• If T (γ) =

∑
cn e−2πinγ/2Ω and cn → 0, it is not necessarily true that

T is the Fourier series of F ∈ L1(T2Ω). (Riemann sets of uniqueness,
Menshov and strict multiplicity, continuous pseudo measures.) Set

T (γ) =
∞∑

n=3

sin(πnx/Ω)

log(n)
.

•
∞∑

n=2

sin(πnx/Ω)

n log(n)

converges uniformly on R̂ to F ∈ C(T2Ω) \ A(T2Ω).



Convergence of Fourier series

• If F ∈ L1(T2Ω) and SN(F )(γ) =
∑N

n=−N f [n]e−2πinγ/(2Ω), does

lim
N→∞

‖SN(F )− F‖L1(T2Ω) = 0? NO.

• {Fn : n = 1, . . .} ⊆ L1(T2Ω) converges to F ∈ L1(T2Ω) weakly, i.e.,

∀ G ∈ L∞(T2Ω), lim
n→∞

1
2Ω

∫ Ω

−Ω

(Fn(γ)− F (γ))G(γ) dγ = 0,

if and only if

lim
n→∞

∫
A

(Fn(γ)− F (γ)) dγ = 0

for every Lebesgue measurable set A ⊆ T2Ω.
• If weak convergence, then norm convergence (first bullet) is true for
SN(F ) = Fn if {Fn : n ∈ N} converges to F in measure.
• Dieudonné-Grothendieck for open A and measures.



L2(T2Ω) convergence and the Parseval formula

Theorem

If F ∈ L2(T2Ω), then

lim
N→∞

‖f − SN(f )‖L2(T2Ω) = 0.

Using this theorem we can prove

Theorem

Let F ,G ∈ L2(T2Ω) with sequences c = {cn : n ∈ Z}, d = {dn : n ∈ Z}
of Fourier coefficients of F and G. Then, c,d ∈ `2(Z) and

1
2Ω

∫ Ω

Ω

F (γ)G(γ) dγ =
∑
n∈Z

cndn;

and, in particular,

1
2Ω

∫ Ω

Ω

|F (γ)|2 dγ =
∑
n∈Z

|cn|2.



The Lusin conjecture and Carleson’s theorem



Haar measure

• An additive group G with a locally compact Hausdorff topology is a
locally compact group if G ×G→ G, (x , y) 7→ x − y , is continuous.
• For significant, classical treatises on locally compact groups, that
were begun in the 1930s, see the works of Lev Semenovich
Pontryagin (1908 - 1988) and André Weil (1906 - 1998).

Theorem
If G is a locally compact group, then there is a Borel measure mG on
G such that

∀ B ∈ B(G) and ∀ x ∈ G, mG(B) = mG(B + x),

where B + x = {y + x : y ∈ B}. In this case mG is a right Haar
measure on G; and, when B + x is replaced by x + B, then mG is a
left Haar measure on G. (Translation invariant like Lebesgue on R.)

• If every right Haar measure is a left Haar measure on a locally
compact group G, and vice-versa, then G is unimodular. Compact
and LCAGs are unimodular.



Markov–Kakutani fixed point theorem

We prove the existence of a Haar measure on G compact and
Abelian using the Markov–Kakutani fixed point theorem by
Varopoulos, see JB-WC IMA.

Theorem
Let X be a Hausdorff topological vector space, take a compact and
convex set K ⊆ X , and let {Tα} be a family of continuous linear maps
Tα : X → X , that satisfies

∀ α, Tα(K ) ⊆ K

and
∀ α, β Tα ◦ Tβ = Tβ ◦ Tα.

Then, there is k ∈ K such that

∀ α, Tα(k) = k .



Proof of the existence of Haar measure

Proof.

Let M1(G) = {µ ∈ Mb(G) : ‖µ‖1 ≤ 1}. By the Banach–Alaoglu
theorem, M1(G) is weak * compact in Mb(G).

Let M+
1 (G) = {µ ∈ M1(G) : µ(1) = 1}.

Note that µ is positive if µ ∈ M+
1 (G); to prove this we assume the

opposite and obtain a contradiction using the fact that ‖µ‖1 = µ(1).
If Mb(G) is taken with the weak * topology, then the map

Mb(G)→ C, µ 7→ µ(1), is continuous. Hence, {µ ∈ Mb(G) : µ(1) = 1}
is weak * closed. Thus, M+

1 (G) is weak * compact. It is easy to check
that M+

1 (G) is convex.
For x ∈ G and µ ∈ Mb(G) we define the translation τx (µ) as

τx (µ)(f ) =

∫
f (y − x) dµ(y),

where f ∈ C(G). �



Proof of the existence of Haar measure, cont.

Proof.

Then, for each x ∈ G we define the map Tx : Mb(G)→ Mb(G),
µ 7→ τx (µ). Note that Tx is continuous with the weak * topology on
both domain and range, linear, and

∀ x , y ∈ G, Tx ◦ Ty = Tx+y = Ty ◦ Tx ,

since G is Abelian.
It is also elementary to check that, for each x ∈ G,

Tx (M+
1 (G)) ⊆ M+

1 (G).

Therefore, by Markov–Kakutani, there is mG ∈ M+
1 (G) such that

τx (mG) = mG, for all x ∈ G, the required translation invariance.
Further, ‖mG‖1 = 1, mG(1) = 1, and mG is positive. �



History of Haar measure

• The question of existence of Haar measures goes back to Sophus
Lie (1842-1899). Alfred Haar (1885-1933), of wavelet fame!, proved
the existence of translation invariant measures on separable compact
groups. As a matter of fact, Haar credits Adolf Hurwitz (1859-1919)
for a remark, which is essential for proving the existence of a Haar
measure on a Lie group. Existence of a Haar measure on a general
locally compact group was first proved by Weil and, later the same
year, by Henri Cartan.
• Besides the existence, it is natural to ask about the uniqueness of
Haar measure on locally compact groups. This question was first
answered by von Neumann (1903-1957) for compact groups, who
later extended his own result to second countable locally compact
groups (employing a different technique). Here we prove the
uniqueness of Haar measure in the simple context of a LCAG. We
follow the proof in Rudin’s Fourier Analysis on Groups book, see also
the books of Bourbaki, Loomis, Nachbin, Sally, and Weil. For a short
proof in the non-Abelian case, which uses a notion of an approximate
identity, we refer to Johnson (1976).



Uniqueness of Haar measure

Theorem

Let G be a LCAG. Let m1
G and m2

G be two Haar measures on G.
Then, there exists C > 0 such that m1

G = Cm2
G.

Proof.

Let g1 ∈ C+
c (G) be chosen so that

∫
G g1 dm1

G = 1, and let
C =

∫
G g1(−x) dm2

G(x). Then, for all g2 ∈ C+
c (G), we have∫

G
g2 dm2

G =

∫
G

g1(x1) dm1
G(x1)

∫
G

g2(x2) dm2
G(x2)

=

∫
G

(∫
G

g2(x2) dm2
G(x2)

)
g1(x1) dm1

G(x1)

=

∫
G

(∫
G

g2(x1 + x2) dm2
G(x2)

)
g1(x1) dm1

G(x1)

=

∫
G

∫
G

g1(x1)g2(x1 + x2) dm2
G(x2) dm1

G(x1)

�



Proof of uniqueness, continued

Proof.
This equals

=

∫
G

∫
G

g1(x1)g2(x1 + x2) dm1
G(x1) dm2

G(x2)

=

∫
G

∫
G

g1(y1 − y2)g2(y1) dm1
G(y1) dm2

G(y2)

=

∫
G

∫
G

g1(y1 − y2)g2(y1) dm2
G(y2) dm1

G(y1)

=

∫
G

(∫
G

g1(y1 − y2) dm2
G(y2)

)
g2(y1) dm1

G(y1)

=

(∫
G

g1(−y2) dm2
G(y2)

)∫
G

g2(y1) dm1
G(y1) = C

∫
G

g2 dm1
G.

�


