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Frames

Let H be a separable Hilbert space, e.g., H = L2(Rd ), Rd , or Cd .
F = {xn} ⊆ H is a frame for H if

∃A,B > 0 such that ∀ x ∈ H, A‖x‖2 ≤
∑
|〈x , xn〉|2 ≤ B‖x‖2.

Theorem

If F = {xn} ⊆ H is a frame for H then

∀x ∈ H, x =
∑
〈x ,S−1xn〉xn =

∑
〈x , xn〉S−1xn,

where S : H → H, x 7→
∑
〈x , xn〉xn is well-defined.

Frames are a natural tool for dealing with numerical stability,
overcompleteness, noise reduction, and robust representation
problems.
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THE NARROW BAND AMBIGUITY FUNCTION



Ambiguity function and STFT

Woodward’s (1953) narrow band cross-correlation ambiguity
function of v ,w defined on Rd :

A(v ,w)(t , γ) =

∫
v(s + t)w(s)e−2πis·γds.

The STFT of v : Vw v(t , γ) =
∫

v(x)w(x − t)e−2πix·γdx .
A(v ,w)(t , γ) = e2πit·γVw v(t , γ).

The narrow band ambiguity function A(v) of v :

A(v)(t , γ) = A(v , v)(t , γ) =

∫
v(s + t)v(s)e−2πis·γds



The discrete periodic ambiguity function

Given u : Z/NZ→ C.
The discrete periodic ambiguity function,

A(u) : Z/NZ× Z/NZ −→ C,

of u is

A(u)(m,n) =
1
N

N−1∑
k=0

u[m + k ]u[k ]e−2πikn/N .



CAZAC sequences

u : Z/NZ −→ C is
Constant Amplitude Zero Autocorrelation (CAZAC) if

∀m ∈ Z/NZ, |u[m]| = 1, (CA)
and

∀m ∈ Z/NZ \ {0}, A(u)(m,0) = 0. (ZAC)

Are there only finitely many non-equivalent CAZAC sequences?
”Yes” for N prime and ”No” for N = MK 2,
Generally unknown for N square free and not prime.



Björck CAZAC sequences

Let p be a prime number, and ( k
p ) the Legendre symbol.

A Björck CAZAC sequence of length p is the function bp : Z/pZ→ C
defined as

bp[k ] = eiθp(k), k = 0,1, . . . ,p − 1,

where, for p = 1 (mod 4),

θp(k) = arccos
(

1
1 +
√

p

)(
k
p

)
,

and, for p = 3 (mod 4),

θp(k) =
1
2

arccos
(

1− p
1 + p

)
[(1− δk )

(
k
p

)
+ δk ].

δk is the Kronecker delta symbol.



Absolute value of Bjorck code of length 17



Absolute value of Bjorck code of length 53



Absolute value of Bjorck code of length 101



Absolute value of Bjorck code of length 503



Absolute value of Bjorck code of length 701





Björck CAZAC discrete periodic ambiguity function

Let A(bp) be the Björck CAZAC discrete periodic ambiguity function
defined on Z/pZ× Z/pZ.

Theorem (J. and R. Benedetto and J. Woodworth)

|A(bp)(m,n)| ≤ 2
√

p
+

4
p

for all (m,n) ∈ Z/pZ× Z/pZ \ (0,0).

The proof is at the level of Weil’s proof of the Riemann hypothesis
for finite fields and depends on Weil’s exponential sum bound.
Elementary construction/coding and intricate
combinatorial/geometrical patterns.



Gabor matrices



Optimal Compressive Sensing Technique, Theme, and Method

Technique - Best Bounds: Use the number theoretic Riemann
hypothesis for finite fields on special CAZAC (Constant
Amplitude Zero Auto-Correlation) sequences.
Theme: Incoherence extends time-frequency duality to exploit
sparsity within uncertainty principle bounds.
The Method, which is computationally efficient, follows.



Method: Sparsity and the Role of Best Bounds Theorem

Sparsity is the key for transformation-based image compression, e.g.,
JPEG 2000.

Sparsity improves speed of execution, e.g., fast MRI data
acquisition by non-uniform sampling.
Sparsity reduces time of transmission and storage requirements.
Sparsity yields efficient endmember or anomaly detection,
without reconstruction expense, with fewer measurements.
Sparsity allows for the reduction of resources needed in sensing.

Best bounds theorem⇒ maximal incoherence⇒ optimal hypothesis
for OMP and BP.



Method: Matrix Equations and Coherence
Given F , an m × n full rank matrix, n > m.

F = [e1|e2| . . . |en], where ek = (ek (1), . . . , ek (m))> and ‖ek‖2 = 1.

{ek : k = 1, . . . , n} ⊆ Cm is a FUNTF for Cm.

For x ∈ Cn, set ‖x‖0 = card{j : x(j) 6= 0}, x = (x(1), . . . , x(n)).

Given b ∈ Cm. Solve the sparsity optimization problem:

(P0) min
x
‖x‖0 subject to Fx = b.

The coherence µ(F ) of F is

µ(F ) = max
k 6=l
|〈ek , el〉|.

Theorem

Assume Fx = b and ‖x‖0 < (1 + µ(F )−1)/2.

(a) Uniqueness and sparsity. If Fy = b and y 6= x , then ‖x‖0 < ‖y‖0.

(b) Greedy algorithms. An orthogonal matching pursuit (OMP) run with
threshold parameter ε = 0 finds x exactly.



Method: Finite Weyl-Heisenberg (Gabor) Frames and Matrices

Given g : Z/NZ→ C. Let τjg(l) = g(l − j) and ek (l) = e2πikl/N ,
l = 0, 1, . . . ,N − 1. The N × N2 Gabor Matrix G for g is

G = [G0|G1| . . . |GN−1], Gj N × N,

Gj = [e0τj−Ng|e1τj−Ng| . . . |eN−1τj−Ng],

(g)j
k = ekτj−Ng = (ek (0)τj−Ng(0), . . . , ek (l)τj−Ng(l), . . . , ek (N−1)τj−Ng(N−1))>.

{(g)j
k} is a tight frame for CN .

g CA⇒ µ(G) = max{|A(g)(m, n)| : (m, n) 6= (0, 0)}.
g = µp, Björck, p = N ⇒ µ(G) ≤ 5/

√
p.

g = µp, Björck, b ∈ CN , Gx = b, and ‖x‖0 < (1 + µ(G)−1)/2⇒ x is
sparsest solution of Gx = b and OMP constructs x .



(a) (b)

Figure : Absolute value of the ambiguity functions of the Alltop and Björck
sequences with N = 17.



Problems and remarks

For given CAZACs up of prime length p, estimate minimal local
behavior |A(up)|. For example, with bp we know that the lower
bounds of |A(bp)| can be much smaller than 1/

√
p, making them

more useful in a host of mathematical problems, cf. Welch
bound.
Even more, construct all CAZACs of prime length p.
Optimally small coherence of bp allows for computing sparse
solutions of Gabor matrix equations by greedy algorithms such
as OMP.
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AMBIGUITY FUNCTIONS FOR VECT0R-VALUED DATA
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FUNTF

A set F = {ej}j∈J ⊆ Fd is a frame for Fd , F = R or C, if

∃ A,B > 0 such that ∀ x ∈ Fd , A‖x‖2 ≤
∑
j∈J

|〈x ,ej〉|2 ≤ B‖x‖2.

F tight if A = B. A finite unit-norm tight frame F is a FUNTF.
N row vectors from any fixed N × d submatrix of the N × N DFT
matrix, 1√

d
(e2πimn/N), is a FUNTF for Cd .

If F is a FUNTF for Fd , then

∀x ∈ Fd , x =
d
N

N∑
j=1

〈x ,ej〉ej .

Frames: redundant representation, compensate for hardware
errors, inexpensive, numerical stability, minimize effects of noise.



DFT FUNTFs

Let N ≥ d and form an N × d matrix using any d columns of the
N × N DFT matrix (e2πijk/N)N−1

j,k=0. The rows of this N × d matrix, up to

multiplication by
1√
d
, form a FUNTF for Cd .

John J. Benedetto and Jeffrey J. Donatelli Frames and a vector-valued ambiguity function



DFT Frames

Definition

Let N ≥ d and let s : Z/dZ→ Z/NZ be injective. The rows {Em}N−1
m=0

of the N × d matrix (
e2πims(n)/N

)
m,n

form an equal-norm tight frame for Cd which we call a DFT frame.



Vector-valued DFT

Definition

Let {Ek}N−1
k=0 be a DFT frame for Cd . Given u : Z/NZ→ Cd , we define

the vector-valued discrete Fourier transform of u by

∀ n ∈ ZN , F (u)(n) = û(n) =
N−1∑
m=0

u(m) ∗ E−mn,

where ∗ is pointwise (coordinatewise) multiplication. We have that

F : `2(Z/NZ× Z/dZ)→ `2(Z/NZ× Z/dZ)

is a linear operator.



Vector-valued Fourier inversion

Theorem (Andrews, Benedetto, Donatelli)

The vector valued Fourier transform is invertible if and only if s, the
function defining the DFT frame, has the property that

∀n ∈ Z/dZ, (s(n),N) = 1.

The inverse is given by

∀ m ∈ Z/NZ, u(m) = F−1û(m) =
1
N

N−1∑
n=0

û(n) ∗ Emn.

In this case we also have that F ∗F = FF ∗ = NI where I is the identity
operator.



Modeling for multi-sensor environments

Multi-sensor environments and vector sensor and MIMO
capabilities and modeling.
Vector-valued DFTs
Discrete time data vector u(k) for a d-element array,

k 7−→ u(k) = (u0(k), . . . ,ud−1(k)) ∈ Cd .

We can have RN → GL(d ,C), or even more general.



Preliminary multiplication problem

Given u : Z/NZ −→ Cd .
If d = 1 and en = e2πin/N , then

A(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k)enk 〉.

Preliminary multiplication problem

To characterize sequences {ϕk} ⊆ Cd and compatible multiplications
∗ and • so that

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉 ∈ C

is a meaningful and well-defined ambiguity function. This formula is
clearly motivated by the STFT.



A1(u) for DFT frames

Given u : Z/NZ −→ Cd ,d ≤ N.
Let {ϕk}N−1

k=0 be a DFT frame for Cd , let ∗ be componentwise
multiplication in Cd with a factor of

√
d , and let • = + in Z/NZ.

In this case A1(u) is well-defined by

A1(u)(m,n) =
1
N

N−1∑
k=0

〈u(m + k),u(k) ∗ ϕn•k 〉

=
d

N2

N−1∑
k=0

N−1∑
j=0

〈ϕj ,u(k)〉〈u(m + k), ϕj+nk 〉.



A1(u) for cross product frames

Take ∗ : C3 ×C3 −→ C3 to be the cross product on C3 and let {i , j , k} be
the standard basis.

i ∗ j = k , j ∗ i = −k , k ∗ i = j , i ∗ k = −j , j ∗ k = i , k ∗ j = −i ,
i ∗ i = j ∗ j = k ∗ k = 0. {0, i , j , k ,−i ,−j ,−k , } is a tight frame for C3 with
frame constant 2. Let

ϕ0 = 0, ϕ1 = i , ϕ2 = j , ϕ3 = k , ϕ4 = −i , ϕ5 = −j , ϕ6 = −k .

The index operation corresponding to the frame multiplication is the
non-abelian operation • : Z7 × Z7 −→ Z7, where
1 • 2 = 3, 2 • 1 = 6, 3 • 1 = 2, 1 • 3 = 5, 2 • 3 = 1, 3 • 2 = 4, etc.

We can write the cross product as

u × v = u ∗ v =
1
22

6∑
s=1

6∑
t=1

〈u, ϕs〉〈v , ϕt〉ϕs•t .

Consequently, A1(u) is well-defined.

Generalize to quaternion groups, order 8 and beyond.



Frame multiplication

Definition (Frame multiplication)

Let H be a finite dimensional Hilbert space over C, and let
Φ = {ϕj}j∈J be a frame for H. Assume • : J × J → J is a binary
operation. The mapping • is a frame multiplication for Φ if it extends
to a bilinear product ∗ on all of H.

The mapping • is a frame multiplication for Φ if and only if there
exists a bilinear product ∗ : H×H → H such that

∀j , k ∈ J, ϕj ∗ ϕk = ϕj•k .

There are frames with no frame multiplications.



Harmonic frames

Slepian (1968) - group codes.
Forney (1991) - geometrically uniform signal space codes.
Bölcskei and Eldar (2003) - geometrically uniform frames.
Han and Larson (2000) - frame bases and group representations.
Zimmermann (1999), Pfander (1999), Casazza and Kovacević
(2003), Strohmer and Heath (2003), Vale and Waldron (2005),
Hirn (2010), Chien and Waldron (2011) - harmonic frames.
Han (2007), Vale and Waldron (2010) - group frames, symmetry
groups.



Harmonic frames

(G, •) = {g1, . . . ,gN} abelian group with Ĝ = {γ1, . . . , γN}.
N × N matrix with (j , k) entry γk (gj ) is character table of G.
K ⊆ {1, . . . ,N}, |K | = d ≤ N, and columns k1, . . . , kd .

Definition

Given U ∈ U(Cd ). The harmonic frame Φ = ΦG,K ,U for Cd is

Φ = {U
(
(γk1 (gj ), . . . , γkd (gj ))

)
: j = 1, . . . ,N}.

Given G,K , and U = I. Φ is the DFT − FUNTF on G for Cd . Take
G = Z/NZ for usual DFT − FUNTF for Cd .



Group frames

Definition

Let (G, •) be a finite group, and let H be a finite dimensional Hilbert
space. A finite tight frame Φ = {ϕg}g∈G for H is a group frame if there
exists

π : G → U(H),

a unitary representation of G, such that

∀g,h ∈ G, π(g)ϕh = ϕg•h.

Harmonic frames are group frames.



Abelian results

Theorem (Abelian frame multiplications – 1)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for H. Then • defines a frame multiplication for Φ if and only if
Φ is a group frame.



Abelian results

Theorem (Abelian frame multiplications – 2)

Let (G, •) be a finite abelian group, and let Φ = {ϕg}g∈G be a tight
frame for Cd . If • defines a frame multiplication for Φ, then Φ is
unitarily equivalent to a harmonic frame and there exists U ∈ U(Cd )
and c > 0 such that

cU
(
ϕg ∗ ϕh

)
= cU

(
ϕg
)

cU (ϕh) ,

where the product on the right is vector pointwise multiplication and ∗
is defined by (G, •), i.e., ϕg ∗ ϕh := ϕg•h.



Remarks

There is an analogous characterization of frame multiplication for
non-abelian groups (T. Andrews).
Consequently, vector-valued ambiguity functions Ad (u) exist for
functions u on a finite dimensional Hilbert space H if frame
multiplication is well-defined for a given tight frame for H and a
given finite group G.
It remains to extend the theory to infinite Hilbert spaces and
groups.
It also remains to extend the theory to the non-group case, e.g.,
our cross product example.
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GRAPH UNCERTAINTY PRINCIPLES



Uncertainty principles – 1

The Heisenberg uncertainty principle inequality is

∀f ∈ L2(R), ‖f‖2
L2(R) ≤ 4π ‖t f (t)‖L2(R)

∥∥∥γ f̂ (γ)
∥∥∥

L2(R̂)
.

Additively, we have

∀f ∈ L2(R), ‖f‖2
L2(R) ≤ 2π

(
‖t f (t)‖2

L2(R) +
∥∥∥γ f̂ (γ)

∥∥∥2

L2(R̂)

)
.

Equivalently, for f ∈ S(R),

‖f‖2
L2(R) ≤

∥∥∥f̂ ′
∥∥∥2

L2(R̂)
+ ‖f ′‖2

L2(R) .

We shall extend this inequality to graphs.



Uncertainty principles – 2

In signal processing, uncertainty principles dictate the trade off
between high spectral and high temporal accuracy, establishing
limits on the extent to which the “instantaneous frequency” of a
signal can be measured (Gabor, 1946)
Weighted, Euclidean, LCAG, non-L2 uncertainty principles,
proved by Fourier weighted norm inequalities, e.g., Plancherel,
generalizations of Hardy’s inequality, e.g., integration by parts,
and Hölder (alas).
DFT: Chebatorov, Grünbaum, Donoho and Stark,Tao.
Generalize the latter to graphs.



Graph theory – background

Problem: propose, prove, and understand uncertainty principle
inequalities for graphs, see A. Agaskar and Y. M. Lu on A
spectral graph uncertainty principle
Generally: There is no obvious solution because of the loss on
general graphs of the cyclic structure associated with the DFT.
Locally: Radar/Lidar data analysis at NWC uses non-linear
spectral kernel methods, with essential graph theoretic
components for dimension reduction and remote sensing.



Graph theory – definition

Definition

A graph is G = {V ,E ⊆ V × V ,w} consisting of a set V called
vertices, a set E called edges, and a weight function

w : V × V −→ [0,∞).

Write V = {vj}N−1
j=0 and keep the ordering fixed, but arbitrary.



Graph theory – assumptions

For any (vi , vj ) ∈ V × V we have

w(vi , vj ) =

{
0 if (vi , vj ) ∈ Ec

c > 0 if (vi , vj ) ∈ E.

G is undirected, i.e., w(vi , vj ) = w(vj , vi ).

w(vi , vi ) = 0, i.e., G has no loops.
G is connected, i.e., for any (vi , vj ) ∈ V × V , there exists a
sequence, {vk} ⊆ V , k = 0, . . . ,d ≤ N − 1, such that

(vi , v0), (v0, v1), . . . , (vd , vj ) ∈ E.

G is unit weighted if w takes only the values 0 and 1.



Graph Laplacian

N × N symmetric adjacency matrix, A, for G :

A = (Aij ) = (w(vi , vj )).

The degree matrix, D, is the N × N diagonal matrix,

D = diag

N−1∑
j=0

A0j ,

N−1∑
j=0

A1j , · · · ,
N−1∑
j=0

A(N−1)j

 .

The graph Laplacian,
L = D − A,

is the N × N symmetric, positive semi-definite matrix, with real
ordered eigenvalues 0 = λ0 ≤ . . . ≤ λN−1 and orthonormal
eigenbasis, {χj}N−1

j=0 , for RN .



Graph Fourier transform

Formally, the Fourier transform f̂ at γ of f defined on R is the
inner product of f with the complex exponentials, that are the
eigenfunctions of the Laplacian operator d2

dt2 on R.

Thus, define the graph Fourier transform, f̂ , of f ∈ `2(G) in the
graph Laplacian eigenbasis:

f̂ [j] = 〈χj , f 〉, j = 0, . . . ,N − 1.

If
χ = [χ0, χ1, ..., χN−1],

then f̂ = χ∗f , and, since χ is unitary, we have the inversion formula:

f = χχ∗f = χf̂ .



Difference operator for graphs

The difference operator,

Dr : `2(G) −→ R|E|,

with coordinate values representing the change in f over each edge,
is defined by

(Dr f )[k ] = (f [j]− f [i]) (w(ek ))1/2
,

where ek = (vj , vi ) and j < i .
Dr can be defined by the incidence matrix of G.
If G is a unit weighted circulant graph, then Dr is the intuitive
difference operator of Lammers and Maeser.



Difference uncertainty principle for graphs

Theorem

Let G be a connected and undirected graph. Then,

∀f ∈ `2(G), 0 < λ̃0 ‖f‖2 ≤ ‖Dr f‖2 +
∥∥∥Dr f̂

∥∥∥2
≤ λ̃N−1 ‖f‖2

,

where
∆ = diag{λ0, . . . , λN−1}

and where 0 < λ̃0 ≤ λ̃1 ≤ . . . ≤ λ̃N−1 are the eigenvalues of L + ∆.
The bounds are sharp.



Frame difference uncertainty principle for graphs
{ej}N−1

j=0 ⊆ Cd is a frame for Cd if

∃0 < A ≤ B such that∀f ∈ Cd , 0 < A ‖f‖2 ≤
N−1∑
j=0

|〈f ,ej〉|2 ≤ B ‖f‖2
.

If A = B = 1 then the frame is a Parseval frame.
Define the d × N matrix E = [e0,e1, . . . ,eN−1], where {ej}N−1

j=0 is
a Parseval frame for Cd . Then EE∗ = Id×d .

Theorem

Let G be a connected and undirected graph. Then, for every d × N
Parseval frame E,

d−1∑
j=0

λ̃j ≤ ‖Drχ
∗E∗‖2

fr + ‖Dr E∗‖2
fr ≤

N−1∑
j=N−d

λ̃j .

The bounds are sharp.



Complete graph

Figure : A unit weighted complete graph with 16 vertices.



Feasibility region

The difference operator feasibility region FR is

FR = {(x , y) : ∃f ∈ `2(G), ‖f‖ = 1, such that ‖Dr f‖2 = x and
∥∥∥Dr f̂

∥∥∥2
= y}.

Theorem

a. FR is a closed subset subset of [0, λN−1]× [0, λN−1], where λN−1
is the maximum eigenvalue of the Laplacian L.
b. ( 1

N

∑N−1
j=0 λj , 0) and (0,L0,0) are the only points of FR on the axes.

c. FR is in the half plane defined by x + y ≥ λ̃0 > 0 with equality if
and only if f̂ is in the eigenspace associated with λ̃0.
d. If N ≥ 3, then FR is a convex region.



Feasibility region



Uncertainty principle problem and comparison

Lammers and Maeser, Grünbaum, Agaskar and Lu.
The Agaskar and Lu problem.
Critical comparison between the graph theoretical feasibility
region and the comparable Bell Labs uncertainty principle region.
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BALAYAGE AND STFT FRAME INEQUALITIES



Fourier frames, goal, and a litany of names

Definition

E = {xn} ⊆ Rd,Λ ⊆ R̂d. E is a Fourier frame for L2(Λ) if

∃A,B > 0,∀F ∈ L2(Λ),

A ||F ||2L2(Λ) ≤
∑

n

| < F (γ), e−2πixn·γ > |2 ≤ B ||F ||2L2(Λ).

Goal Formulate a general theory of Fourier frames and
non-uniform sampling formulas parametrized by the space M(Rd) of
bounded Radon measures.

Motivation Beurling theory (1959-1960).

Names Riemann-Weber, Dini, G.D. Birkhoff, Paley-Wiener,
Levinson, Duffin-Schaeffer, Beurling-Malliavin, Beurling,
H.J. Landau, Jaffard, Seip, Ortega-Certà–Seip.

Balayage and the theory of generalized Fourier frames



Balayage

Let M(G) be the algebra of bounded Radon measures on the
LCAG G.

Balayage in potential theory was introduced by Christoffel (early
1870s) and Poincaré (1890).

Definition

(Beurling) Balayage is possible for (E,Λ) ⊆ G× Ĝ, a LCAG pair, if

∀µ ∈ M(G),∃ν ∈ M(E) such that µ̂ = ν̂ on Λ.

We write balayage (E,Λ).

The set, Λ, of group characters is the analogue of the original role of
Λ in balayage as a collection of potential theoretic kernels.

Kahane formulated balayage for the harmonic analysis of restriction
algebras.

Balayage and the theory of generalized Fourier frames



Spectral synthesis

Definition

(Wiener, Beurling) Closed Λ ⊆ Ĝ is a set of spectral synthesis (S-set) if
∀µ ∈ M(G),∀f ∈ Cb(G),
supp(f̂) ⊆ Λ and µ̂ = 0 on Λ =⇒

∫
G

f dµ = 0.

(∀T ∈ A′(Ĝ),∀φ ∈ A(Ĝ), supp(T ) ⊆ Λ and φ = 0 on Λ ⇒ T (φ) = 0.)

Ideal structure of L1(G) - the Nullstellensatz of harmonic analysis

T ∈ D′(R̂d), φ ∈ C∞
c (R̂d), and φ = 0 on supp(T ) ⇒ T (φ) = 0, with

same result for M(R̂d) and C0(R̂d).

S2 ⊆ R̂3 is not an S-set (L. Schwartz), and every non-discrete Ĝ has
non-S-sets (Malliavin).

Polyhedra are S-sets. The 1
3 -Cantor set is an S-set with

non-S-subsets.

Balayage and the theory of generalized Fourier frames



Strict multiplicity

Definition

Γ ⊆ Ĝ is a set of strict multiplicity if

∃ µ ∈ M(Γ)\{0} such that µ̌ vanishes at infinity in G.

Riemann and sets of uniqueness in the wide sense.

Menchov (1916): ∃ closed Γ ⊆ R̂/Z and µ ∈ M(Γ)\{0},
|Γ| = 0 and µ̌(n) = O((log |n|)−1/2), |n| → ∞.

20th century history to study rate of decrease: Bary (1927),
Littlewood (1936), Salem (1942, 1950), Ivašev-Mucatov (1957),
Beurling.

Assumption

∀ γ ∈ Λ and ∀ N(γ), compact neighborhood, Λ ∩N(γ) is a set of
strict multiplicity.

Balayage and the theory of generalized Fourier frames



A theorem of Beurling

Definition

E = {xn} ⊆ Rd is separated if

∃ r > 0, ∀m,n, m 6= n ⇒ ||xm − xn|| ≥ r.

Theorem

Let Λ ⊆ R̂d be a compact S-set, symmetric about 0 ∈ R̂d, and
let E ⊆ Rd be separated. If balayage (E,Λ), then

E is a Fourier frame for L2(Λ).

Equivalent formulation in terms of

PWΛ = {f ∈ L2(Rd) : supp(f̂) ⊆ Λ}.
∀F ∈ L2(Λ), F =

∑
x∈E < F, S−1(ex) >Λ ex in L2(Λ).

For Rd and other generality beyond Beurling’s theorem in R, the
result above was formulated by Hui-Chuan Wu
and JB (1998), see Landau (1967).

Balayage and the theory of generalized Fourier frames



Balayage and a non-uniform Gabor frame theorem

Let S0(Rd ) be the Feichtinger algebra.

Theorem

Let E = {(sn, σn)} ⊆ Rd × R̂d be a separated sequence; and let
Λ ⊆ R̂d × Rd be an S-set of strict multiplicity that is compact, convex,
and symmetric about 0 ∈ R̂d × Rd . Assume balayage is possible for
(E ,Λ). Given g ∈ L2(Rd ), such that ‖g‖2 = 1. Then

∃ A, B > 0, such that ∀f ∈ S0(Rd ), for which supp(V̂g f ) ⊆ Λ,

A ‖f‖2
2 ≤

∑∞

n=1
|Vg f (sn, σn)|2 ≤ B ‖f‖2

2 .



Balayage and a non-uniform Gabor frame theorem
(continued)

Theorem
Consequently, the frame operator, S = Sg,E , is invertible in
L2(Rd )–norm on the subspace of S0(Rd ), whose elements f have the
property, supp (V̂g f ) ⊆ Λ. Further, if f ∈ S0(Rd ) and supp(V̂g f ) ⊆ Λ,
then

f =
∑∞

n=1
〈f , τsn eσn g〉S−1

g,E (τsn eσn g),

where the series converges unconditionally in L2(Rd ).

E does not depend on g.



5

QUANTUM DETECTION, POVMs, AND FRAME POTENTIAL
ENERGY



Positive operator valued measure (POVM)

Quantum theory gives the probability that a measured outcome lies in
a specified region. These probabilities are defined in terms of
POVMs, motivated from von Neumann measurements.

Definition
Let B be a σ-algebra of sets of X , and let H be a separable Hilbert
space. A positive operator-valued measure (POVM) is a function
Π : B → L(H) such that:

a. ∀ U ∈ B, Π(U) is a positive self-adjoint operator H → H,

b. Π(∅) = 0 (zero operator),

c. ∀ disjoint {Ui}∞i=1 ⊆ B, and ∀x , y ∈ H,〈
Π

(∞⋃
i=1

Ui

)
x , y

〉
=

∞∑
i=1

〈Π(Ui )x , y〉 ,

d . Π(X ) = I (identity operator).



Probability of detection

Definition

Given a separable Hilbert space H, a measurable space (B,X ), and
a POVM Π. If the state of the system is x ∈ H with ‖x‖ = 1, then the
probability that the measured outcome lies in a region U ∈ B is

PΠ(U) = 〈x ,Π(U)x〉.

This is what we mean by a POVM measurement.

Given a countable measure space X ⊆ Z and a sequence
{xi : ‖xi‖ = 1}i∈X ⊆ H of possible states with probabilities
ρi ,
∑

i∈X ρi = 1, i.e., ρi is the probability the system is in the state xi .
The problem is to determine the state of the system and this

requires a measurement. The probability of detection error (average
probability that the measurement is incorrect) is

Pe = 1−
∑
i∈X

ρi〈xi ,Π(i)xi〉.

Hence, we want to construct a POVM Π that minimizes Pe, and this is
the quantum mechanical quantum detection problem.



1 - tight frames are POVMs

• Let H be a separable Hilbert space and let X ⊆ Z. X is the set of
outcomes, considered as the set of all possible values a dynamical
quantity, e.g., energy, can attain.

Theorem

• Assume {ei}i∈X ⊆ H is a 1-tight frame (A = B = 1) for H.
• Define a family {Π(w)}w⊆X of self-adjoint positive operators on H :

∀x ∈ H, Π(w)x =
∑
i∈w

〈x ,ei〉ei .

• Then Π is a POVM.

• a = c of a POVM are easy to check, and d follows since

∀x ∈ H, Π(X )x =
∑
i∈X

〈x ,ei〉ei = x .

• The converse of the Theorem is also true.



Quantum detection and 1-tight frames

• Given POVMs = 1-tight frames, the detection error Pe becomes

Pe = 1−
∑
i∈X

ρi〈xi ,Π(i)xi〉

= 1−
∑
i∈X

ρi〈xi , 〈ei , xi〉ei〉

= 1−
∑
i∈X

ρi |〈xi ,ei〉|2.

Thus the quantum mechanical quantum detection problem can be
viewed as constructing a 1-tight frame that minimizes the last term.

• Partial results in Physics by Helstrom, Kennedy (IEEE-IT 1974),
Kennedy, Yuen, and Lax (IEEE-IT 1975), Hausladen,Wootters (J.
Modern Optics 1994), Helstrom (J. Stat. Physics 1969), Peres,
Wootters (Phys. Rev. Lett. 1991), Peres, Terno (J. Phys. 1998).



Frame optimization problem

Problem
Let H be a d-dimensional Hilbert space. Given a sequence
{xi}N

i=1 ⊆ H of unit normed vectors and a sequence {ρi}N
i=1 ⊆ R of

positive weights that sums to 1. The frame optimization problem is to
construct a 1-tight frame {ei}N

i=1 that minimizes the quantity,

Pe({ei}N
i=1) = 1−

N∑
i=1

ρi |〈xi ,ei〉|2,

taken over all N-element 1-tight frames.

• Such a tight frame exists by a compactness argument, which itself
is difficult. Our goal is to quantify this existence, while keeping close
to the quantum detection problem.
• There are more elementary related optimization problems, e.g.,
weighted MSE, that have been solved, but that are not related to
quantum detection.



Outline of solution

Frame optimzation problem 

Minimize
Pe = 1−∑N

i=1 ρi|〈xi, ei〉|2
1-tight frames {ei}N

i=1 ⊆ Rd

Minimize
Pe = 1−∑N

i=1 ρi|〈xi, e′
i〉|2

ONBs {e′
i}N

i=1 ⊆ RN

(Naimark)

SO(N) and Newton’s
equation

SO(N) and theoretical
minimum energy

solutions of
frame optimzation problem

 Quantum detection problem

Quantum measurement 
POVMs

Countable outcomes X

 POVMs = 1-tight 
      frames

Frame force and
potential energy

Numerical methods,
friction, example
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Consequence of Naimark and its converse

Theorem

H d-dimensional Hilbert space, {xi : ‖xi‖ = 1}N
i=1 ⊆ H, and

{ρi : ρi > 0}N
i=1 summing to 1. H ′ N-dimensional Hilbert space such

that H is a linear subspace of H ′, and {ei}N
i=1 a 1-tight frame for H

that minimizes Pe over all N element 1-tight frames for H, i.e.,

Pe({ei}N
i=1) = inf

{
Pe({yi}N

i=1) : {yi}N
i=1 1-tight frame for H

}
.

(A minimizer exists by the compactness above.) Assume {e′i}N
i=1 is an

ONB for H ′ that minimizes Pe over all ONBs for H ′, i.e.,

Pe({e′i}N
i=1) = inf

{
Pe({yi}N

i=1) : {yi}N
i=1 ONB for H ′

}
.

Then
Pe({ei}N

i=1) = Pe({e′i}N
i=1) = Pe({PHe′i}N

i=1),

where PH is the orthogonal projection onto H.



Diagram of Naimark Hilbert space dilation theorem

H ⊆ H ′

POVM PVM

1− tight ONB

Naimark

Naimark

• The relationship between projective measurements (PVM), positive
operator valued measurements (POVM), orthonormal bases (ONB),
and 1-tight frames (1-tight).
• A 1-tight frame for H is a projection onto H of an ONB for some
H ′ ⊇ H.
• A POVM for H is the projection onto H of a PVM for some Hilbert
space H ′ ⊇ H.
• Naimark and Dr. Czaja’s theory.



The geometry of finite tight frames (FUNTFs)

The vertices of platonic solids are FUNTFs.
However, points that constitute FUNTFs do not have to be
equidistributed, e.g., ONBs and Grassmanian frames.
FUNTFs can be characterized as minimizers of a frame potential
function (with Fickus) analogous to Coulomb’s Law.
Frame potential energy optimization has basic applications
dealing with classification problems for hyperspectral and
multi-spectral (biomedical) image data.



Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where P(a, b) = p(‖a − b‖), p′(x) = −xf (x)

Coulomb force

CF (a, b) = (a − b)/‖a − b‖3
, f (x) = 1/x3

Frame force

FF (a, b) = 〈a, b〉(a − b), f (x) = 1 − x2/2

Total potential energy for the frame force

TFP({xn}) =
N∑

m=1

N∑

n=1
|〈xm, xn〉|2



Characterization of FUNTFs

Theorem
Let N ≤ d . The minimum value of TFP, for the frame force and N
variables, is N; and the minimizers are precisely the orthonormal
sets of N elements for Rd .

Let N ≥ d . The minimum value of TFP, for the frame force and N
variables, is N2/d ; and the minimizers are precisely the FUNTFs of N
elements for Rd .

Problem
Find FUNTFs analytically, effectively, computationally.



Examples of frames

(a) Non–FUNTF (b) FUNTF

John J. Benedetto Frame potential classification algorithm for retinal data



Frame optimization problem in light of Naimark

Problem

H d-dimensional Hilbert space, {xi : ‖xi‖ = 1}N
i=1 ⊆ H, and

{ρi : ρi > 0}N
i=1 summing to 1.

Assume N ≥ d. Let H ′ be an N-dimensional Hilbert space such
that H is a linear subspace of H ′. The frame optimization problem is
to find an orthonormal basis {e′i}N

i=1 ⊆ H ′ that minimizes Pe over all N
element orthonormal sets in H ′.



The role of frame force for solution

Find an ONB {e′i}N
i=1 ⊆ H ′ that minimizes Pe over all ONBs for H ′.

We consider the quantity Pe as a potential

V = Pe =
N∑

i=1

ρi (1− |〈xi ,e′i 〉|2) =
N∑

i=1

Vi ,

where each

Vi = ρi (1− 〈xi ,e′i 〉2) = ρi

(
1−

(
1− 1

2
‖xi − e′i‖2

)2
)
,

and where we use the facts ‖xi‖ = ‖e′i‖ = 1 and

‖xi − e′i‖2 = 〈xi − e′i , xi − e′i 〉 = ‖xi‖2 − 2〈xi ,e′i 〉+ ‖e′i‖2 = 2− 2〈xi ,e′i 〉.



The role of frame force for solution, continued

Fi = −∇iVi is a conservative central force field, where ∇i is an
N-dimensional gradient taken by keeping xi fixed and differentiating
with respect to the variable e′i . Set x = ‖xi − e′i‖, and write

Vi (xi ,e′i ) = vi (‖xi − e′i‖) = ρi

[
1−

(
1− 1

2
x2
)2
]
.

Taking the derivative with respect to x gives

v ′i (x) = −2ρi

(
1− 1

2
x2
)

(−x) = 2ρi

(
1− 1

2
x2
)

x = −xfi (x),

fi (x) = −2ρi

(
1− 1

2
x2
)
.

Therefore, the corresponding central force can be written as

Fi (xi ,e′i ) = fi (‖xi − e′i‖)(xi − e′i ) = −2ρi〈xi ,e′i 〉(xi − e′i ).

Fi is frame force!



Idea for completion of solution

Thus, the frame optimization problem can be viewed as a physical
system, where the given vectors (pure states) {xi}N

i=1 are fixed points
on the unit sphere in H ′; and we have a ”rigid” orthonormal basis
{e′i}N

i=1 which moves according to the frame force Fi between each e′i
and xi .

The problem is to find the equilibrium set {e′ i}n
i=1. These are the

points where all the forces Fi balance and produce no net motion. In
this situation, the potential V obtains an extreme value, and, in
particular, we consider the case in which V is minimized.

This leads to differential equations on O(N) and to the solution of
the frame optimization problem.



Problems

• Develop frame-POVM relationship for more complex frames and
pairs H,X . Then model realistic quantum measurement problems in
these terms.

• Integrate noise reduction capability of frames for quantum
measurement.

• Solve quantum detection problems beyond our pure states solution
(suggested by Dr. Balu). Do analysis of mixed and entangled states,
as well as associated tensor products.

• Generalize Gleason’s theorem beyond Busch’s generalization, that
requires POVMs, in terms of defining Gleason functions (giá frame
functions) for 1-tight (Parseval) frames instead of ONBs.
(Collaboration with Drs. Balu and Koprowski).






